Abstract
This study investigates differences in brain activity among thirty-seven engineering students during sketching in a creativity test and a design task. Using EEG data, we first examined the impact of baseline selection (eyes-open vs. eyes-closed) on the representation of results in terms of de/synchronization across frequency bands from theta (4–7 Hz) to lower gamma (30-45 Hz). Specifically, an eyes-closed baseline allowed for the observation of alpha desynchronization during sketching, whereas an eyes-open baseline, which better aligns with real-world design conditions, shifted the pattern to synchronization. Under the eyes-open baseline, the comparisons between the two sketching tasks revealed the following results: (1) regions that showed significant bilateral TRP asymmetries in creativity test sketching also exhibited differences in design sketching across frequency bands from theta to beta band. Areas that exhibited significant bilateral TRP asymmetry only in design sketching were located in the temporal sites (theta and beta), suggesting these areas within the corresponding frequency bands could serve as indicators for distinguishing between the two cognitive tasks. (2) Statistically significant differences between the two sketching tasks in channel comparisons were primarily observed in the theta and sub-alpha bands, especially in the left frontal and right hemisphere areas. (3) The beta band exhibited similar behavior across both sketching tasks, indicating shared cognitive processes in different sketching contexts. (4) While the lower gamma band did not show significant differences in channel comparisons between tasks, it exhibited distinct bilateral TRP asymmetry in the frontocentral area only in the creativity test, highlighting the potential of bilateral asymmetry as a more sensitive measure for distinguishing between design and creativity tasks.
Data availability
The datasets generated and analyzed in this study are available from the corresponding author upon reasonable request.
References
Cross, N. Natural intelligence in design. Des. Stud. 20, 25–39. https://doi.org/10.1016/S0142-694X(98)00026-X (1999).
Prats, M., Lim, S., Jowers, I., Garner, S. W. & Chase, S. Transforming shape in design: Observations from studies of sketching. Des. Stud. 30, 503–520. https://doi.org/10.1016/j.destud.2009.04.002 (2009).
Kavakli, M. & Gero, J. S. Sketching as mental imagery processing. Des. Stud. 22, 347–364. https://doi.org/10.1016/S0142-694X(01)00002-3 (2001).
Martín-Mariscal, A., Aguilar-Alejandre, M. & Peralta, M. E. Sketching and creativity: An integrated model of graphic ideation in industrial design. In Advances in Design Engineering III (Cavas-Martínez, F., Marín Granados, M. D. et al.. Eds.). 1067–1080, https://doi.org/10.1007/978-3-031-20325-1_81 (Springer, 2023).
Verstijnen, I., van Leeuwen, C., Goldschmidt, G., Hamel, R. & Hennessey, J. Sketching and creative discovery. Des. Stud. 19, 519–546. https://doi.org/10.1016/S0142-694X(98)00017-9 (1998).
Camba, J. D., Kimbrough, M. & Kwon, E. Conceptual product design in digital and traditional sketching environments: A comparative exploratory study. J. Des. Res. 16, 131–154. https://doi.org/10.1504/JDR.2018.092810 (2018).
Evans, M., Pei, E., Cheshire, D. & Graham, I. Digital sketching and haptic sketch modelling during product design and development. Int. J. Prod. Dev. 20, 239. https://doi.org/10.1504/ijpd.2015.069323 (2015).
Kudrowitz, B., Te, P. & Wallace, D. The influence of sketch quality on perception of product-idea creativity. Artif. Intell. Eng. Des. Anal. Manuf. 26, 267–279. https://doi.org/10.1017/S0890060412000145 (2012).
Kudrowitz, B. M. & Wallace, D. Assessing the quality of ideas from prolific, early-stage product ideation. J. Eng. Des. 24, 120–139. https://doi.org/10.1080/09544828.2012.676633 (2013).
Dietrich, A. & Kanso, R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. 136, 822–48. https://doi.org/10.1037/a0019749 (2010).
Pidgeon, L. M. et al. Functional neuroimaging of visual creativity: A systematic review and meta-analysis. Brain Behav. 6, e00540. https://doi.org/10.1002/brb3.540 (2016).
Zangeneh Soroush, M. & Zeng, Y. EEG-based study of design creativity: A review on research design, experiments, and analysis. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2024.1331396 (2024).
Torrance, E. P. Torrance Tests of Creative Thinking (Personnel Press Inc, 1968).
