Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Distribution and conservation status of the jungle cat (Felis chaus) across India
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 February 2026

Distribution and conservation status of the jungle cat (Felis chaus) across India

  • Kathan Bandyopadhyay  ORCID: orcid.org/0000-0002-8342-40491,2,
  • Dhruv Jain  ORCID: orcid.org/0009-0005-1937-66192,
  • John Koprowski  ORCID: orcid.org/0000-0003-1406-98531,
  • Qamar Qureshi  ORCID: orcid.org/0000-0003-3469-69932 &
  • …
  • Yadvendradev V. Jhala  ORCID: orcid.org/0000-0003-3276-13842,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 725 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Zoology

Abstract

Understanding the distribution and conservation status of small carnivores is critical for informing management strategies in human-modified landscapes. We assembled a comprehensive dataset of jungle cat (Felis chaus) presence across India, drawing from over 26,000 camera trap locations, radio-telemetry data, published literature, secondary sources, and verified sightings. After filtering for spatial redundancy, we modeled species distribution using ecologically relevant covariates in both maximum entropy (MaxEnt) and random forest (RF) frameworks. The resulting ensemble model indicated that jungle cats are most likely to occur in warm, semi-arid regions with moderate vegetation cover and low to moderate levels of human and livestock disturbance. In contrast, they tend to avoid dense forests and highly transformed habitats. Despite their broad geographic distribution, jungle cats face increasing threats from habitat fragmentation, expanding infrastructure, road mortality, disease transmission from free-ranging dogs, and genetic introgression through hybridization with domestic cats. These pressures are particularly acute in peri-urban and agro-pastoral landscapes where jungle cats persist outside protected areas. Our findings underscore the importance of rural lifestyles with agro-pastoralism livelihoods for conserving the species along with grasslands, savanna and open forest systems to ensure the species’ long-term viability in a rapidly urbanizing landscape.

Data availability

Home range parameters are available in the Supplementary Material of Katna et al. 2022 and Bandyopadhyay et al., unpublished manuscript, and summarized location data are presented in the figure and all camera trap records of the species are collected from Data Repository of https://www.science.org/doi/10.1126/science.adk4827. All the secondary data were collated from personal observations of YVJ, published telemetry studies and Jungle cat telemetry study of Kuno National Park. These data may be shared with bona fide researchers upon reasonable request to the corresponding author. All data access requests should be directed to the corresponding author.

References

  1. Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Google Scholar 

  2. Johnson, C. N. et al. Biodiversity losses and conservation responses in the anthropocene. Science 356, 270–275 (2017).

    Google Scholar 

  3. Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    Google Scholar 

  4. Jhala, Y. V., Mungi, N. A., Gopal, R. & Qureshi, Q. Tiger recovery amid people and poverty. Science 387, 505–510 (2025).

    Google Scholar 

  5. Cristescu, B., Stenhouse, G. B. & Boyce, M. S. Perception of Human-Derived risk influences choice at top of the food chain. PLOS ONE. 8, e82738 (2013).

    Google Scholar 

  6. Woodroffe, R. Predators and people: using human densities to interpret declines of large carnivores. Anim. Conserv. 3, 165–173 (2000).

    Google Scholar 

  7. Magliocca, N. R., Carter, N. H., Devine, J. A., Nielsen, E. A. & Sesnie, S. E. Jaguar conservation is caught in the crossfire of america’s ‘War on drugs’. Biol. Conserv. 296, 110687 (2024).

    Google Scholar 

  8. Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: the Dingo canis lupus Dingo as a case study. Biol. Rev. 87, 390–413 (2012).

    Google Scholar 

  9. Beschta, R. L. & Ripple, W. J. Large predators and trophic cascades in terrestrial ecosystems of the Western united States. Biol. Conserv. 142, 2401–2414 (2009).

    Google Scholar 

  10. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Google Scholar 

  11. Prugh, L. R. et al. Rise Mesopredator BioScience 59, 779–791 (2009).

    Google Scholar 

  12. Ritchie, E. G. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).

    Google Scholar 

  13. Bandyopadhyay, K. et al. Review of small Cat ecology and status within India. Mammal Rev. 54, 341–356 (2024).

    Google Scholar 

  14. Polis, G. A., Sears, A. L. W., Huxel, G. R., Strong, D. R. & Maron, J. When is a trophic cascade a trophic cascade? Trends Ecol. Evol. 15, 473–475 (2000).

    Google Scholar 

  15. Mallon, D. P. & Jiang, Z. Grazers on the plains: challenges and prospects for large herbivores in central Asia. J. Appl. Ecol. 46, 516–519 (2009).

    Google Scholar 

  16. Marneweck, C. J. et al. Middle-out ecology: small carnivores as sentinels of global change. Mammal Rev. 52, 471–479 (2022).

    Google Scholar 

  17. Nagy-Reis, M. B., Nichols, J. D., Chiarello, A. G., Ribeiro, M. C. & Setz, E. Z. F. Landscape use and Co-Occurrence patterns of Neotropical spotted cats. PLOS ONE. 12, e0168441 (2017).

    Google Scholar 

  18. Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Pitman, M. R. P. L. The importance of rodents in the diet of jungle Cat (Felis chaus), caracal (Caracal caracal) and golden Jackal (Canis aureus) in Sariska tiger Reserve, Rajasthan, India. J. Zool. 262, 405–411 (2004).

    Google Scholar 

  19. Hofmeester, T. R. et al. Cascading effects of predator activity on tick-borne disease risk. Proc. R. Soc. B: Biol. Sci. 284, 20170453 (2017).

    Google Scholar 

  20. Sousa-Silva, R., Alves, P., Honrado, J. & Lomba, A. Improving the assessment and reporting on rare and endangered species through species distribution models. Global Ecol. Conserv. 2, 226–237 (2014).

    Google Scholar 

  21. Wynter-Blyth, M. A. & Dharmakumarsinhji, R. S. The Gir forest and its lions. J. Bombay Nat. History Soc. 48, 493–513 (1949).

    Google Scholar 

  22. Choudhary, S. R. Let Us count our tiger. Cheetal 14, 41–51 (1970).

    Google Scholar 

  23. Jhala, Y. V. & Giles, R. H. Jr. The status and conservation of the Wolf in Gujarat and Rajasthan, India. Conserv. Biol. 5, 476–483 (1991).

    Google Scholar 

  24. Karanth, K. K., Nichols, J. D., Hines, J. E., Karanth, K. U. & Christensen, N. L. Patterns and determinants of mammal species occurrence in India. J. Appl. Ecol. 46, 1189–1200 (2009).

    Google Scholar 

  25. Blake, S. & Hedges, S. Sinking the flagship: the case of forest elephants in Asia and Africa. Conserv. Biol. 18, 1191–1202 (2004).

    Google Scholar 

  26. Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    Google Scholar 

  27. Sunquist, M. & Sunquist, F. Wild Cats of the World (University of Chicago Press, 2002).

  28. Mukherjee, S. (2013). Small cats. In A. J. T. Johnsingh & N. Manjrekar (Eds.), Mammals of South Asia (pp. 531–540). Hyderabad, India: Universities Press

    Google Scholar 

  29. Gray, T. N. E. et al. Felis chaus. The IUCN Red List of Threatened Species. The IUCN Red List of Threatened Species T8540A50651463. 2016. (2016).

  30. Sanei, A. et al. Distribution, characteristics and conservation of the jungle Cat in Iran. Cat News. 10, 51–55 (2016).

    Google Scholar 

  31. Joshi, N., Srivastava, A. & Joshi, R. Impact of transportation on mammalian fauna in Rajaji tiger Reserve, India. Asian J. Conserv. Biology. 7, 73–77 (2018).

    Google Scholar 

  32. Krüger, M., Hertwig, S. T., Jetschke, G. & Fischer, M. S. Evaluation of anatomical characters and the question of hybridization with domestic cats in the wildcat population of Thuringia, Germany. J. Zoological Syst. Evolutionary Res. 47, 268–282 (2009).

    Google Scholar 

  33. Gil-Sánchez, J. M., Jaramillo, J. & Barea-Azcón, J. M. Strong Spatial segregation between wildcats and domestic cats May explain low hybridization rates on the Iberian Peninsula. Zoology 118, 377–385 (2015).

    Google Scholar 

  34. Jhala, Y., Qureshi, Q. & Yadav, S. P. Status of Leopards, Co-Predators, and Megaherbivores in India, 2018. 304 (2021).

  35. Mukherjee, S. et al. Ecology driving genetic variation: A comparative phylogeography of jungle Cat (Felis chaus) and Leopard Cat (Prionailurus bengalensis) in India. PLOS ONE. 5, e13724 (2010).

    Google Scholar 

  36. Chatterjee, N., Nigam, P. & Habib, B. Population density and habitat use of two sympatric small cats in a central Indian reserve. PLOS ONE. 15, e0233569 (2020).

    Google Scholar 

  37. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  38. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  39. Elith, J. et al. A statistical explanation of maxent for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  40. Jhala, Y., Qureshi, Q. & Yadav, S. P. Status of Tigers, Co-Predators and Prey in India, 2018. 656 (2020).

  41. Survey of India. Administrative boundary database of India. (2025).

  42. National Tiger Conservation Authority. Protected Area (PA) boundary database of India [KML]. (2025).

  43. Esri, I. Environmental Systems Research Institute (Esri). (2022).

  44. Prater, S. H. The Book of Indian Animals (Bombay Natural History Society, 1971).

  45. Nowell, K. & Jackson, P. Wild Cats: Status Survey and Conservation Action PlanIUCN,. (1996).

  46. Vanak, A. T. & Gompper, M. E. Dogs canis familiaris as carnivores: their role and function in intraguild competition. Mammal Rev. 39, 265–283 (2009).

    Google Scholar 

  47. Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Conserv. 210, 56–59 (2017).

    Google Scholar 

  48. Knobel, D. L., Butler, J. R., Lembo, T., Critchlow, R., & Gompper, M. E.  Dogs, disease, and wildlife. In M. E. Gompper (Ed.), Free-ranging dogs and wildlife conservation (pp. 268–282). Oxford, UK: Oxford University Press.(2013)

    Google Scholar 

  49. Home, C., Bhatnagar, Y. V. & Vanak, A. T. Canine conundrum: domestic dogs as an invasive species and their impacts on wildlife in India. Anim. Conserv. 21, 275–282 (2018).

    Google Scholar 

  50. Pusparini, W. Ecology and conservation of endangered species in Sumatra: Smaller cats and the Sumatran rhinoceros (Dicerorhinus sumatrensis) as case studies. Master’s thesis, University of Massachusetts Amherst. ScholarWorks@UMass Amherst.(2014) https://doi.org/10.7275/5460946

    Google Scholar 

  51. Gray, T.N.E., Timmins, R.J., Jathana, D., Duckworth, J.W., Baral, H. & Mukherjee, S. Felis chaus (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2021: e.T8540A200639312. (2021)

  52. Tyagi, A., Khan, A., Thatte, P. & Ramakrishnan, U. Genome-wide single nucleotide polymorphism (SNP) markers from fecal samples reveal anthropogenic impacts on connectivity: case of a small carnivore in the central Indian landscape. Anim. Conserv. 25, 648–659 (2022).

    Google Scholar 

  53. Bhattarai, H. India Wild Cats Project. (2020).

  54. Tordiffe, A. S. W. et al. The case for the reintroduction of cheetahs to India. Nat. Ecol. Evol. 7, 480–481 (2023).

    Google Scholar 

  55. Hunter, L. Wild Cats of the World (Bloomsbury Publishing, 2015).

  56. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of maxent. Ecography 40, 887–893 (2017).

    Google Scholar 

  57. Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    Google Scholar 

  58. Katna, A., Kulkarni, A., Thaker, M. & Vanak, A. T. Habitat specificity drives differences in space-use patterns of multiple mesocarnivores in an agroecosystem. J. Zool. 316, 92–103 (2022).

    Google Scholar 

  59. Jhala, Y., Saini, S., Kumar, S., & Qureshi, Q. Distribution, status, and conservation of the Indian peninsular wolf. Frontiers in Ecology and Evolution, 10, Article 814966. (2022).

  60. Baker, M. A. et al. On the current status and distribution of the jungle Cat, felis chaus, in Jordan (Mammalia: Carnivora). Zool. Middle East. 30, 5–10 (2003).

    Google Scholar 

  61. Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).

    Google Scholar 

  62. Rather, T. A., Kumar, S. & Khan, J. A. Multi-scale habitat modelling and predicting change in the distribution of tiger and Leopard using random forest algorithm. Sci. Rep. 10, 11473 (2020).

    Google Scholar 

  63. Liaw, A. & Wiener, M. Classification and Regression by randomForest. in (2007).

  64. Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).

    Google Scholar 

  65. Kreeger, T. J. Handbook of Wildlife Chemical Immobilization (International Wildlife Veterinary Services, 1996).

  66. Fleming, C. H. et al. Rigorous home range Estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).

    Google Scholar 

  67. Calabrese, J. M., Fleming, C. H. & Gurarie, E. Ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).

    Google Scholar 

  68. Mishra, C., Madhusudan, M. D. & Datta, A. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs. Oryx 40, 29–35 (2006).

    Google Scholar 

  69. Seber, G. A. F. The Estimation of Animal Abundance and Related Parameters 2nd edn (Charles Griffin & Company, 1982).

Download references

Acknowledgements

The study was conducted in collaboration with the Haub School of Environment and Natural Resources, the University of Wyoming, and the Wildlife Institute of India (WII). We are grateful to UW Global, Koprowski Conservation Research Laboratory, and an anonymous donor for providing funds for KB while writing the manuscript. We acknowledge the huge camera trapping effort by the National Tiger Conservation Authority and the State Forest Departments for assessing the tiger population of India, the jungle cat photo locations were bycatch of this exercise.  We thank Dhananjaysinh Y. Jhala for critical discussions and suggestions regarding the manuscript. We thank the Director, Dean, Registrar, and Research Coordinator at WII for their facilitation.

Author information

Authors and Affiliations

  1. Haub School of Environment and Natural Resources, Wyoming, USA

    Kathan Bandyopadhyay & John Koprowski

  2. Wildlife Institute of India, Dehradun, Uttarakhand, India

    Kathan Bandyopadhyay, Dhruv Jain, Qamar Qureshi & Yadvendradev V. Jhala

  3. Indian National Science Academy, and National Centre for Biological Sciences, Bengaluru, India

    Yadvendradev V. Jhala

Authors
  1. Kathan Bandyopadhyay
    View author publications

    Search author on:PubMed Google Scholar

  2. Dhruv Jain
    View author publications

    Search author on:PubMed Google Scholar

  3. John Koprowski
    View author publications

    Search author on:PubMed Google Scholar

  4. Qamar Qureshi
    View author publications

    Search author on:PubMed Google Scholar

  5. Yadvendradev V. Jhala
    View author publications

    Search author on:PubMed Google Scholar

Contributions

KB and YVJ conceived the study. Field data were collected by KB, JLK, QQ and YVJ. KB, DJ, and YVJ conducted the data analysis. KB drafted the initial version of the manuscript. YVJ, QQ and JLK served as project administrators and secured funding for the completion of the project. All authors reviewed and provided comments on the manuscript.

Corresponding authors

Correspondence to Kathan Bandyopadhyay or Yadvendradev V. Jhala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, K., Jain, D., Koprowski, J. et al. Distribution and conservation status of the jungle cat (Felis chaus) across India. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39033-1

Download citation

  • Received: 31 July 2025

  • Accepted: 02 February 2026

  • Published: 08 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39033-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conservation policy
  • Habitat suitability
  • India
  • Jungle cat
  • Population status
  • Small wild felid
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene