Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
High utility of DNA barcoding for species identification and cryptic diversity in Korean aphids (Hemiptera: Aphididae)
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

High utility of DNA barcoding for species identification and cryptic diversity in Korean aphids (Hemiptera: Aphididae)

  • Yejin Kang1 na1,
  • Hyobin Lee1 na1,
  • Deog-Kee Park2,
  • Shinichi Akimoto3,
  • Ki-Jeong Hong2 &
  • …
  • Wonhoon Lee1,4 

Scientific Reports , Article number:  (2026) Cite this article

  • 444 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Evolution
  • Genetics
  • Zoology

Abstract

Aphids (family Aphididae) are among the most species-rich groups of Sternorrhyncha in the order Hemiptera, and have a complex life cycle that can include several different phenotypes that are perfectly adapted to specific ecological niches. However, because aphids have a small body size, indistinct appearance, and cryptic adult behavior, their species level identification is often difficult and may be time-consuming. To overcome these limitations, DNA barcoding has been employed as an effective tool for species identification. In this study, we conducted a DNA barcoding test based on 566 specimens of Korean Aphididae, representing 125 morphospecies. Based on intraspecific genetic divergence, a threshold of 2% was estimated to efficiently differentiate the morphospecies. Only 87 morphospecies (69.6%) identified across four species delimitation methods (namely, automatic barcode gap discovery, assemble species by automatic partitioning, Poisson-tree-processes or PTP, and Bayesian implementation of the PTP) were consistent with the morphological identifications of the species. This indicates the presence of many cases of cryptic diversity among the other morphospecies, except the abovementioned 87 species. Careful morphological examination of morphospecies exceeding 2.0% intraspecific variability revealed cryptic diversity in three species (Eriosoma yangi, Tuberculatus kuricola, and Greenidea kuwanai). Two morphospecies, Sitobion avenae and Aphis craccivora, also exhibited high intraspecific divergence and comprised a single molecular operational taxonomic unit. Overall, our findings indicate that DNA barcoding can be a powerful tool for identifying species belonging to the family Aphididae, while also revealing cases of cryptic diversity.

Data availability

Accession Codes: *COI* sequences generated in this study are available in the Genbank repository (https://www.ncbi.nlm.nih.gov/genbank/), from PX250385 to PX250950.

References

  1. Consortium, T. I. A. G. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8 (2), e1000313 (2010).

    Google Scholar 

  2. Novakova, E. et al. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol. Phylogenet Evol. 68, 42–54 (2013).

    Google Scholar 

  3. Favret, C. & Species File Group. Version 8.10. Checkl. Dataset. https://doi.org/10.15468/v4tboe (2019). accessed via GBIF.org on 2025-09-04.

    Google Scholar 

  4. Will, T. & Vilcinskas, A. The structural sheath protein of aphids is required for phloem feeding. Insect Biochem. Mol. Biol. 57, 34–40 (2015).

    Google Scholar 

  5. Blackman, R. L. & Eastop, V. F. Aphids on the World’s Herbaceous Plants and Shrubs (2 volume set). (John Wiley & Sons, Chichester, 1460 pp., 2006).

  6. Van Emden, H. F. & Harrington, R. Aphids as Crop Pests (CABI Publishing, 717 pp., 2007).

  7. Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B: Biol. Sci. 270, S96–S99 (2003).

  8. Saunders, G. W. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos. Transact R Soc. Lond. B: Biol. Sci. 360, 1879–1888 (2005).

    Google Scholar 

  9. Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. & Hebert, P. D. N. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl Acad. Sci. USA 103, 968–971 (2006).

  10. Tavares, E. S. & Baker, A. J. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol. Biol. 8, 81 (2008).

    Google Scholar 

  11. Radulovici, A. E., Sainte-Marie, B. & Dufresne, F. DNA barcoding of marine crustaceans from the estuary and Gulf of St lawrence: a regional-scale approach. Mol. Ecol. Resour. 9, 181–187 (2009).

    Google Scholar 

  12. Ward, R., Hanner, R. & Hebert, P. D. N. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356 (2009).

    Google Scholar 

  13. Hebert, P. D. N., Dewaard, J. R. & Landry J. -F. DNA barcodes for 1/1000 of the animal Kingdom. Biol. Lett. 6, 359–362 (2010).

    Google Scholar 

  14. Lee, W. et al. Barcoding aphids (Hemiptera: Aphididae) of the Korean peninsula: updating the global data set. Mol. Ecol. Resour. 11, 32–37 (2011).

    Google Scholar 

  15. Foottit, R. G., Maw, H. E. L., Von Dohlen, C. D. & Hebert, P. D. N. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol. Ecol. Resour. 8, 1189–1201 (2008).

    Google Scholar 

  16. Coeur d’acier, A. et al. DNA barcoding and the associated PhylAphidB@se website for the identification of European aphids (Insecta: hemiptera: Aphididae). PLoS ONE. 9, e97620 (2014).

    Google Scholar 

  17. Funk, D. J. & Omland, K. E. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397–423 (2003).

    Google Scholar 

  18. Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).

    Google Scholar 

  19. Lee, Y., Lee, W., Kanturski, M., Foottit, R. G., Akimoto, S. -I. & Lee, S. Cryptic diversity of the subfamily Calaphidinae (Hemiptera: Aphididae) revealed by comprehensive DNA barcoding. PLoS ONE 12 (4), e0176582 (2017).

    Google Scholar 

  20. Zhu, X. C., Chen, J., Chen, R., Jiang, L. Y. & Qiao, G. X. DNA barcoding and species delimitation of Chaitophorinae (Hemiptera, Aphididae). Zookeys 14, 25–50 (2017).

    Google Scholar 

  21. Thoughtco Geography of the Korean Peninsula (2019). https://www.thoughtco.com/the-korean-peninsula-1435252, retrieved 3 December.

  22. Lee, S., Lee, Y., Cho, G., Song, H., Choi, J., & Seo, H. National list of species of Korea 「Insect」 (Hemiptera II). (National Institute of Biological Resources, Incheon, 404 pp., 2014).

  23. Seo, H., Kang, U., Oh, H., Lee, M. & Lee, S. The Aphids of Korea I (Hemiptera, Aphididae). (National Institute of Biological Resources, Incheon, 282 pp., 2019).

  24. Kim, J. & Kwon, M. Population dynamics of aphid species in Korean seed potato cultivation area over four decades. Entomol. Res. 49, 179–184 (2019).

    Google Scholar 

  25. Kim, S. H., Kim, K. -H., Hwang, C. -Y. Lim, J. -R., Kim, K. -H. & Jeon, S. -W. Life Table Analysis of the Cabbage Aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese Cabbages. Korean J. Appl. Entomol. 53, 449–456 (2014).

  26. Blackman, R. L. & Eastop, V. F. Aphids on the World’s crops. An Identification and Information Guide 2nd edn (The Natural History Museum, 2000).

  27. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    Google Scholar 

  28. Zhang, D. X. & Hewitt, G. M. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol. Evol. 11, 247–251 (1996).

    Google Scholar 

  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Google Scholar 

  30. Tamura, K., Stecher, G. & Kuma, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  31. Kim, S., Lee, Y., Mutanen, M., Seung, J. & Lee, S. High functionality of DNA barcodes and revealed cases of cryptic diversity in Korean curved-horn moths (Lepidoptera: Gelechioidea). Sci. Rep. 10, 6208 (2020).

    Google Scholar 

  32. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    Google Scholar 

  33. Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  34. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    Google Scholar 

  35. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    Google Scholar 

  36. Oh, J. H., Kim, S. & Lee, S. DNA barcodes reveal population–dependent cryptic diversity and various cases of sympatry of Korean leptonetid spiders (Araneae: Leptonetidae). Sci. Rep. 12, 15528 (2022).

    Google Scholar 

  37. Ren. J. &, Zhang, R. Delimiting species, revealing cryptic diversity in Molytinae (Coleoptera: Curculionidae) weevil through DNA barcoding. J. Insect Sci. 24 (4), 25 (2024).

    Google Scholar 

  38. Guo, B. & Kong, L. Comparing the Efficiency of Single-Locus Species Delimitation Methods within Trochoidea (Gastropoda: Vetigastropoda). Genes 13, 2273 (2022)

    Google Scholar 

  39. Ratnasingham, S. & Hebert, P. D. N. A DNA-Based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8, e66213 (2013).

    Google Scholar 

  40. Tyagi, K. et al. DNA barcoding studies on Thrips in India: Cryptic species and Species complexes. Sci. Rep. 7, 4898 (2017).

    Google Scholar 

  41. Akimoto, S. A revision of the genus Eriosoma and its allied genera in Japan (Homoptera: Aphidoidea). Insecta Matsumurana. New. Series: J. Fac. Agric. Hokkaido Univ. Ser. Entomol. 27, 37–106 (1983).

    Google Scholar 

  42. Huang, W. et al. An integrative DNA barcoding framework of Ladybird beetles (Coleoptera: Coccinellidae). Sci. Rep. 10, 10063 (2020).

    Google Scholar 

  43. Okamoto, H. & Takahashi, R. Some Aphididae from Corea. Insecta Matsumurana 1 (3), 130–148 (1927).

  44. Pergande, T. Description of two new genera and three new species of Aphididae. Entomol. News. 17, 205–210 (1906).

    Google Scholar 

  45. Takahashi, R. Some Aphididae from South China and Hainan (Homoptera), IV. Trans. Nat. Hist. Soc. Formosa. 29, 141–146 (1939).

  46. Choe, H. J., Lee, S. H. & Lee, S. Morphological and genetic indiscrimination of the grain aphids, Sitobion avenae complex (Hemiptera: Aphididae). Appl. Entomol. Zool. 41, 63–71 (2006).

    Google Scholar 

  47. Xin, J. J., Shang, Q. L., Desneux, N. & Gao, X. W. Genetic diversity of Sitobion avenae (Homoptera: Aphididae) populations from different geographic regions in China. PLoS ONE 9, e109349 (2014).

    Google Scholar 

  48. Wongsa, K., Duangphakdee, O. & Rattanawannee, A. Genetic structure of the Aphis craccivora (Hemiptera: Aphididae) from Thailand inferred from mitochondrial COI gene sequence. J. Insect Sci. 17, 84 (2017).

    Google Scholar 

  49. Oberhofer, S. et al. Further spread of the invasive apricot aphid Myzus mumecola (Hemiptera: Aphididae) in central Europe and first insights into its phylogeny. J. Appl. Entomol. 148, 839–844 (2024).

    Google Scholar 

  50. Coeur d’Acier, A., Perez Hidalgo, N. & PetrovićObradović, O. Aphids (Hemiptera, Aphididae) Chapter 9.2. BioRisk 4, 435–474 (2010).

  51. Petrovič-Obradovič, L., Ćurčič, Ž., Milovac, Ž. & Radonjič, A. First record of alien Bulbandpotato aphid Rhopalosiphoninus latysiphon (Hemiptera: Aphididae) in Serbia. Acta entomol. Serb. 27, 1–5 (2022).

    Google Scholar 

  52. Blackman, R. L. & Eastop, V. F. Aphids on the World’s Plants: an online identification and information guide. (2022). Retrieved from: http://www.aphidsonworldsplants.info/ [Accessed on: 04.09.2025].

  53. Feder, J. L. et al. Allopatric genetic origins for sympatric host-plant shifts and race formation in rhagoletis. Proc. Natl. Acad. Sci. U. S. A. 100, 10314–10319 (2003).

    Google Scholar 

  54. Peccoud, J., Simon, J. C., McLaughlin, H. J. & Moran, N. A. Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. Proc. Natl. Acad. Sci. U. S. A. 106, 16315–16320 (2009).

    Google Scholar 

  55. Sunnucks, P., De Barro, P. J., Lushai, G., Maclean, N. & Hales, D. Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Mol. Ecol. 6, 1059–1073 (1997).

    Google Scholar 

  56. Lee, Y., Thieme, T. & Kim, H. Complex evolution in Aphis gossypii group (Hemiptera: Aphididae), evidence of primary host shift and hybridization between sympatric species. PLoS ONE 16, e0245604 (2021).

    Google Scholar 

  57. Delmotte, F., Sabater-Muñoz, B., Prunier-Leterme, N., Latorre, A., Sunnucks, P., Rispe, C. & Simon, J. C. Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57, 1291–303 (2003).

  58. Martinez-Torres, D., Moya, A., Hebert, P. D. N. & Simon, J. -C. Geographic distribution and seasonal variation of mitochondrial DNA haplotypes in the aphid Rhopalosiphum padi (Hemiptera: Aphididae). Bull. Entomol. Res. 87, 161–167 (1997)

    Google Scholar 

  59. Blackman, R. L., Malarky, G., Margaritopoulos, J. T. & Tsitsipis, J. A. Distribution of common genotypes of Myzus persicae (Hemiptera: Aphididae) in Greece, in relation to life cycle and host plant. Bull. Entomol. Res. 97, 253–263 (2007).

    Google Scholar 

  60. Jousselin, E., Coeur d’acier, A., Clamens, A. -L., Galan, M., Cruaud, C., Barbe, V. & Manzano-Marín, A. Discordance between mitochondrial, nuclear, and symbiont genomes in aphid phylogenetics: who is telling the truth? Zool. J. Linn. Soc. 201, zlae098 (2024).

  61. Lozier, J. D., Roderick, G. K. & Mills, N. J. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae). Evolution 61, 1353–1367 (2007).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Sora Kim (Jeonbuk National University, Jeonju, South Korea) for her insightful and helpful comments on the analysis of molecular operational taxonomic units.

Funding

This work was carried out with the support of “Research Program for Agriculture Science and Technology Development (Project No. RS-2025-02216505)” Rural Development Administration, Republic of Korea. This work was also supported by a grant from the Honam National Institute of Biological Resources (HNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (HNIBR202501211).

Author information

Author notes
  1. Yejin Kang and Hyobin Lee have contributed equally to this work.

Authors and Affiliations

  1. Department of Plant Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea

    Yejin Kang, Hyobin Lee & Wonhoon Lee

  2. Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Republic of Korea

    Deog-Kee Park & Ki-Jeong Hong

  3. Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan

    Shinichi Akimoto

  4. Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea

    Wonhoon Lee

Authors
  1. Yejin Kang
    View author publications

    Search author on:PubMed Google Scholar

  2. Hyobin Lee
    View author publications

    Search author on:PubMed Google Scholar

  3. Deog-Kee Park
    View author publications

    Search author on:PubMed Google Scholar

  4. Shinichi Akimoto
    View author publications

    Search author on:PubMed Google Scholar

  5. Ki-Jeong Hong
    View author publications

    Search author on:PubMed Google Scholar

  6. Wonhoon Lee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Yejin Kang: conceptualization, data curation, writing—original draft, formal analysis, writing—review & editing, visualization. Hyobin Lee: conceptualization, data curation, writing—original draft, formal analysis, writing—review & editing, visualization. Deog-Kee Park: data curation, formal analysis. Shinichi Akimoto: data curation, formal analysis. Ki-Jeong Hong: conceptualization, writing—original draft, formal analysis, project administration, supervision, writing—review & editing. Wonhoon Lee: conceptualization, writing—original draft, formal analysis, project administration, supervision, writing—review & editing.

Corresponding authors

Correspondence to Ki-Jeong Hong or Wonhoon Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Lee, H., Park, DK. et al. High utility of DNA barcoding for species identification and cryptic diversity in Korean aphids (Hemiptera: Aphididae). Sci Rep (2026). https://doi.org/10.1038/s41598-026-38901-0

Download citation

  • Received: 18 September 2025

  • Accepted: 31 January 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38901-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene