Abstract
Aphids (family Aphididae) are among the most species-rich groups of Sternorrhyncha in the order Hemiptera, and have a complex life cycle that can include several different phenotypes that are perfectly adapted to specific ecological niches. However, because aphids have a small body size, indistinct appearance, and cryptic adult behavior, their species level identification is often difficult and may be time-consuming. To overcome these limitations, DNA barcoding has been employed as an effective tool for species identification. In this study, we conducted a DNA barcoding test based on 566 specimens of Korean Aphididae, representing 125 morphospecies. Based on intraspecific genetic divergence, a threshold of 2% was estimated to efficiently differentiate the morphospecies. Only 87 morphospecies (69.6%) identified across four species delimitation methods (namely, automatic barcode gap discovery, assemble species by automatic partitioning, Poisson-tree-processes or PTP, and Bayesian implementation of the PTP) were consistent with the morphological identifications of the species. This indicates the presence of many cases of cryptic diversity among the other morphospecies, except the abovementioned 87 species. Careful morphological examination of morphospecies exceeding 2.0% intraspecific variability revealed cryptic diversity in three species (Eriosoma yangi, Tuberculatus kuricola, and Greenidea kuwanai). Two morphospecies, Sitobion avenae and Aphis craccivora, also exhibited high intraspecific divergence and comprised a single molecular operational taxonomic unit. Overall, our findings indicate that DNA barcoding can be a powerful tool for identifying species belonging to the family Aphididae, while also revealing cases of cryptic diversity.
Data availability
Accession Codes: *COI* sequences generated in this study are available in the Genbank repository (https://www.ncbi.nlm.nih.gov/genbank/), from PX250385 to PX250950.
References
Consortium, T. I. A. G. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8 (2), e1000313 (2010).
Novakova, E. et al. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol. Phylogenet Evol. 68, 42–54 (2013).
Favret, C. & Species File Group. Version 8.10. Checkl. Dataset. https://doi.org/10.15468/v4tboe (2019). accessed via GBIF.org on 2025-09-04.
Will, T. & Vilcinskas, A. The structural sheath protein of aphids is required for phloem feeding. Insect Biochem. Mol. Biol. 57, 34–40 (2015).
Blackman, R. L. & Eastop, V. F. Aphids on the World’s Herbaceous Plants and Shrubs (2 volume set). (John Wiley & Sons, Chichester, 1460 pp., 2006).
Van Emden, H. F. & Harrington, R. Aphids as Crop Pests (CABI Publishing, 717 pp., 2007).
Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B: Biol. Sci. 270, S96–S99 (2003).
Saunders, G. W. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos. Transact R Soc. Lond. B: Biol. Sci. 360, 1879–1888 (2005).
Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. & Hebert, P. D. N. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl Acad. Sci. USA 103, 968–971 (2006).
Tavares, E. S. & Baker, A. J. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol. Biol. 8, 81 (2008).
Radulovici, A. E., Sainte-Marie, B. & Dufresne, F. DNA barcoding of marine crustaceans from the estuary and Gulf of St lawrence: a regional-scale approach. Mol. Ecol. Resour. 9, 181–187 (2009).
Ward, R., Hanner, R. & Hebert, P. D. N. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356 (2009).
Hebert, P. D. N., Dewaard, J. R. & Landry J. -F. DNA barcodes for 1/1000 of the animal Kingdom. Biol. Lett. 6, 359–362 (2010).
Lee, W. et al. Barcoding aphids (Hemiptera: Aphididae) of the Korean peninsula: updating the global data set. Mol. Ecol. Resour. 11, 32–37 (2011).
Foottit, R. G., Maw, H. E. L., Von Dohlen, C. D. & Hebert, P. D. N. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol. Ecol. Resour. 8, 1189–1201 (2008).
Coeur d’acier, A. et al. DNA barcoding and the associated PhylAphidB@se website for the identification of European aphids (Insecta: hemiptera: Aphididae). PLoS ONE. 9, e97620 (2014).
Funk, D. J. & Omland, K. E. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397–423 (2003).
Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).
Lee, Y., Lee, W., Kanturski, M., Foottit, R. G., Akimoto, S. -I. & Lee, S. Cryptic diversity of the subfamily Calaphidinae (Hemiptera: Aphididae) revealed by comprehensive DNA barcoding. PLoS ONE 12 (4), e0176582 (2017).
Zhu, X. C., Chen, J., Chen, R., Jiang, L. Y. & Qiao, G. X. DNA barcoding and species delimitation of Chaitophorinae (Hemiptera, Aphididae). Zookeys 14, 25–50 (2017).
Thoughtco Geography of the Korean Peninsula (2019). https://www.thoughtco.com/the-korean-peninsula-1435252, retrieved 3 December.
Lee, S., Lee, Y., Cho, G., Song, H., Choi, J., & Seo, H. National list of species of Korea 「Insect」 (Hemiptera II). (National Institute of Biological Resources, Incheon, 404 pp., 2014).
Seo, H., Kang, U., Oh, H., Lee, M. & Lee, S. The Aphids of Korea I (Hemiptera, Aphididae). (National Institute of Biological Resources, Incheon, 282 pp., 2019).
Kim, J. & Kwon, M. Population dynamics of aphid species in Korean seed potato cultivation area over four decades. Entomol. Res. 49, 179–184 (2019).
Kim, S. H., Kim, K. -H., Hwang, C. -Y. Lim, J. -R., Kim, K. -H. & Jeon, S. -W. Life Table Analysis of the Cabbage Aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese Cabbages. Korean J. Appl. Entomol. 53, 449–456 (2014).
Blackman, R. L. & Eastop, V. F. Aphids on the World’s crops. An Identification and Information Guide 2nd edn (The Natural History Museum, 2000).
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Zhang, D. X. & Hewitt, G. M. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol. Evol. 11, 247–251 (1996).
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).
Tamura, K., Stecher, G. & Kuma, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
Kim, S., Lee, Y., Mutanen, M., Seung, J. & Lee, S. High functionality of DNA barcodes and revealed cases of cryptic diversity in Korean curved-horn moths (Lepidoptera: Gelechioidea). Sci. Rep. 10, 6208 (2020).
Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
Oh, J. H., Kim, S. & Lee, S. DNA barcodes reveal population–dependent cryptic diversity and various cases of sympatry of Korean leptonetid spiders (Araneae: Leptonetidae). Sci. Rep. 12, 15528 (2022).
Ren. J. &, Zhang, R. Delimiting species, revealing cryptic diversity in Molytinae (Coleoptera: Curculionidae) weevil through DNA barcoding. J. Insect Sci. 24 (4), 25 (2024).
Guo, B. & Kong, L. Comparing the Efficiency of Single-Locus Species Delimitation Methods within Trochoidea (Gastropoda: Vetigastropoda). Genes 13, 2273 (2022)
Ratnasingham, S. & Hebert, P. D. N. A DNA-Based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8, e66213 (2013).
Tyagi, K. et al. DNA barcoding studies on Thrips in India: Cryptic species and Species complexes. Sci. Rep. 7, 4898 (2017).
Akimoto, S. A revision of the genus Eriosoma and its allied genera in Japan (Homoptera: Aphidoidea). Insecta Matsumurana. New. Series: J. Fac. Agric. Hokkaido Univ. Ser. Entomol. 27, 37–106 (1983).
Huang, W. et al. An integrative DNA barcoding framework of Ladybird beetles (Coleoptera: Coccinellidae). Sci. Rep. 10, 10063 (2020).
Okamoto, H. & Takahashi, R. Some Aphididae from Corea. Insecta Matsumurana 1 (3), 130–148 (1927).
Pergande, T. Description of two new genera and three new species of Aphididae. Entomol. News. 17, 205–210 (1906).
Takahashi, R. Some Aphididae from South China and Hainan (Homoptera), IV. Trans. Nat. Hist. Soc. Formosa. 29, 141–146 (1939).
Choe, H. J., Lee, S. H. & Lee, S. Morphological and genetic indiscrimination of the grain aphids, Sitobion avenae complex (Hemiptera: Aphididae). Appl. Entomol. Zool. 41, 63–71 (2006).
Xin, J. J., Shang, Q. L., Desneux, N. & Gao, X. W. Genetic diversity of Sitobion avenae (Homoptera: Aphididae) populations from different geographic regions in China. PLoS ONE 9, e109349 (2014).
Wongsa, K., Duangphakdee, O. & Rattanawannee, A. Genetic structure of the Aphis craccivora (Hemiptera: Aphididae) from Thailand inferred from mitochondrial COI gene sequence. J. Insect Sci. 17, 84 (2017).
Oberhofer, S. et al. Further spread of the invasive apricot aphid Myzus mumecola (Hemiptera: Aphididae) in central Europe and first insights into its phylogeny. J. Appl. Entomol. 148, 839–844 (2024).
Coeur d’Acier, A., Perez Hidalgo, N. & PetrovićObradović, O. Aphids (Hemiptera, Aphididae) Chapter 9.2. BioRisk 4, 435–474 (2010).
Petrovič-Obradovič, L., Ćurčič, Ž., Milovac, Ž. & Radonjič, A. First record of alien Bulbandpotato aphid Rhopalosiphoninus latysiphon (Hemiptera: Aphididae) in Serbia. Acta entomol. Serb. 27, 1–5 (2022).
Blackman, R. L. & Eastop, V. F. Aphids on the World’s Plants: an online identification and information guide. (2022). Retrieved from: http://www.aphidsonworldsplants.info/ [Accessed on: 04.09.2025].
Feder, J. L. et al. Allopatric genetic origins for sympatric host-plant shifts and race formation in rhagoletis. Proc. Natl. Acad. Sci. U. S. A. 100, 10314–10319 (2003).
Peccoud, J., Simon, J. C., McLaughlin, H. J. & Moran, N. A. Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. Proc. Natl. Acad. Sci. U. S. A. 106, 16315–16320 (2009).
Sunnucks, P., De Barro, P. J., Lushai, G., Maclean, N. & Hales, D. Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Mol. Ecol. 6, 1059–1073 (1997).
Lee, Y., Thieme, T. & Kim, H. Complex evolution in Aphis gossypii group (Hemiptera: Aphididae), evidence of primary host shift and hybridization between sympatric species. PLoS ONE 16, e0245604 (2021).
Delmotte, F., Sabater-Muñoz, B., Prunier-Leterme, N., Latorre, A., Sunnucks, P., Rispe, C. & Simon, J. C. Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57, 1291–303 (2003).
Martinez-Torres, D., Moya, A., Hebert, P. D. N. & Simon, J. -C. Geographic distribution and seasonal variation of mitochondrial DNA haplotypes in the aphid Rhopalosiphum padi (Hemiptera: Aphididae). Bull. Entomol. Res. 87, 161–167 (1997)
Blackman, R. L., Malarky, G., Margaritopoulos, J. T. & Tsitsipis, J. A. Distribution of common genotypes of Myzus persicae (Hemiptera: Aphididae) in Greece, in relation to life cycle and host plant. Bull. Entomol. Res. 97, 253–263 (2007).
Jousselin, E., Coeur d’acier, A., Clamens, A. -L., Galan, M., Cruaud, C., Barbe, V. & Manzano-Marín, A. Discordance between mitochondrial, nuclear, and symbiont genomes in aphid phylogenetics: who is telling the truth? Zool. J. Linn. Soc. 201, zlae098 (2024).
Lozier, J. D., Roderick, G. K. & Mills, N. J. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae). Evolution 61, 1353–1367 (2007).
Acknowledgements
We are grateful to Dr. Sora Kim (Jeonbuk National University, Jeonju, South Korea) for her insightful and helpful comments on the analysis of molecular operational taxonomic units.
Funding
This work was carried out with the support of “Research Program for Agriculture Science and Technology Development (Project No. RS-2025-02216505)” Rural Development Administration, Republic of Korea. This work was also supported by a grant from the Honam National Institute of Biological Resources (HNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (HNIBR202501211).
Author information
Authors and Affiliations
Contributions
Yejin Kang: conceptualization, data curation, writing—original draft, formal analysis, writing—review & editing, visualization. Hyobin Lee: conceptualization, data curation, writing—original draft, formal analysis, writing—review & editing, visualization. Deog-Kee Park: data curation, formal analysis. Shinichi Akimoto: data curation, formal analysis. Ki-Jeong Hong: conceptualization, writing—original draft, formal analysis, project administration, supervision, writing—review & editing. Wonhoon Lee: conceptualization, writing—original draft, formal analysis, project administration, supervision, writing—review & editing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Kang, Y., Lee, H., Park, DK. et al. High utility of DNA barcoding for species identification and cryptic diversity in Korean aphids (Hemiptera: Aphididae). Sci Rep (2026). https://doi.org/10.1038/s41598-026-38901-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38901-0