Abstract
During a survey of nodule-associated bacteria from legume plants and soil collected in southern Mexico, several strains were obtained in Mexico City using Phaseolus vulgaris as a trap plant, inoculated with rhizospheric soil from the legume Acacia sp. collected in the state of Veracruz, a bordering state to the Gulf of Mexico. The 16S rRNA gene sequence analysis identified the strains AcVe19-1aT, AcVe19-6a, and AcVe19-6b as Cupriavidus (with 99.9% similarity to many type strains of Cupriavidus species and 99.9 to 100% similarity within the novel species). Comparative genomics by average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strains AcVe19-1aT and AcVe19-6a correspond to a new Cupriavidus genomic species (ANI values lower than 94% and dDDH values lower than 55% to any Cupriavidus strain, and the closest species Cupriavidus consociatus). The genome of the novel species harbors nitrogen-fixing and nodulation genes, enabling it to nodulate plants of P. vulgaris and Mimosa pudica, but it does so poorly with Acacia sp. However, nitrogen was not fixed in the nodule or the culture medium. According to the symbiovars guidelines, two symbiovars are proposed. The genome analysis, together with phenotypic, physiological, and chemotaxonomical analyses, corroborate that strains AcVe19-1aT, AcVe19-6a, and AcVe19-6b correspond to a novel species, for which we propose the name Cupriavidus phytohabitans sp. nov. with the type strain AcVe19-1aT = TSD-313T = CDBB B-2084T. In addition to the description of the novel species, a comparative genomic analysis of all Cupriavidus species in the NCBI database showed that many have been misclassified, and others correspond to new genomic species.
Similar content being viewed by others
Data availability
All the data have been deposited in the GenBank at the National Center for Biotechnology Information. The 16S rRNA genes were deposited under the accession numbers MN830146 (AcVe19-1aT), MN830148 (AcVe19-6a), and MN830149 (AcVe19-6b). The genome accession numbers for AcVe19-1aT, AcVe19-6a, and AMP6 are JAGIQC000000000, JAGIQB000000000, and AUFE00000000, respectively.
References
Sherma, L., Khairnar, M., Pansare, A., Medicherla, K., Goswami, G. K. & Rahi, P. Genome sequence-based identification of bacteria nodulation Mimosa pudica growing in Eastern Himalayas and Western Ghats of India and Description of Cupriavidus mimosae sp. nov. and Cupriavidus gehlotti sp. nov. Preprint at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4935897 (2024).
Chen, W. M. et al. Ralstonia taiwanensis sp. Nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 51, 1729–1735 (2001).
Da Silva, K. et al. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst. Appl. Microbiol. 35, 175–182 (2012).
Klonowska, A. et al. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics 21(1), 214 (2020).
Chávez-Ramírez, B. et al. Cupriavidus phytorum sp. Nov., isolated from Zea mays L. rhizosphere in Mexico and Mimosa diplotricha Sauvalle root nodule in Taiwan. Int. J. Syst. Evol. Microbiol. 75, 006709 (2025).
Taulé, C. et al. New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl. Environ. Microbiol. 78, 1692–1700 (2012).
Platero, R. et al. Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl. Environ. Microbiol. 82, 11 (2016).
Tapia-García, E. Y. et al. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiol. Res. 239, 126522 (2020).
Tapia-García, E. Y. et al. A new nodule-associated bacterium, Cupriavidus consociatus sp. nov. isolated from the root nodules of Leucaena sp. and Arachis sp. growing in a cacao field in Chiapas. PLoS ONE 20(5), e0324390 (2025).
Estrada-de Los Santos, P. et al. Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. J. Microbiol. 49(6), 867–876 (2011).
Estrada-de los Santos, P., Martínez-Aguilar, L., López-Lara, I. & Caballero-Mellado, J. Cupriavidus alkaliphilus sp. nov., a new species associated with agricultural plants that grow in alkaline soils. Syst. Appl. Microbiol. 35, 310-314 (2012).
Estrada de los Santos, P., Solano-Rodríguez, R., Matsumara-Paz, L. T., Vásquez-Murrieta, M. S. & Martínez-Aguila, L. Cupriavidus plantarum sp. nov., a plant-associated species. Arch. Microbiol. 196, 811–817 (2014).
Arroyo-Herrera, A. et al. Cupriavidus agavae sp. nov., a species isolated from Agave L. rhizosphere in northeast Mexico. Int. J. Syst. Appl. Microbiol. 70, 4165–4170 (2020).
Yarza, P. et al. Uniting classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645 (2014).
Riesco, R. & Trujillo, M. E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 74(3), 0063000 (2024).
Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).
Meier-Kolthof, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).
Andam, C. P., Mondo, S. J. & Parker, M. A. Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl. Environ. Microbiol. 73, 4686–4690 (2007).
Vandamme, P. et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60, 407–438 (1996).
Perry, J., Waglechner, N. & Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6(6), a025197 (2016).
Coenye, T. et al. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int. J. Syst. Bacteriol. 49, 405–413 (1999).
Azcona-Gutiérrez, J. M., Buendía-Moreno, B., Sáez-Nieto, J. & López-Brea-Calvo, M. Aislamiento de Cupriavidus pauculus en la unidad de cuidados intensivos. Enferm. Infecc. Microbiol. Clin. 26(6), 395–399 (2008).
Chen, S., Wang, X. & Zhang, L. Insights into the taxonomy and virulence-related genetic profiles in 97 Cupriavidus strains through comparative genomic analysis. BMC Genomics 26, 868 (2025).
Mus, F., Alleman, A. B., Pence, N., Seefeldt, L. C. & Peters, J. W. Exploring the alternatives of biological nitrogen fixation. Metallomics 10, 523 (2018).
Elliott, G. N. et al. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol. 173, 168–180 (2007).
Rogel, M. A., Ormeño-Orrillo, E. & Martínez-Romero, E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 34(2), 96–104 (2011).
Paulitsch, F., Marcon-Delamuta, J. R., Ribeiro, R. A., da Silva Batista, J. S. & Hungria, M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst. Appl. Microbiol. 43(6), 126151 (2020).
Martínez-Romero, E. et al. Guidelines for the description of rhizobial symbiovars. Int. J. Syst. Evol. Microbiol. 74, 006373 (2024).
Oren, A., Arahal, D.R., Göker, M., Moore, E.R.B., Rosello-Mora, R., Sutcliffe, I. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2022 Revision). Int. J. Syst. Evol. Microbiol. 73, 005585. (2023).
Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Tamura, K., Stecher, G. & Kumar, S. MEGA 11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
Moore, D. & Dowhan, D. Preparation and analysis of DNA. In Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) (John Wiley & Sons Inc., New York, 2003).
Andrews, S. Babraham Bioinformatics—FastQC: a quality control tool for high-throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Accessed 27 Oct 2021] (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013).
Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 60 (2013).
Richter, M. & Rosselló-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131 (2009).
Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).
Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Rojas-Rojas, F. U. et al. Broad-spectrum antimicrobial activity of Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology 164(9), 1072–1086 (2018).
Laemmli, U.K. Cleavege of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.
Jain, D. K. & Patriquin, D. G. Characterization of a substance produced by Azospirillum which causes branching of wheat root hair. Can. J. Microbiol. 31, 206–210 (1985).
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959).
Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M. & Thomas-Oates, J. E. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N, N-trimethylhomoserine in Rhizobium (sinorhizobium) melliloti. Mol. Microbiol. 32(1), 63–73 (1999).
Zbierzak, A. M., Dörmann, P. & Hölzl, G. Analysis of lipid content and quality in Arabidopsis plastids. Methods Mol. Biol. 775, 411–426 (2011).
Sims, R. P. A. & Larose, J. A. G. The use of iodine vapor as a general detecting agent in the thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 39(4), 232–232 (1962).
Baddiley, J., Buchanan, J., Handschumacher, R. & Prescott, J. Chemical studies in the biosynthesis of purine nucleotides. Part I. The preparation of n-glycylglycosylamines. J. Chem. Soc. 28, 18–23 (1956).
Devers, E. A., Wewer, V., Dombrink, I., Dörmann, P. & Hölzl, G. A processive glycosyltransferase involved in glycolipid synthesis during phosphate deprivation in Mesorhizobium loti. J. Bacteriol. 193(6), 1377–1384 (2011).
Alcock, B. P. et al. CARD expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 51(D1), D690–D699 (2023).
Fahraeus, G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16(2), 374–381 (1957).
Acknowledgements
We thank Dr. Edgar-Oliver López-Villegas (ENCB-IPN) for performing the SEM analysis. EYTG, BCR, VLS, JAI, and PES thank SNI-SECIHTI for the support. PES also thanks EDI and COFAA-IPN.
Funding
This study was partially funded by Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional grant number 2023-0831 and 2024-1040.
Author information
Authors and Affiliations
Contributions
EYTG, BCR, LMMR, IAH, VLS, DCA, JAI, and PES performed the experimental work, analyzed the data, and prepared the original draft. PES reviewed and finalized the manuscript and supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Tapia-García, EY., Chávez-Ramírez, B., Morales-Ruíz, LM. et al. Phylogenomic analysis shows underestimated species within Cupriavidus and the new species Cupriavidus phytohabitans sp. nov. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39004-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39004-6