Jia, W. & Zeng, Y. EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment. Sci. Rep. https://doi.org/10.1038/s41598-021-81655-0 (2021).
Rominger, C. et al. The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia 118, 13–19. https://doi.org/10.1016/j.neuropsychologia.2018.02.013 (2018).
Rodgers, P., Green, G. & McGown, A. Using concept sketches to track design progress. Des. Stud. 21, 451–464. https://doi.org/10.1016/S0142-694X(00)00018-1 (2000).
Vieira, S., Benedek, M., Gero, J., Li, S. & Cascini, G. Design spaces and EEG frequency band power in constrained and open design. Int. J. Des. Creativ. Innov. 10, 193–221. https://doi.org/10.1080/21650349.2022.2048697 (2022).
Ferguson, E. S. Engineering and the Mind’s Eye (MIT Press, 1994).
Brun, J., Le Masson, P. & Weil, B. Designing with sketches: The generative effects of knowledge preordering. Des. Sci. 2, e13. https://doi.org/10.1017/dsj.2016.13 (2016).
Tversky, B. What do sketches say about thinking. In 2002 AAAI Spring Symposium, Sketch Understanding Workshop, Stanford University, AAAI Technical Report SS-02-08. Vol. 148. 151 (2002).
Goel, V. Sketches of Thought (MIT Press, 1995).
Van der Lugt, R. How sketching can affect the idea generation process in design group meetings. Des. Stud. 26, 101–122. https://doi.org/10.1016/j.destud.2004.08.003 (2005).
Schon, D. A. & Wiggins, G. Kinds of seeing and their functions in designing. Des. Stud. 13, 135–156. https://doi.org/10.1016/0142-694X(92)90268-F (1992).
Jansson, D. G. & Smith, S. M. Design fixation. Des. Stud. 12, 3–11. https://doi.org/10.1016/0142-694X(91)90003-F (1991).
Smith, S. M., Ward, T. B. & Schumacher, J. S. Constraining effects of examples in a creative generation task. Mem. Cognit. 21, 837–845. https://doi.org/10.3758/BF03202751 (1993).
Razoumnikova, O. M. Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognit. Brain Res. 10, 11–18. https://doi.org/10.1016/S0926-6410(00)00017-3 (2000).
Jauk, E., Benedek, M. & Neubauer, A. C. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84, 219–225. https://doi.org/10.1016/j.ijpsycho.2012.02.012 (2012).
Jaušovec, N. & Jaušovec, K. EEG activity during the performance of complex mental problems. IInt. J. Psychophysiol. 36, 73–88. https://doi.org/10.1016/S0167-8760(99)00113-0 (2000).
van der Meer, A. L. H. & van der Weel, F. R. R. Only three fingers write, but the whole brain works: A high-density EEG study showing advantages of drawing over typing for learning. Front. Psychol. https://doi.org/10.3389/fpsyg.2017.00706 (2017).
Vol’f, N. V. & Tarasova, I. V. Electrophysiological parameters and the possibility of increasing imaginal creativity using monetary rewards. Neurosci. Behav. Physiol. 44, 268–276. https://doi.org/10.1007/s11055-014-9906-5 (2014).
Volf, N. V. & Tarasova, I. V. The relationships between EEG \(\theta\) and \(\beta\) oscillations and the level of creativity. Hum. Physiol. 36, 132–138. https://doi.org/10.1134/S0362119710020027 (2010).
Razumnikova, O. M., Volf, N. V. & Tarasova, I. V. Strategy and results: Sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 35, 285–294. https://doi.org/10.1134/s0362119709030049 (2009).
Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A. & Rushby, J. A. EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 118, 2765–2773. https://doi.org/10.1016/j.clinph.2007.07.028 (2007).
Vieira, S., Benedek, M., Gero, J., Li, S. & Cascini, G. Brain activity in constrained and open design: The effect of gender on frequency bands. Artif. Intell. Eng. Des. Anal. Manuf. 36, e6. https://doi.org/10.1017/S0890060421000202 (2022).
Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).
Nijstad, B. A., Dreu, C. K. W. D., Rietzschel, E. F. & Baas, M. The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. Eur. Rev. Soc. Psychol. 21, 34–77. https://doi.org/10.1080/10463281003765323 (2010).
Kim, K. H. Can we trust creativity tests? A review of the torrance tests of creative thinking (ttct). Creativ. Res. J. 18, 3–14. https://doi.org/10.1207/s15326934crj1801_2 (2006).
Ullman, D. G., Wood, S. & Craig, D. The importance of drawing in the mechanical design process. Comput. Graph. 14, 263–274. https://doi.org/10.1016/0097-8493(90)90037-X (1990).
Kannengiesser, U. & Gero, J. S. Design thinking, fast and slow: A framework for Kahneman’s dual-system theory in design. Des. Sci. 5, e10. https://doi.org/10.1017/dsj.2019.9 (2019).
Li, S., Becattini, N. & Cascini, G. Neuro-cognitive insights into engineering design: Exploring EEG predictive associations with task performance. J. Mech. Des. 10(1115/1), 4066681 (2024).
Peirce, J. et al. Psychopy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203. https://doi.org/10.3758/s13428-018-01193-y (2019).
Heaton, R. K., Chelune, C., Talley, J., Kay, G. G. & Curtiss, G. Wisconsin Card Sorting Test Manual: Revised and Expanded (Psychological Assessment Resources Inc, 1993).
Bobrov, P. et al. Brain-computer interface based on generation of visual images. PLoS ONE 6, e20674. https://doi.org/10.1371/journal.pone.0020674 (2011).
Amjad, I. et al. Therapeutic effects of aerobic exercise on EEG parameters and higher cognitive functions in mild cognitive impairment patients. Int. J. Neurosci. 129, 551–562. https://doi.org/10.1080/00207454.2018.1551894 (2019).
Lukaevi, F., Becattini, N., Periši, M. M. & Škec, S. Differences in engineers’ brain activity when cad modelling from isometric and orthographic projections. Sci. Rep. 13. https://doi.org/10.1038/s41598-023-36823-9 (2023).
Krumm, G., Arán Filippetti, V., Catanzariti, M. & Mateos, D. M. Exploring the neural basis of creativity: EEG analysis of power spectrum and functional connectivity during creative tasks in school-aged children. Front. Comput. Neurosci. 19. https://doi.org/10.3389/fncom.2025.1548620 (2025).
Makeig, S., Bell, A., Jung, T.-P. & Sejnowski, T. J. Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process (1995).
Berg, P. & Scherg, M. Dipole modelling of eye activity and its application to the removal of eye artefacts from the EEG and MEG. Clin. Phys. Physiol. Meas. 12, 49–54. https://doi.org/10.1088/0143-0815/12/a/010 (1991).
Borga, M. & Knutsson, H. A canonical correlation approach to blind source separation. In Technical Report, Report LiU-IMT-EX-0062 Department of Biomedical Engineering, Linkping University (2001).
Stern, J. M. Atlas of EEG Patterns. 2 Ed. (Lippincott Williams and Wilkins, 2013).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser.B (Methodol.) 57, 289–300 (1995).
Hedges, L. V. Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128. https://doi.org/10.3102/10769986006002107 (1981).
Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 1985).
Cureton, E. E. Rank-biserial correlation. Psychometrika 21, 287–290. https://doi.org/10.1007/BF02289138 (1956).
Willson, V. L. Critical values of the rank-biserial correlation coefficient. Educ. Psychol. Meas. 36, 297–300. https://doi.org/10.1177/001316447603600207 (1976).
Bloom, H. S. Minimum detectable effects: A simple way to report the statistical power of experimental designs. Eval. Rev. 19, 547–556. https://doi.org/10.1177/0193841X9501900504 (1995).
Lakens, D. Sample size justification. Collab. Psychol. 8. https://doi.org/10.1525/collabra.33267 (2022).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Elsevier, 1977).
Danko, S. G. The reflection of different aspects of brain activation in the electroencephalogram: Quantitative electroencephalography of the states of rest with the eyes open and closed. Hum. Physiol. 32, 377–388. https://doi.org/10.1134/s0362119706040013 (2006).
Geller, A. S. et al. Eye closure causes widespread low-frequency power increase and focal gamma attenuation in the human electrocorticogram. Clin. Neurophysiol. 125, 1764–1773. https://doi.org/10.1016/j.clinph.2014.01.021 (2014).
Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S. & Knight, R. T. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J. Neurophysiol. 94, 4269–4280. https://doi.org/10.1152/jn.00324.2005 (2005).
Fell, J. et al. Rhinal-hippocampal theta coherence during declarative memory formation: Interaction with gamma synchronization?. European Journal of Neuroscience 17, 1082–1088. https://doi.org/10.1046/j.1460-9568.2003.02522.x (2003).
Bilda, Z. & Gero, J. Does sketching off-load visuo-spatial working memory? In Studying Designers’05. Vol. 5. 145–159 (2005).
Stipacek, A., Grabner, R., Neuper, C., Fink, A. & Neubauer, A. Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neurosci. Lett. 353, 193–196. https://doi.org/10.1016/j.neulet.2003.09.044 (2003).
Ocklenburg, S. et al. Beyond frontal alpha: Investigating hemispheric asymmetries over the EEG frequency spectrum as a function of sex and handedness. Lateral. Asymm. Body Brain Cognit. 24, 505–524. https://doi.org/10.1080/1357650x.2018.1543314 (2018).
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. http://dx.doi.org/10.1038/nrn755 (2002).
Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. \(\alpha\)-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006 (2006).
Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cognit. Sci. 16, 606–617. https://doi.org/10.1016/j.tics.2012.10.007 (2012).
Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 4. https://doi.org/10.3389/fnhum.2010.00186 (2010).
Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. Trends Cognit. Sci. 18, 414–421. https://doi.org/10.1016/j.tics.2014.04.012 (2014).
Spydell, J. D. & Sheer, D. E. Effect of problem solving on right and left hemisphere 40 hertz EEG activity. Psychophysiology 19, 420–425. https://doi.org/10.1111/j.1469-8986.1982.tb02497.x (1982).
Tallon-Baudry, C. & Bertrand, O. Oscillatory gamma activity in humans and its role in object representation. Trends Cognit. Sci. 3, 151–162. https://doi.org/10.1016/S1364-6613(99)01299-1 (1999).
Hellige, J. Hemispheric asymmetry for visual information processing. Acta Neurobiol. Exp. 56, 485–497. http://dx.doi.org/10.55782/ane-1996-1151 (1996).
Fink, A. & Benedek, M. EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123. https://doi.org/10.1016/j.neubiorev.2012.12.002 (2014).
Fink, A., Benedek, M., Grabner, R. H., Staudt, B. & Neubauer, A. C. Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods 42, 68–76. https://doi.org/10.1016/j.ymeth.2006.12.001 (2007).
Shemyakina, N. V., Danko, S. G., Nagornova, Z. V., Starchenko, M. G. & Bechtereva, N. P. Changes in the power and coherence spectra of the EEG rhythmic components during solution of a verbal creative task of overcoming a stereotype. Hum. Physiol. 33, 524–530. https://doi.org/10.1134/s0362119707050027 (2007).
Mölle, M., Marshall, L., Wolf, B., Fehm, H. L. & Born, J. EEG complexity and performance measures of creative thinking. Psychophysiology 36, 95–104. https://doi.org/10.1017/S0048577299961619 (1999).
Keil, A., Mussweiler, T. & Epstude, K. Alpha-band activity reflects reduction of mental effort in a comparison task: A source space analysis. Brain Res. 1121, 117–127. https://doi.org/10.1016/j.brainres.2006.08.118 (2006).
Lukaevi, F., Becattini, N. & Škec, S. Identifying the electroencephalography features for measuring cognitive load in computer-aided design. J. Mech. Des. 147, 121403. https://doi.org/10.1115/1.4068746 (2025).
Osipova, D. et al. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J. Neurosci. 26, 7523–7531. https://doi.org/10.1523/JNEUROSCI.1948-06.2006 (2006).
Kirchner, W. K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55, 352–358. https://doi.org/10.1037/h0043688 (1958).
Engel, A. K. & Fries, P. Beta-band oscillations—Signalling the status quo?. Curr. Opin. Neurobiol. 20, 156–165. https://doi.org/10.1016/j.conb.2010.02.015 (2010).
Park, J., Kim, H., Sohn, J.-W., Choi, J.-R. & Kim, S.-P. EEG beta oscillations in the temporoparietal area related to the accuracy in estimating others’ preference. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2018.00043 (2018).
Author information
Authors and Affiliations
Contributions
S.L. conducted the experimental investigation, performed data curation, formal analysis, validation, visualization, and wrote the original draft. S.L. and G.C. conceived the study. C.G. and N.B. contributed to the methodology, supervision, and manuscript review and editing. All authors reviewed and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, S., Cascini, G. & Becattini, N. Neurocognitive differences in sketching between design tasks and creativity tests. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38735-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38735-w