Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Neurocognitive differences in sketching between design tasks and creativity tests
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Neurocognitive differences in sketching between design tasks and creativity tests

  • Shumin Li1,
  • Gaetano Cascini1 &
  • Niccolò Becattini1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cognitive neuroscience
  • Engineering
  • Human behaviour
  • Neurophysiology

Abstract

This study investigates differences in brain activity among thirty-seven engineering students during sketching in a creativity test and a design task. Using EEG data, we first examined the impact of baseline selection (eyes-open vs. eyes-closed) on the representation of results in terms of de/synchronization across frequency bands from theta (4–7 Hz) to lower gamma (30-45 Hz). Specifically, an eyes-closed baseline allowed for the observation of alpha desynchronization during sketching, whereas an eyes-open baseline, which better aligns with real-world design conditions, shifted the pattern to synchronization. Under the eyes-open baseline, the comparisons between the two sketching tasks revealed the following results: (1) regions that showed significant bilateral TRP asymmetries in creativity test sketching also exhibited differences in design sketching across frequency bands from theta to beta band. Areas that exhibited significant bilateral TRP asymmetry only in design sketching were located in the temporal sites (theta and beta), suggesting these areas within the corresponding frequency bands could serve as indicators for distinguishing between the two cognitive tasks. (2) Statistically significant differences between the two sketching tasks in channel comparisons were primarily observed in the theta and sub-alpha bands, especially in the left frontal and right hemisphere areas. (3) The beta band exhibited similar behavior across both sketching tasks, indicating shared cognitive processes in different sketching contexts. (4) While the lower gamma band did not show significant differences in channel comparisons between tasks, it exhibited distinct bilateral TRP asymmetry in the frontocentral area only in the creativity test, highlighting the potential of bilateral asymmetry as a more sensitive measure for distinguishing between design and creativity tasks.

Data availability

The datasets generated and analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. Cross, N. Natural intelligence in design. Des. Stud. 20, 25–39. https://doi.org/10.1016/S0142-694X(98)00026-X (1999).

    Google Scholar 

  2. Prats, M., Lim, S., Jowers, I., Garner, S. W. & Chase, S. Transforming shape in design: Observations from studies of sketching. Des. Stud. 30, 503–520. https://doi.org/10.1016/j.destud.2009.04.002 (2009).

    Google Scholar 

  3. Kavakli, M. & Gero, J. S. Sketching as mental imagery processing. Des. Stud. 22, 347–364. https://doi.org/10.1016/S0142-694X(01)00002-3 (2001).

    Google Scholar 

  4. Martín-Mariscal, A., Aguilar-Alejandre, M. & Peralta, M. E. Sketching and creativity: An integrated model of graphic ideation in industrial design. In Advances in Design Engineering III (Cavas-Martínez, F., Marín Granados, M. D. et al.. Eds.). 1067–1080, https://doi.org/10.1007/978-3-031-20325-1_81 (Springer, 2023).

  5. Verstijnen, I., van Leeuwen, C., Goldschmidt, G., Hamel, R. & Hennessey, J. Sketching and creative discovery. Des. Stud. 19, 519–546. https://doi.org/10.1016/S0142-694X(98)00017-9 (1998).

    Google Scholar 

  6. Camba, J. D., Kimbrough, M. & Kwon, E. Conceptual product design in digital and traditional sketching environments: A comparative exploratory study. J. Des. Res. 16, 131–154. https://doi.org/10.1504/JDR.2018.092810 (2018).

    Google Scholar 

  7. Evans, M., Pei, E., Cheshire, D. & Graham, I. Digital sketching and haptic sketch modelling during product design and development. Int. J. Prod. Dev. 20, 239. https://doi.org/10.1504/ijpd.2015.069323 (2015).

    Google Scholar 

  8. Kudrowitz, B., Te, P. & Wallace, D. The influence of sketch quality on perception of product-idea creativity. Artif. Intell. Eng. Des. Anal. Manuf. 26, 267–279. https://doi.org/10.1017/S0890060412000145 (2012).

    Google Scholar 

  9. Kudrowitz, B. M. & Wallace, D. Assessing the quality of ideas from prolific, early-stage product ideation. J. Eng. Des. 24, 120–139. https://doi.org/10.1080/09544828.2012.676633 (2013).

    Google Scholar 

  10. Dietrich, A. & Kanso, R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. 136, 822–48. https://doi.org/10.1037/a0019749 (2010).

    Google Scholar 

  11. Pidgeon, L. M. et al. Functional neuroimaging of visual creativity: A systematic review and meta-analysis. Brain Behav. 6, e00540. https://doi.org/10.1002/brb3.540 (2016).

    Google Scholar 

  12. Zangeneh Soroush, M. & Zeng, Y. EEG-based study of design creativity: A review on research design, experiments, and analysis. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2024.1331396 (2024).

    Google Scholar 

  13. Torrance, E. P. Torrance Tests of Creative Thinking (Personnel Press Inc, 1968).

    Google Scholar 

  14. Jia, W. & Zeng, Y. EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment. Sci. Rep. https://doi.org/10.1038/s41598-021-81655-0 (2021).

    Google Scholar 

  15. Rominger, C. et al. The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia 118, 13–19. https://doi.org/10.1016/j.neuropsychologia.2018.02.013 (2018).

    Google Scholar 

  16. Rodgers, P., Green, G. & McGown, A. Using concept sketches to track design progress. Des. Stud. 21, 451–464. https://doi.org/10.1016/S0142-694X(00)00018-1 (2000).

    Google Scholar 

  17. Vieira, S., Benedek, M., Gero, J., Li, S. & Cascini, G. Design spaces and EEG frequency band power in constrained and open design. Int. J. Des. Creativ. Innov. 10, 193–221. https://doi.org/10.1080/21650349.2022.2048697 (2022).

    Google Scholar 

  18. Ferguson, E. S. Engineering and the Mind’s Eye (MIT Press, 1994).

  19. Brun, J., Le Masson, P. & Weil, B. Designing with sketches: The generative effects of knowledge preordering. Des. Sci. 2, e13. https://doi.org/10.1017/dsj.2016.13 (2016).

    Google Scholar 

  20. Tversky, B. What do sketches say about thinking. In 2002 AAAI Spring Symposium, Sketch Understanding Workshop, Stanford University, AAAI Technical Report SS-02-08. Vol. 148. 151 (2002).

  21. Goel, V. Sketches of Thought (MIT Press, 1995).

  22. Van der Lugt, R. How sketching can affect the idea generation process in design group meetings. Des. Stud. 26, 101–122. https://doi.org/10.1016/j.destud.2004.08.003 (2005).

    Google Scholar 

  23. Schon, D. A. & Wiggins, G. Kinds of seeing and their functions in designing. Des. Stud. 13, 135–156. https://doi.org/10.1016/0142-694X(92)90268-F (1992).

    Google Scholar 

  24. Jansson, D. G. & Smith, S. M. Design fixation. Des. Stud. 12, 3–11. https://doi.org/10.1016/0142-694X(91)90003-F (1991).

  25. Smith, S. M., Ward, T. B. & Schumacher, J. S. Constraining effects of examples in a creative generation task. Mem. Cognit. 21, 837–845. https://doi.org/10.3758/BF03202751 (1993).

    Google Scholar 

  26. Razoumnikova, O. M. Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognit. Brain Res. 10, 11–18. https://doi.org/10.1016/S0926-6410(00)00017-3 (2000).

    Google Scholar 

  27. Jauk, E., Benedek, M. & Neubauer, A. C. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84, 219–225. https://doi.org/10.1016/j.ijpsycho.2012.02.012 (2012).

    Google Scholar 

  28. Jaušovec, N. & Jaušovec, K. EEG activity during the performance of complex mental problems. IInt. J. Psychophysiol. 36, 73–88. https://doi.org/10.1016/S0167-8760(99)00113-0 (2000).

    Google Scholar 

  29. van der Meer, A. L. H. & van der Weel, F. R. R. Only three fingers write, but the whole brain works: A high-density EEG study showing advantages of drawing over typing for learning. Front. Psychol. https://doi.org/10.3389/fpsyg.2017.00706 (2017).

    Google Scholar 

  30. Vol’f, N. V. & Tarasova, I. V. Electrophysiological parameters and the possibility of increasing imaginal creativity using monetary rewards. Neurosci. Behav. Physiol. 44, 268–276. https://doi.org/10.1007/s11055-014-9906-5 (2014).

    Google Scholar 

  31. Volf, N. V. & Tarasova, I. V. The relationships between EEG \(\theta\) and \(\beta\) oscillations and the level of creativity. Hum. Physiol. 36, 132–138. https://doi.org/10.1134/S0362119710020027 (2010).

    Google Scholar 

  32. Razumnikova, O. M., Volf, N. V. & Tarasova, I. V. Strategy and results: Sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 35, 285–294. https://doi.org/10.1134/s0362119709030049 (2009).

    Google Scholar 

  33. Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A. & Rushby, J. A. EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 118, 2765–2773. https://doi.org/10.1016/j.clinph.2007.07.028 (2007).

    Google Scholar 

  34. Vieira, S., Benedek, M., Gero, J., Li, S. & Cascini, G. Brain activity in constrained and open design: The effect of gender on frequency bands. Artif. Intell. Eng. Des. Anal. Manuf. 36, e6. https://doi.org/10.1017/S0890060421000202 (2022).

    Google Scholar 

  35. Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

    Google Scholar 

  36. Nijstad, B. A., Dreu, C. K. W. D., Rietzschel, E. F. & Baas, M. The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. Eur. Rev. Soc. Psychol. 21, 34–77. https://doi.org/10.1080/10463281003765323 (2010).

    Google Scholar 

  37. Kim, K. H. Can we trust creativity tests? A review of the torrance tests of creative thinking (ttct). Creativ. Res. J. 18, 3–14. https://doi.org/10.1207/s15326934crj1801_2 (2006).

    Google Scholar 

  38. Ullman, D. G., Wood, S. & Craig, D. The importance of drawing in the mechanical design process. Comput. Graph. 14, 263–274. https://doi.org/10.1016/0097-8493(90)90037-X (1990).

    Google Scholar 

  39. Kannengiesser, U. & Gero, J. S. Design thinking, fast and slow: A framework for Kahneman’s dual-system theory in design. Des. Sci. 5, e10. https://doi.org/10.1017/dsj.2019.9 (2019).

    Google Scholar 

  40. Li, S., Becattini, N. & Cascini, G. Neuro-cognitive insights into engineering design: Exploring EEG predictive associations with task performance. J. Mech. Des. 10(1115/1), 4066681 (2024).

    Google Scholar 

  41. Peirce, J. et al. Psychopy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203. https://doi.org/10.3758/s13428-018-01193-y (2019).

    Google Scholar 

  42. Heaton, R. K., Chelune, C., Talley, J., Kay, G. G. & Curtiss, G. Wisconsin Card Sorting Test Manual: Revised and Expanded (Psychological Assessment Resources Inc, 1993).

  43. Bobrov, P. et al. Brain-computer interface based on generation of visual images. PLoS ONE 6, e20674. https://doi.org/10.1371/journal.pone.0020674 (2011).

    Google Scholar 

  44. Amjad, I. et al. Therapeutic effects of aerobic exercise on EEG parameters and higher cognitive functions in mild cognitive impairment patients. Int. J. Neurosci. 129, 551–562. https://doi.org/10.1080/00207454.2018.1551894 (2019).

    Google Scholar 

  45. Lukaevi, F., Becattini, N., Periši, M. M. & Škec, S. Differences in engineers’ brain activity when cad modelling from isometric and orthographic projections. Sci. Rep. 13. https://doi.org/10.1038/s41598-023-36823-9 (2023).

  46. Krumm, G., Arán Filippetti, V., Catanzariti, M. & Mateos, D. M. Exploring the neural basis of creativity: EEG analysis of power spectrum and functional connectivity during creative tasks in school-aged children. Front. Comput. Neurosci. 19. https://doi.org/10.3389/fncom.2025.1548620 (2025).

  47. Makeig, S., Bell, A., Jung, T.-P. & Sejnowski, T. J. Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process (1995).

  48. Berg, P. & Scherg, M. Dipole modelling of eye activity and its application to the removal of eye artefacts from the EEG and MEG. Clin. Phys. Physiol. Meas. 12, 49–54. https://doi.org/10.1088/0143-0815/12/a/010 (1991).

    Google Scholar 

  49. Borga, M. & Knutsson, H. A canonical correlation approach to blind source separation. In Technical Report, Report LiU-IMT-EX-0062 Department of Biomedical Engineering, Linkping University (2001).

  50. Stern, J. M. Atlas of EEG Patterns. 2 Ed. (Lippincott Williams and Wilkins, 2013).

  51. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser.B (Methodol.) 57, 289–300 (1995).

    Google Scholar 

  52. Hedges, L. V. Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128. https://doi.org/10.3102/10769986006002107 (1981).

    Google Scholar 

  53. Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 1985).

    Google Scholar 

  54. Cureton, E. E. Rank-biserial correlation. Psychometrika 21, 287–290. https://doi.org/10.1007/BF02289138 (1956).

    Google Scholar 

  55. Willson, V. L. Critical values of the rank-biserial correlation coefficient. Educ. Psychol. Meas. 36, 297–300. https://doi.org/10.1177/001316447603600207 (1976).

    Google Scholar 

  56. Bloom, H. S. Minimum detectable effects: A simple way to report the statistical power of experimental designs. Eval. Rev. 19, 547–556. https://doi.org/10.1177/0193841X9501900504 (1995).

    Google Scholar 

  57. Lakens, D. Sample size justification. Collab. Psychol. 8. https://doi.org/10.1525/collabra.33267 (2022).

  58. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Elsevier, 1977).

  59. Danko, S. G. The reflection of different aspects of brain activation in the electroencephalogram: Quantitative electroencephalography of the states of rest with the eyes open and closed. Hum. Physiol. 32, 377–388. https://doi.org/10.1134/s0362119706040013 (2006).

    Google Scholar 

  60. Geller, A. S. et al. Eye closure causes widespread low-frequency power increase and focal gamma attenuation in the human electrocorticogram. Clin. Neurophysiol. 125, 1764–1773. https://doi.org/10.1016/j.clinph.2014.01.021 (2014).

    Google Scholar 

  61. Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S. & Knight, R. T. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J. Neurophysiol. 94, 4269–4280. https://doi.org/10.1152/jn.00324.2005 (2005).

    Google Scholar 

  62. Fell, J. et al. Rhinal-hippocampal theta coherence during declarative memory formation: Interaction with gamma synchronization?. European Journal of Neuroscience 17, 1082–1088. https://doi.org/10.1046/j.1460-9568.2003.02522.x (2003).

    Google Scholar 

  63. Bilda, Z. & Gero, J. Does sketching off-load visuo-spatial working memory? In Studying Designers’05. Vol. 5. 145–159 (2005).

  64. Stipacek, A., Grabner, R., Neuper, C., Fink, A. & Neubauer, A. Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neurosci. Lett. 353, 193–196. https://doi.org/10.1016/j.neulet.2003.09.044 (2003).

    Google Scholar 

  65. Ocklenburg, S. et al. Beyond frontal alpha: Investigating hemispheric asymmetries over the EEG frequency spectrum as a function of sex and handedness. Lateral. Asymm. Body Brain Cognit. 24, 505–524. https://doi.org/10.1080/1357650x.2018.1543314 (2018).

  66. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. http://dx.doi.org/10.1038/nrn755 (2002).

  67. Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. \(\alpha\)-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006 (2006).

    Google Scholar 

  68. Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cognit. Sci. 16, 606–617. https://doi.org/10.1016/j.tics.2012.10.007 (2012).

    Google Scholar 

  69. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 4. https://doi.org/10.3389/fnhum.2010.00186 (2010).

  70. Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cognit. Sci. 18, 414–421. https://doi.org/10.1016/j.tics.2014.04.012 (2014).

    Google Scholar 

  71. Spydell, J. D. & Sheer, D. E. Effect of problem solving on right and left hemisphere 40 hertz EEG activity. Psychophysiology 19, 420–425. https://doi.org/10.1111/j.1469-8986.1982.tb02497.x (1982).

    Google Scholar 

  72. Tallon-Baudry, C. & Bertrand, O. Oscillatory gamma activity in humans and its role in object representation. Trends Cognit. Sci. 3, 151–162. https://doi.org/10.1016/S1364-6613(99)01299-1 (1999).

    Google Scholar 

  73. Hellige, J. Hemispheric asymmetry for visual information processing. Acta Neurobiol. Exp. 56, 485–497. http://dx.doi.org/10.55782/ane-1996-1151 (1996).

  74. Fink, A. & Benedek, M. EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123. https://doi.org/10.1016/j.neubiorev.2012.12.002 (2014).

    Google Scholar 

  75. Fink, A., Benedek, M., Grabner, R. H., Staudt, B. & Neubauer, A. C. Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods 42, 68–76. https://doi.org/10.1016/j.ymeth.2006.12.001 (2007).

    Google Scholar 

  76. Shemyakina, N. V., Danko, S. G., Nagornova, Z. V., Starchenko, M. G. & Bechtereva, N. P. Changes in the power and coherence spectra of the EEG rhythmic components during solution of a verbal creative task of overcoming a stereotype. Hum. Physiol. 33, 524–530. https://doi.org/10.1134/s0362119707050027 (2007).

    Google Scholar 

  77. Mölle, M., Marshall, L., Wolf, B., Fehm, H. L. & Born, J. EEG complexity and performance measures of creative thinking. Psychophysiology 36, 95–104. https://doi.org/10.1017/S0048577299961619 (1999).

    Google Scholar 

  78. Keil, A., Mussweiler, T. & Epstude, K. Alpha-band activity reflects reduction of mental effort in a comparison task: A source space analysis. Brain Res. 1121, 117–127. https://doi.org/10.1016/j.brainres.2006.08.118 (2006).

    Google Scholar 

  79. Lukaevi, F., Becattini, N. & Škec, S. Identifying the electroencephalography features for measuring cognitive load in computer-aided design. J. Mech. Des. 147, 121403. https://doi.org/10.1115/1.4068746 (2025).

  80. Osipova, D. et al. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J. Neurosci. 26, 7523–7531. https://doi.org/10.1523/JNEUROSCI.1948-06.2006 (2006).

    Google Scholar 

  81. Kirchner, W. K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55, 352–358. https://doi.org/10.1037/h0043688 (1958).

    Google Scholar 

  82. Engel, A. K. & Fries, P. Beta-band oscillations—Signalling the status quo?. Curr. Opin. Neurobiol. 20, 156–165. https://doi.org/10.1016/j.conb.2010.02.015 (2010).

    Google Scholar 

  83. Park, J., Kim, H., Sohn, J.-W., Choi, J.-R. & Kim, S.-P. EEG beta oscillations in the temporoparietal area related to the accuracy in estimating others’ preference. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2018.00043 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mechanical Engineering, Politecnico di Milano, 20158, Milan, Italy

    Shumin Li, Gaetano Cascini & Niccolò Becattini

Authors
  1. Shumin Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Gaetano Cascini
    View author publications

    Search author on:PubMed Google Scholar

  3. Niccolò Becattini
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.L. conducted the experimental investigation, performed data curation, formal analysis, validation, visualization, and wrote the original draft. S.L. and G.C. conceived the study. C.G. and N.B. contributed to the methodology, supervision, and manuscript review and editing. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Shumin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cascini, G. & Becattini, N. Neurocognitive differences in sketching between design tasks and creativity tests. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38735-w

Download citation

  • Received: 30 December 2024

  • Accepted: 30 January 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38735-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing