Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Assessing the impact of infrastructure proliferation on shoreline dynamics around Mexico
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Assessing the impact of infrastructure proliferation on shoreline dynamics around Mexico

  • Etzaguery Marin-Coria1,
  • M. Luisa Martínez1,
  • Rodolfo Silva2,
  • Valeria Chávez2,3,
  • Carmelo Maximiliano-Cordova1,2,
  • Monica Pedraza-Buitrago2 &
  • …
  • Jorge López-Portillo1 

Scientific Reports , Article number:  (2026) Cite this article

  • 637 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Environmental sciences
  • Natural hazards
  • Ocean sciences

Abstract

This study addresses the lack of a national-scale, structure-level assessment of how coastal infrastructure interacts with shoreline dynamics in Mexico. We compiled a georeferenced inventory of coastal structures from 1995 to 2019 and evaluated their association with long-term shoreline trends using the global dataset of Luijendijk et al. (2018). The inventory indicates that, over 24 years, the number of structures increased from 570 to 1,030, with substantial variations regionally in patterns of structure density and expansion. Among these contrasts, the highest overall density (> 1 structure/km) was in the state of Yucatán, primarily due to the large number of groynes there. The inventory was linked to 517 filtered transects updrift and downdrift of the structures, and, in adjacent coasts, 45% showed stability, 33% accretion, and 22% erosion. Breakwaters and jetties were the features most commonly associated with erosive patterns. These contrasting responses were then examined in two local case studies: in Puerto Chiapas, the shoreline dynamics showed long-term, but relatively moderate, adjustments near the jetties; while in Antón Lizardo, successive growth in coastal infrastructure has amplified both erosion and accretion, reshaping the local sedimentary patterns. The integration of national-scale patterns with detailed local evidence, has given the first comprehensive assessment of how coastal structures in Mexico cumulatively influence shoreline behaviour. The findings underline the need to adopt planning strategies that incorporate sediment connectivity, multiscale impacts, and the implementation of nature-based and adaptive solutions to shoreline management problems.

Data availability

The datasets created and/or analysed in this study are available in the repository titled “Vector files of the inventory of coastal structures in Mexico from 1995 to 2019 and erosion rates for Antón Lizardo, Veracruz from 2015 to 2025,“ accessible at (https://zenodo.org/records/17307790).

References

  1. Silva, R. V. et al. A. Caracterización de la zona costera y planteamiento de elementos técnicos para la elaboración de criterios de regulación y manejo sustentable. 125 (UNAM/SEMARNAT, (2014).

  2. Silva, R. et al. Present and future challenges of coastal erosion in Latin America. J Coast Res, pp: 1–16 (2014).

  3. Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Google Scholar 

  4. MacManus, K., Balk, D., Engin, H., McGranahan, G. & Inman, R. Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter. Earth Syst. Sci. Data. 13, 5747–5801 (2021).

    Google Scholar 

  5. Tagtachian, D. & Balk, D. Uneven vulnerability: characterizing population composition and change in the low elevation coastal zone in the united States with a climate justice lens, 1990–2020. Front. Environ. Sci. 11, 1111856 (2023).

    Google Scholar 

  6. Rafeeque, M. K. & Thomas, K. V. in OCEANS 2022 - Chennai. pp: 1–11.

  7. Valderrama-Landeros, L. H. et al. Dynamics of coastline changes in Mexico. J. Geogr. Sci. 29, 1637–1654 (2019).

    Google Scholar 

  8. Vallarino Castillo, R., Valdecantos, N., del Campo, J. M. & V. & Understanding the impact of hydrodynamics on coastal erosion in Latin america: a systematic review. Front. Environ. Sci. 11, 1267402 (2023).

    Google Scholar 

  9. Cuevas Jiménez, A., Euán Ávila, J. I. & Lacouture, V. Silva Casarín, R. Classification of beach erosion vulnerability on the Yucatan Coast. Coast Manage. 44, 333–349 (2016).

    Google Scholar 

  10. Canul, R., Mendoza, E. & Silva, R. Beach erosion diagnosis and green intervention alternatives in Chenkán beach, Campeche, Mexico. J. Coast Res. 92, 75–84 (2019).

    Google Scholar 

  11. David, C. G., Schulz, N. & Schlurmann, T. In Ecosystem-based Disaster Risk Reduction and Adaptation in Practice. pp: 457–482 (Springer, 2016).

  12. Chávez, V., Lithgow, D., Losada, M. & Silva-Casarin, R. Coastal green infrastructure to mitigate coastal squeeze. J. Infrastructure Preservation Resil. 2, 7 (2021).

    Google Scholar 

  13. Moschella, P. et al. Low-crested coastal defence structures as artificial habitats for marine life: using ecological criteria in design. Coast Eng. 52, 1053–1071 (2005).

    Google Scholar 

  14. Appendini, C. M., Salles, P., Mendoza, E. T., López, J. & Torres-Freyermuth, A. Longshore sediment transport on the Northern Coast of the Yucatan Peninsula. J. Coast Res. 28, 1404–1417 (2012).

    Google Scholar 

  15. Schoonees, T. et al. Hard structures for coastal protection, towards greener designs. Estuar. Coast. 42, 1709–1729 (2019).

    Google Scholar 

  16. Kaya, H. A., Okudan, O., Koc, K. & Işık, Z. A multi-criteria decision-making model for sustainable selection of coastal protection structures. Ocean. Coast Manage. 259, 107459 (2024).

    Google Scholar 

  17. IMT. Gestión costera, imt.mx/resumen-boletines.html?IdArticulo=566&IdBoletin=200#:~:text=CARACTER%C3%8DSTICAS%20DEMOGR%C3%81FICAS%2DSOCIALES,manifest%C3%A1ndose%20en%20los%20%C3%BAltimos%20a%C3%B1os> (2022).

  18. CONAPO. Proyecciones de población, (2025). https://datos.gob.mx/dataset/proyecciones-de-poblacion

  19. CONABIO. Sistema de Información Geográfica, (2010). http://www.conabio.gob.mx/informacion/gis/

  20. Rangel-Buitrago, N., Williams, A. T. & Anfuso, G. Hard protection structures as a principal Coastal erosion management strategy along the Caribbean Coast of Colombia. A chronicle of pitfalls. Ocean. Coast Manage. 156, 58–75 (2018).

    Google Scholar 

  21. Cooper, J., O’connor, M. & McIvor, S. Coastal defences versus coastal ecosystems: a regional appraisal. Mar. Policy. 111, 102332 (2020).

    Google Scholar 

  22. Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

    Google Scholar 

  23. Rivera-Arriaga, E. et al. In Disaster Risk Reduction for Resilience: Climate Change and Disaster Risk Adaptation. pp: 273–302 (Springer, 2023).

  24. Cruz, C. J., Mendoza, E., Silva, R. & Chávez, V. Assessing degrees of anthropization on the Coast of Mexico from ecosystem conservation and population growth data. J. Coast Res. 92, 136–144 (2019).

    Google Scholar 

  25. Davis, R. A. Jr & Hayes, M. O. In Developments Sedimentology. 39. 313–329 (Elsevier, 1984).

  26. Sabatier, F. U. S. Army Corps of Engineers, Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100. US Army Corps of Engineers, Washington, DC (6 volumes). Méditerranée. Revue géographique des pays méditerranéens/Journal of Mediterranean geography, 146 (2007).

  27. Deltares. Long-term Shoreline Changes (1984–2016), (2018). https://aqua-monitor.appspot.com/?datasets=shoreline

  28. ASIPONA-Chiapas. Puerto Chiapas, (2025). https://mail.puertochiapas.com.mx/inicio

  29. Himmelstoss, E. et al. Digital Shoreline Analysis System (version 5.0). US Geological Survey software release. (2018).

  30. ESA. SNAP-ESA Sentinel Application Platform Version 12, https://step.esa.int/main/ (NA).

  31. Escudero-Castillo, M., Felix-Delgado, A., Silva, R., Mariño-Tapia, I. & Mendoza, E. Beach erosion and loss of protection environmental services in Cancun, Mexico. Ocean. Coast Manage. 156, 183–197 (2018).

    Google Scholar 

  32. de Almeida, L. R., Silva, R. & Martinez, M. L. The relationships between environmental conditions and parallel ecosystems on the coastal dunes of the Mexican Caribbean. Geomorphology 397, 108006 (2022).

    Google Scholar 

  33. PROFEPA. Retira PROFEPA 60 espigones para combatir erosión costera en Yucatán, (2015). https://www.profepa.gob.mx/innovaportal/v/7247/1/mx.wap/retira_profepa__60_espigones__para_combatir__erosion_costera_en_yucatan.html

  34. Edición-Impresa. Remedio empeora erosión en las costas yucatecas. (2025).

  35. Rivera-Arriaga, E. & Villalobos, G. The Coast of mexico: approaches for its management. Ocean. Coast Manage. 44, 729–756 (2001).

    Google Scholar 

  36. Bulleri, F. & Chapman, M. G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 47, 26–35 (2010).

    Google Scholar 

  37. Firth, L. B. et al. Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. J. Appl. Ecol. 57, 1762–1768 (2020).

    Google Scholar 

  38. Paxton, A. B. et al. Leveraging built marine structures to benefit and minimize impacts on natural habitats. Bioscience 75, 172–183 (2025).

    Google Scholar 

  39. Gibeaut, J. C. et al. Geotubes for temporary erosion control and storm surge protection along Gulf of Mexico Shoreline of Texas. (2001).

  40. Nordstrom, K. F. Living with shore protection structures: a review. Estuar. Coast Shelf Sci. 150, 11–23 (2014).

    Google Scholar 

  41. Chapapría, V. E. & Peris, J. S. Vulnerability of coastal areas due to infrastructure: the case of Valencia Port (Spain). Land 10, 1344 (2021).

    Google Scholar 

  42. Ezcurra, E. et al. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers. Sci. Adv. 5, eaau9875 (2019).

    Google Scholar 

  43. Syvitski, J. et al. Earth’s sediment cycle during the anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    Google Scholar 

  44. Hall, M. J. & Pilkey, O. H. Effects of hard stabilization on dry beach width for new Jersey. J Coast Res, pp: 771–785 (1991).

  45. Gomez, I. et al. A review of disturbances to the ecosystems of the Mexican Caribbean, their causes and consequences. J. Mar. Sci. Eng. 10, 644 (2022).

    Google Scholar 

  46. Herrera-Silveira, J. A. et al. land-use, and management in the coastal zone of Yucatán Peninsula. Gulf Mexico: Origin Waters Biota. 4, 225–242 (2013).

    Google Scholar 

  47. Bridges, T. S. et al. US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA,. Use of natural and nature-based features (NNBF) for coastal resilience. Report No. ERDC SR-15-1, (2015).

  48. Inácio, M. et al. In Nature-based Solutions for Flood Mitigation: Environmental and socio-economic Aspects. pp: 35–58 (Springer, 2020).

  49. Morris, R. L., Konlechner, T. M., Ghisalberti, M. & Swearer, S. E. From grey to green: efficacy of eco-engineering solutions for nature‐based coastal defence. Global Change Biol. 24, 1827–1842 (2018).

    Google Scholar 

  50. Reidenbach, M. A. et al. Performance evaluation of natural and Nature-Based features for coastal protection and Co-Benefits. Annu Rev. Mar. Sci 18 (2025).

  51. DOF. Ley General de Vida Silvestre, Chap. 8, < (2020). https://www.diputados.gob.mx/LeyesBiblio/pdf/LGVS.pdf

Download references

Funding

This research was funded by the Secretariat of Science, Humanities, Technology, and Innovation, grant CF-2023-G-1497, CONAHCYT. Ciencia de Frontera.

Author information

Authors and Affiliations

  1. Instituto de Ecología, A.C, Xalapa, Veracruz, Mexico

    Etzaguery Marin-Coria, M. Luisa Martínez, Carmelo Maximiliano-Cordova & Jorge López-Portillo

  2. Instituto de Ingeniería, UNAM, Mexico City, Mexico

    Rodolfo Silva, Valeria Chávez, Carmelo Maximiliano-Cordova & Monica Pedraza-Buitrago

  3. Tecnologico de Monterrey, Estado de México, Mexico

    Valeria Chávez

Authors
  1. Etzaguery Marin-Coria
    View author publications

    Search author on:PubMed Google Scholar

  2. M. Luisa Martínez
    View author publications

    Search author on:PubMed Google Scholar

  3. Rodolfo Silva
    View author publications

    Search author on:PubMed Google Scholar

  4. Valeria Chávez
    View author publications

    Search author on:PubMed Google Scholar

  5. Carmelo Maximiliano-Cordova
    View author publications

    Search author on:PubMed Google Scholar

  6. Monica Pedraza-Buitrago
    View author publications

    Search author on:PubMed Google Scholar

  7. Jorge López-Portillo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Etzaguery Marin-Coria processed the databases and generated the graphic material.Carmelo Maximiliano-Cordova processed the databases and generated the graphic material.Valeria Chávez processed the databases and generated the graphic material.Rodolfo Silva came up with the idea for the research.M. Luisa Martínez came up with the idea for the research.The research, manuscript and its revision were carried out by Etzaguery Marin-Coria, M. Luisa Martínez, Valeria Chávez, Carmelo Maximiliano-Cordova, Monica Pedraza-Buitrago, Jorge López-Portillo.

Corresponding authors

Correspondence to Rodolfo Silva or Valeria Chávez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin-Coria, E., Martínez, M.L., Silva, R. et al. Assessing the impact of infrastructure proliferation on shoreline dynamics around Mexico. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38793-0

Download citation

  • Received: 01 October 2025

  • Accepted: 31 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38793-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Coastal infrastructure
  • Infrastructure-induced shoreline change
  • National shoreline monitoring
  • Shoreline erosion and accretion
  • Nature-based coastal solutions
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene