Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Phylogenomic analysis shows underestimated species within Cupriavidus and the new species Cupriavidus phytohabitans sp. nov
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Phylogenomic analysis shows underestimated species within Cupriavidus and the new species Cupriavidus phytohabitans sp. nov

  • Erika-Yanet Tapia-García1,2,
  • Belén Chávez-Ramírez3,
  • Leslie-Mariana Morales-Ruíz1,
  • Ivan Arroyo-Herrera1,
  • Violeta Larios-Serrato4,
  • J. Antonio Ibarra5 &
  • …
  • Paulina Estrada-de los Santos1 

Scientific Reports , Article number:  (2026) Cite this article

  • 317 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genetics
  • Microbiology
  • Plant sciences

Abstract

During a survey of nodule-associated bacteria from legume plants and soil collected in southern Mexico, several strains were obtained in Mexico City using Phaseolus vulgaris as a trap plant, inoculated with rhizospheric soil from the legume Acacia sp. collected in the state of Veracruz, a bordering state to the Gulf of Mexico. The 16S rRNA gene sequence analysis identified the strains AcVe19-1aT, AcVe19-6a, and AcVe19-6b as Cupriavidus (with 99.9% similarity to many type strains of Cupriavidus species and 99.9 to 100% similarity within the novel species). Comparative genomics by average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strains AcVe19-1aT and AcVe19-6a correspond to a new Cupriavidus genomic species (ANI values lower than 94% and dDDH values lower than 55% to any Cupriavidus strain, and the closest species Cupriavidus consociatus). The genome of the novel species harbors nitrogen-fixing and nodulation genes, enabling it to nodulate plants of P. vulgaris and Mimosa pudica, but it does so poorly with Acacia sp. However, nitrogen was not fixed in the nodule or the culture medium. According to the symbiovars guidelines, two symbiovars are proposed. The genome analysis, together with phenotypic, physiological, and chemotaxonomical analyses, corroborate that strains AcVe19-1aT, AcVe19-6a, and AcVe19-6b correspond to a novel species, for which we propose the name Cupriavidus phytohabitans sp. nov. with the type strain AcVe19-1aT = TSD-313T = CDBB B-2084T. In addition to the description of the novel species, a comparative genomic analysis of all Cupriavidus species in the NCBI database showed that many have been misclassified, and others correspond to new genomic species.

Similar content being viewed by others

Pradimicin U, a promising antimicrobial agent isolated from a newly found Nonomuraea composti sp. nov

Article Open access 13 May 2024

Demequina capsici sp. nov., a novel plant growth-promoting actinomycete isolated from the rhizosphere of bell pepper (Capsicum annuum)

Article Open access 09 July 2024

Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

Article Open access 18 June 2021

Data availability

All the data have been deposited in the GenBank at the National Center for Biotechnology Information. The 16S rRNA genes were deposited under the accession numbers MN830146 (AcVe19-1aT), MN830148 (AcVe19-6a), and MN830149 (AcVe19-6b). The genome accession numbers for AcVe19-1aT, AcVe19-6a, and AMP6 are JAGIQC000000000, JAGIQB000000000, and AUFE00000000, respectively.

References

  1. Sherma, L., Khairnar, M., Pansare, A., Medicherla, K., Goswami, G. K. & Rahi, P. Genome sequence-based identification of bacteria nodulation Mimosa pudica growing in Eastern Himalayas and Western Ghats of India and Description of Cupriavidus mimosae sp. nov. and Cupriavidus gehlotti sp. nov. Preprint at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4935897 (2024).

  2. Chen, W. M. et al. Ralstonia taiwanensis sp. Nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 51, 1729–1735 (2001).

    Google Scholar 

  3. Da Silva, K. et al. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst. Appl. Microbiol. 35, 175–182 (2012).

    Google Scholar 

  4. Klonowska, A. et al. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics 21(1), 214 (2020).

    Google Scholar 

  5. Chávez-Ramírez, B. et al. Cupriavidus phytorum sp. Nov., isolated from Zea mays L. rhizosphere in Mexico and Mimosa diplotricha Sauvalle root nodule in Taiwan. Int. J. Syst. Evol. Microbiol. 75, 006709 (2025).

    Google Scholar 

  6. Taulé, C. et al. New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl. Environ. Microbiol. 78, 1692–1700 (2012).

    Google Scholar 

  7. Platero, R. et al. Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl. Environ. Microbiol. 82, 11 (2016).

    Google Scholar 

  8. Tapia-García, E. Y. et al. Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiol. Res. 239, 126522 (2020).

    Google Scholar 

  9. Tapia-García, E. Y. et al. A new nodule-associated bacterium, Cupriavidus consociatus sp. nov. isolated from the root nodules of Leucaena sp. and Arachis sp. growing in a cacao field in Chiapas. PLoS ONE 20(5), e0324390 (2025).

    Google Scholar 

  10. Estrada-de Los Santos, P. et al. Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. J. Microbiol. 49(6), 867–876 (2011).

    Google Scholar 

  11. Estrada-de los Santos, P., Martínez-Aguilar, L., López-Lara, I. & Caballero-Mellado, J. Cupriavidus alkaliphilus sp. nov., a new species associated with agricultural plants that grow in alkaline soils. Syst. Appl. Microbiol. 35, 310-314 (2012).

  12. Estrada de los Santos, P., Solano-Rodríguez, R., Matsumara-Paz, L. T., Vásquez-Murrieta, M. S. & Martínez-Aguila, L. Cupriavidus plantarum sp. nov., a plant-associated species. Arch. Microbiol. 196, 811–817 (2014).

  13. Arroyo-Herrera, A. et al. Cupriavidus agavae sp. nov., a species isolated from Agave L. rhizosphere in northeast Mexico. Int. J. Syst. Appl. Microbiol. 70, 4165–4170 (2020).

    Google Scholar 

  14. Yarza, P. et al. Uniting classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12(9), 635–645 (2014).

    Google Scholar 

  15. Riesco, R. & Trujillo, M. E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 74(3), 0063000 (2024).

    Google Scholar 

  16. Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).

    Google Scholar 

  17. Meier-Kolthof, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).

    Google Scholar 

  18. Andam, C. P., Mondo, S. J. & Parker, M. A. Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl. Environ. Microbiol. 73, 4686–4690 (2007).

    Google Scholar 

  19. Vandamme, P. et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60, 407–438 (1996).

    Google Scholar 

  20. Perry, J., Waglechner, N. & Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6(6), a025197 (2016).

    Google Scholar 

  21. Coenye, T. et al. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int. J. Syst. Bacteriol. 49, 405–413 (1999).

    Google Scholar 

  22. Azcona-Gutiérrez, J. M., Buendía-Moreno, B., Sáez-Nieto, J. & López-Brea-Calvo, M. Aislamiento de Cupriavidus pauculus en la unidad de cuidados intensivos. Enferm. Infecc. Microbiol. Clin. 26(6), 395–399 (2008).

    Google Scholar 

  23. Chen, S., Wang, X. & Zhang, L. Insights into the taxonomy and virulence-related genetic profiles in 97 Cupriavidus strains through comparative genomic analysis. BMC Genomics 26, 868 (2025).

    Google Scholar 

  24. Mus, F., Alleman, A. B., Pence, N., Seefeldt, L. C. & Peters, J. W. Exploring the alternatives of biological nitrogen fixation. Metallomics 10, 523 (2018).

    Google Scholar 

  25. Elliott, G. N. et al. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol. 173, 168–180 (2007).

    Google Scholar 

  26. Rogel, M. A., Ormeño-Orrillo, E. & Martínez-Romero, E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 34(2), 96–104 (2011).

    Google Scholar 

  27. Paulitsch, F., Marcon-Delamuta, J. R., Ribeiro, R. A., da Silva Batista, J. S. & Hungria, M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst. Appl. Microbiol. 43(6), 126151 (2020).

    Google Scholar 

  28. Martínez-Romero, E. et al. Guidelines for the description of rhizobial symbiovars. Int. J. Syst. Evol. Microbiol. 74, 006373 (2024).

    Google Scholar 

  29. Oren, A., Arahal, D.R., Göker, M., Moore, E.R.B., Rosello-Mora, R., Sutcliffe, I. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2022 Revision). Int. J. Syst. Evol. Microbiol. 73, 005585. (2023).

  30. Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Google Scholar 

  31. Tamura, K., Stecher, G. & Kumar, S. MEGA 11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  32. Moore, D. & Dowhan, D. Preparation and analysis of DNA. In Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) (John Wiley & Sons Inc., New York, 2003).

    Google Scholar 

  33. Andrews, S. Babraham Bioinformatics—FastQC: a quality control tool for high-throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Accessed 27 Oct 2021] (2010).

  34. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).

    Google Scholar 

  35. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).

    Google Scholar 

  36. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013).

    Google Scholar 

  37. Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 60 (2013).

    Google Scholar 

  38. Richter, M. & Rosselló-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131 (2009).

    Google Scholar 

  39. Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).

    Google Scholar 

  40. Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).

    Google Scholar 

  41. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Google Scholar 

  42. Rojas-Rojas, F. U. et al. Broad-spectrum antimicrobial activity of Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology 164(9), 1072–1086 (2018).

    Google Scholar 

  43. Laemmli, U.K. Cleavege of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

  44. Jain, D. K. & Patriquin, D. G. Characterization of a substance produced by Azospirillum which causes branching of wheat root hair. Can. J. Microbiol. 31, 206–210 (1985).

    Google Scholar 

  45. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959).

    Google Scholar 

  46. Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M. & Thomas-Oates, J. E. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N, N-trimethylhomoserine in Rhizobium (sinorhizobium) melliloti. Mol. Microbiol. 32(1), 63–73 (1999).

    Google Scholar 

  47. Zbierzak, A. M., Dörmann, P. & Hölzl, G. Analysis of lipid content and quality in Arabidopsis plastids. Methods Mol. Biol. 775, 411–426 (2011).

    Google Scholar 

  48. Sims, R. P. A. & Larose, J. A. G. The use of iodine vapor as a general detecting agent in the thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 39(4), 232–232 (1962).

    Google Scholar 

  49. Baddiley, J., Buchanan, J., Handschumacher, R. & Prescott, J. Chemical studies in the biosynthesis of purine nucleotides. Part I. The preparation of n-glycylglycosylamines. J. Chem. Soc. 28, 18–23 (1956).

    Google Scholar 

  50. Devers, E. A., Wewer, V., Dombrink, I., Dörmann, P. & Hölzl, G. A processive glycosyltransferase involved in glycolipid synthesis during phosphate deprivation in Mesorhizobium loti. J. Bacteriol. 193(6), 1377–1384 (2011).

    Google Scholar 

  51. Alcock, B. P. et al. CARD expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 51(D1), D690–D699 (2023).

    Google Scholar 

  52. Fahraeus, G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16(2), 374–381 (1957).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Edgar-Oliver López-Villegas (ENCB-IPN) for performing the SEM analysis. EYTG, BCR, VLS, JAI, and PES thank SNI-SECIHTI for the support. PES also thanks EDI and COFAA-IPN.

Funding

This study was partially funded by Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional grant number 2023-0831 and 2024-1040.

Author information

Authors and Affiliations

  1. Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico

    Erika-Yanet Tapia-García, Leslie-Mariana Morales-Ruíz, Ivan Arroyo-Herrera & Paulina Estrada-de los Santos

  2. Departamento de Nutrición, Centro Interdisciplinario de Ciencias de la Salud, Instituto Politécnico Nacional, Unidad Milpa Alta, Ex Hacienda del Mayorazgo, km 39.5 Carretera Xochimilco – Oaxtepec, C.P. 12000, Mexico City, Mexico

    Erika-Yanet Tapia-García

  3. Laboratorio de Fitopatología, Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico

    Belén Chávez-Ramírez

  4. Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico

    Violeta Larios-Serrato

  5. Laboratorio de Genética Microbiana, Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, , Prol. Carpio y Plan de Ayala s/n. Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico

    J. Antonio Ibarra

Authors
  1. Erika-Yanet Tapia-García
    View author publications

    Search author on:PubMed Google Scholar

  2. Belén Chávez-Ramírez
    View author publications

    Search author on:PubMed Google Scholar

  3. Leslie-Mariana Morales-Ruíz
    View author publications

    Search author on:PubMed Google Scholar

  4. Ivan Arroyo-Herrera
    View author publications

    Search author on:PubMed Google Scholar

  5. Violeta Larios-Serrato
    View author publications

    Search author on:PubMed Google Scholar

  6. J. Antonio Ibarra
    View author publications

    Search author on:PubMed Google Scholar

  7. Paulina Estrada-de los Santos
    View author publications

    Search author on:PubMed Google Scholar

Contributions

EYTG, BCR, LMMR, IAH, VLS, DCA, JAI, and PES performed the experimental work, analyzed the data, and prepared the original draft. PES reviewed and finalized the manuscript and supervised the project.

Corresponding author

Correspondence to Paulina Estrada-de los Santos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Supplementary Information 3.

Supplementary Information 4.

Supplementary Information 5.

Supplementary Information 6.

Supplementary Information 7.

Supplementary Information 8.

Supplementary Information 9.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-García, EY., Chávez-Ramírez, B., Morales-Ruíz, LM. et al. Phylogenomic analysis shows underestimated species within Cupriavidus and the new species Cupriavidus phytohabitans sp. nov. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39004-6

Download citation

  • Received: 17 July 2025

  • Accepted: 02 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39004-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cupriavidus
  • Nodule-associated bacteria
  • Nodulation
  • Phaseolus vulgaris
  • Rhizosphere
  • Trap plant
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology