Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Modelling the association of rainfall and temperature with malaria incidence in Adamawa State, Nigeria
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Modelling the association of rainfall and temperature with malaria incidence in Adamawa State, Nigeria

  • Emmanuel Afolabi Bakare1,2,
  • Didier Dukundane3,
  • Kolawolé Valère Salako3,
  • Romain Glèlè Kakaï3,
  • Chukwu Okoronkwo4 na1 &
  • …
  • Eze Nelson4 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 519 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Diseases
  • Ecology
  • Environmental sciences
  • Health care
  • Mathematics and computing
  • Medical research

Abstract

Malaria transmission in Adamawa State is strongly driven by climatic conditions, particularly rainfall and temperature, which influence Anopheles mosquito breeding, survival, and parasite development. This study investigates the climate malaria relationship using monthly data from January 2015 to April 2024 and applies time series methods to characterize temporal patterns and generate forecasts. Using the Box Jenkins ARIMA framework with model selection informed by AIC and BIC, and performance evaluated through RMSE, MAE, and MAPE, the \(SARIMAX(1,0,1)(1,1,1)_{12}\) model emerged as the best fitting specification. This model integrates lagged temperature and rainfall, successfully capturing both the inherent annual seasonality of malaria and the climatic drivers that modulate transmission. Forecasts for May 2024 to December 2025 indicate pronounced seasonal surges, with cases expected to rise sharply between June and October. Incidence is projected to reach approximately 67,052 cases in August 2024 and peak again at about 80,004 cases in October 2025, the highest value within the 20 month horizon. Early forecast months exhibit narrower confidence intervals due to proximity to observed data, whereas wider intervals toward late 2025 reflect increasing long range uncertainty, a common feature of time series predictions. These findings underscore the substantial influence of climate variability on malaria dynamics in Adamawa State and highlight the value of SARIMAX based forecasting for strengthening early warning systems. The projections support the need for proactive public health planning, including intensified seasonal preparedness and reinforcement of malaria vaccination and vector control strategies to reduce disease burden.

Data availability

The datasets analysed during the current study are not publicly available due to data privacy and institutional restrictions but are available from the corresponding author on reasonable request.

References

  1. UNICEF. Achieving the malaria millennium development goal (mdg) target: Unicef data report. Online report, (2024). URL https://data.unicef.org/resources/achieving-malaria-mdg-target/. Accessed: 2024-10-15.

  2. Oboh, M. A. et al. Molecular identification of plasmodium species responsible for malaria reveals plasmodium vivax isolates in duffy negative individuals from southwestern nigeria. Malaria J. 17, 1–12 (2018).

    Google Scholar 

  3. World Health Organization. World health organization: Global health observatory data repository. Online database, (2020). URL https://www.who.int/. Accessed: 2024-10-15.

  4. Akinbobola, A. & Omotosho, B. J. Predicting malaria occurrence in southwest and north central Nigeria using meteorological parameters. Int. J. Biometeorol. 57, 721–728 (2013).

    Google Scholar 

  5. Amaechi, E. C. et al. Distribution and seasonal abundance of anopheline mosquitoes and their association with rainfall around irrigation and non-irrigation areas in nigeria. Cuadernos de Investigación UNED 10(2), 267–272 (2018).

    Google Scholar 

  6. World Health Organization. Strategy to respond to antimalarial drug resistance in africa, (2024). URL https://www.who.int/activities/monitoring-malaria-drug-efficacy-and-resistance.

  7. Adepoju, P. Concerns grow over efficacy of antimalarial drugs as resistance spreads in africa. Nature 616(7949), 291–293. https://doi.org/10.1038/d41586-024-00912-4 (2024).

    Google Scholar 

  8. Malaria Policy Advisory Group. Report on antimalarial drug resistance in africa, (2024). URL https://cdn.who.int/media/docs/default-source/malaria/mpac-documentation/mpag-march2024-session5-antimalarial-drug-resistance-africa.pdf.

  9. Chai, T. & Draxler, R. R. Root mean square error (rmse) or mean absolute error (mae). Geosci. Model Develop. Discussions 7(1), 1525–1534 (2014).

    Google Scholar 

  10. Dukundane, D. Modeling and forecasting exchange rate volatility in west africa using garch models. J. Stat. Econometr. Methods 12(4), 39–53 (2023).

    Google Scholar 

  11. Githeko, A. K., Lindsay, S. W., Confalonieri, U. E. & Patz, J. A. Climate change and vector-borne diseases: A regional analysis. Bull. World Health Organ. 78(9), 1136–1147 (2000).

    Google Scholar 

  12. Stresman, G. H. Beyond temperature and precipitation: Ecological risk factors that modify malaria transmission. Acta Tropica 116(3), 167–172 (2010).

    Google Scholar 

  13. Reiter, Paul. Weather, vector biology, and arboviral recrudescence. In The Arboviruses:, pages 245–256. CRC press, (2020).

  14. Zareen, S. et al. Malaria is still a life threatening disease review. J. Entomol. Zool. Stud. 105, 105–112 (2016).

    Google Scholar 

  15. White, N. J. et al. Antimalarial drug resistance. J. Clin. Investig. 113(8), 1084–1092 (2004).

    Google Scholar 

  16. World Health Organization and UNICEF. Achieving the malaria millennium development goal target: Global report 2015. Joint WHO–UNICEF report, (2015). URL https://data.unicef.org/resources/achieving-malaria-mdg-target/. Accessed: 2024-10-15.

  17. Oladipo, H. J. et al. Increasing challenges of malaria control in Sub-Saharan Africa: Priorities for public health research and policymakers. Ann. Med. Surg. 81, 104366 (2022).

    Google Scholar 

  18. Mwangi, T. W., Ross, A., Snow, R. W. & Marsh, K. Case definitions of clinical malaria under different transmission conditions in Kilifi District, Kenya. J. Infect. Diseases 191(11), 1932–1939 (2005).

    Google Scholar 

  19. World Health Organization. Who urges financial support to sustain malaria control amid rising drug resistance, (2023). URL https://www.who.int/news-room.

  20. Xiao, Yanyu. Study of malaria transmission dynamics by mathematical models. The University of Western Ontario (Canada), (2011).

  21. World Health Organization. Who recommends groundbreaking malaria vaccine for children at risk, (2021). URL https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk.

  22. Adepoju, P. Ghana and Nigeria approve new malaria vaccine that offers hope for global rollout. Nature 614(7949), 382–383. https://doi.org/10.1038/d41586-023-00841-1 (2023).

    Google Scholar 

  23. Ross, Ronald. The prevention of malaria. John Murray, (1911).

  24. Mandai, S., Sarkar, R. & Sinha, S. Mathematical models for malaria transmission: A review. Malaria J. 10, 202 (2011).

    Google Scholar 

  25. Anwar, M. Y., Shah, A. & Khan, M. Forecasting malaria cases using arima model in afghanistan. J. Epidemiol. Glob. Health 6(3), 179–185 (2016).

    Google Scholar 

  26. Kumar, A., Kumar, A. & Tripathi, P. Application of arima model for malaria forecasting in india. Stat. Med. 33, 1251–1263 (2014).

    Google Scholar 

  27. Anokye, R., Acheampong, E. & Koomson, J. Forecasting malaria cases in ghana using the box-jenkins approach. Int. J. Tropical Diseases Health 30(2), 1–11 (2018).

    Google Scholar 

  28. Jere, I. & Moyo, A. Predicting malaria cases in zambia using arima models. Malawi Med. J. 28(3), 85–90 (2016).

    Google Scholar 

  29. Ferrão, J., Mendes, J. M. & Painho, M. Forecasting malaria morbidity in mozambique using arima models. Malaria J. 16, 478 (2017).

    Google Scholar 

  30. Ferrão, J., Mendes, J. M. & Painho, M. Intervention analysis for malaria mortality in mozambique. PLOS One 12(5), e0177276 (2017).

    Google Scholar 

  31. Nobre, F. F., Monteiro, A. B. & Telles, P. R. Forecasting infectious diseases with seasonal patterns using arima models. Int. J. Epidemiol. 30(3), 485–492 (2001).

    Google Scholar 

  32. Ture, M. & Kurt, I. Comparison of arima and sarima models for malaria forecasting. J. Stat. Comput. Simulat. 76(10), 905–920 (2006).

    Google Scholar 

  33. Luz, P. M., Mendes, B. V. & Codeço, C. T. Time series analysis for predicting infectious disease outbreaks. Epidemiol. Infection 136(6), 864–872 (2008).

    Google Scholar 

  34. Fortes, M., Ninot, G. & Delignières, D. The auto-regressive integrated moving average procedures: Implications for adapted physical activity research. Adapted Phys. Activity Quarterly 22(3), 221–236 (2005).

    Google Scholar 

  35. NTWALI Michel Pacifique Girum Taye Zeleke, DUKUNDANE Didier. Time series analysis on monthly average rwanda currency exchange rate against us dollars, (2014). URL https://new.academiapublishing.org/journals/jbem/abstract/2014/Aug/Girum%20et%20al.htm.

  36. Emmanuel, A., Bakare, O., Mogbojuri, A., Oluwaseun, D. & Samson Oniyelu, Afeez, Abidemi, Deborah, Oluwatobi Daniel, Idowu, Isaac Olasupo, Samuel, Abidemi Osikoya, Aaron, Onyebuchi Nwana, Ronke, Dorcas Olorunfemi. Oluwafemi Olagbami. Time series modelling and forecasting of mpox incidence and mortality in nigeria. BMC Infectious Diseases, 25 (794): 065–073, URL (2025). 11174-0?utm_source=rct_congratemailt&utm_medium=email &utm_campaign=oa_20250604 &utm_content=10.1186%2Fs12879-025-11174-0#citeas.

  37. Permanasari, Adhistya Erna, Rambli, Dayang Rohaya Awang. & Dominic, Dhanapal Durai. Prediction of zoonosis incidence in human using seasonal auto regressive integrated moving average (sarima). arXiv preprint arXiv:0910.0820, (2009).

  38. Mulla, S., Pande, C. B. & Singh, S. K. Times series forecasting of monthly rainfall using seasonal auto regressive integrated moving average with exogenous variables (sarimax) model. Water Resources Manag. 38(6), 1825–1846 (2024).

    Google Scholar 

  39. Dickey, D. A. & Fuller, W. A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366a), 427–431 (1979).

    Google Scholar 

  40. National Malaria Elimination Program (NMEP). National malaria surveillance data 2015–2024. Unpublished institutional dataset, (2024). Accessed from the Federal Ministry of Health, Abuja, Nigeria.

  41. Nigerian Meteorological Agency (NiMet). Climatic data on rainfall and temperature (2015–2024). Institutional meteorological records, (2024). Accessed from NiMet database Abuja, Nigeria.

  42. Pascual, M., Ahumada, J. A., Chaves, L. F., Rodo, X. & Bouma, M. Malaria resurgence in the east African highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. 103(15), 5829–5834 (2006).

    Google Scholar 

  43. Tanser, F. C., Sharp, B. & le Sueur, D. Potential effect of climate change on malaria transmission in africa. Lancet 362(9398), 1792–1798 (2003).

    Google Scholar 

  44. Piontek, F. et al. Multisectoral climate impact hotspots in a warming world. Nat. Clim. Change 8(3), 261–267 (2018).

    Google Scholar 

  45. Thomson, M. C., Mason, S. J., Phindela, T. & Connor, S. J. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 438, 576–579 (2005).

    Google Scholar 

  46. Yamana, Teresa K. & Eltahir, Elfatih AB. Climate change and malaria transmission: a global modeling perspective. Proc. Natl. Acad. Sci. 110(24), 9849–9854 (2013).

  47. Jolliffe, Ian T. & Cadima, Jorge. Principal Component Analysis. Springer, (2016).

  48. Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22(10), 1690–1708 (2019).

    Google Scholar 

  49. Pike, A., Hastings, I. M., Chipeta, M. G. & McCann, R. S. The impact of rainfall on mosquito abundance and infection risk in a semi-arid region of africa. Parasites Vectors 10, 1–12 (2017).

    Google Scholar 

  50. Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspectives 118(5), 620–626 (2010).

    Google Scholar 

  51. Paaijmans, K. P., Read, A. F. & Thomas, M. B. Understanding the link between malaria risk and climate. Proc. Natl. Acad. Sci. 106(33), 13844–13849. https://doi.org/10.1073/pnas.0903423106 (2010).

    Google Scholar 

  52. Caminade, C. et al. Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences, (2014).

  53. Okunlola, O. E., Oyebanji, O. O., Afolabi, O. J. & Olalekan, R. M. Assessing climatic influences on malaria transmission in nigeria using time series models. Environ. Monitoring Assessment 194(6), 440. https://doi.org/10.1007/s10661-022-10062-2 (2022).

    Google Scholar 

  54. Midekisa, A., Senay, G., Henebry, G. M., Semuniguse, P. & Wimberly, M. C. Remote sensing-based time series models for malaria early warning in the highlands of ethiopia. Malaria J. 11, 165. https://doi.org/10.1186/1475-2875-11-165 (2012).

    Google Scholar 

  55. Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345. https://doi.org/10.1038/nature09098 (2011).

    Google Scholar 

  56. Hyndman, Rob J. & Athanasopoulos, George. Forecasting: Principles and Practice. OTexts, (2018). URL https://otexts.com/fpp3/.

  57. Shumway, Robert H. & Stoffer, David S. Time Series Analysis and Its Applications: With R Examples. Springer, New York, 4 edition, (2017).

  58. Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for r. J. Stat. Softw. 27(3), 1–22 (2008).

    Google Scholar 

  59. Moss, W. J. Malaria epidemiology and transmission dynamics. Pediatr. Infectious Disease J. 38(10), 1014–1019 (2019).

    Google Scholar 

  60. Reiner Jr, R. C. et al. Seasonality of plasmodium falciparum transmission. Am. J. Tropical Med. Hygiene 88(5), 797–801 (2013).

    Google Scholar 

  61. Held, L. & Paul, M. Statistical modeling of infectious disease surveillance data. Stat. Methods Med. Res. 14(5), 445–452 (2005).

    Google Scholar 

  62. Parham, P. E. & Michael, E. Climate influence on malaria transmission. Environ. Health Perspectives 118(5), 620–626 (2010).

    Google Scholar 

  63. Mordecai, E. A. et al. Thermal biology of mosquito borne disease. Ecol. Lett. 22(10), 1690–1708 (2019).

    Google Scholar 

  64. Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. 111(9), 3286–3291 (2014).

    Google Scholar 

  65. Martens, P. et al. Climate change and future malaria risk. Environ. Health Perspectives 107(5), 329–334 (1999).

    Google Scholar 

Download references

Acknowledgements

D.D. acknowledges the support of the German Academic Exchange Service (DAAD) and E.A.B. acknowledges the support from the International Centre for Applied Mathematical Modelling & Data Analytics (ICAMMDA), Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria.

Funding

This research received no external funding.

Author information

Author notes
  1. These authors contributed equally: Chukwu Okoronkwo and Eze Nelson.

Authors and Affiliations

  1. Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria

    Emmanuel Afolabi Bakare

  2. International Centre for Applied Mathematical Modelling & Data Analytics (ICAMMDA), Federal University Oye-Ekiti, Ekiti State, Nigeria

    Emmanuel Afolabi Bakare

  3. Laboratoire de Biomathématiques et d’Estimations Forestières, University of Abomey-Calavi, Cotonou, Benin

    Didier Dukundane, Kolawolé Valère Salako & Romain Glèlè Kakaï

  4. National Malaria Elimination Program, Federal Ministry of Health Abuja, Abuja, Nigeria

    Chukwu Okoronkwo & Eze Nelson

Authors
  1. Emmanuel Afolabi Bakare
    View author publications

    Search author on:PubMed Google Scholar

  2. Didier Dukundane
    View author publications

    Search author on:PubMed Google Scholar

  3. Kolawolé Valère Salako
    View author publications

    Search author on:PubMed Google Scholar

  4. Romain Glèlè Kakaï
    View author publications

    Search author on:PubMed Google Scholar

  5. Chukwu Okoronkwo
    View author publications

    Search author on:PubMed Google Scholar

  6. Eze Nelson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Emmanuel Afolabi Bakare: Conceptualization, Methodology, Supervision, Writing, review and editing; Didier Dukundane: Conceptualization, Data curation, Formal analysis, Investigation, Software, Visualization, Writing, original draft, review and editing; Chukwu Okoronkwo: Data curation, Project administration, Resources; Eze Nelson: Data curation, Resources; Kolawolé Valère Salako: Project administration, Resources, Supervision, review and editing; Romain Glèlè Kakaï: Project administration, Resources, Supervision, review and editing.

Corresponding author

Correspondence to Emmanuel Afolabi Bakare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakare, E.A., Dukundane, D., Salako, K.V. et al. Modelling the association of rainfall and temperature with malaria incidence in Adamawa State, Nigeria. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38705-2

Download citation

  • Received: 11 August 2025

  • Accepted: 30 January 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38705-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Malaria
  • Incidence
  • SARIMA
  • SARIMAX
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene