Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Environmental evolution of a coastal lake in the Larsemann Hills, East Antarctica during the Holocene: a multi-proxy perspective
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 February 2026

Environmental evolution of a coastal lake in the Larsemann Hills, East Antarctica during the Holocene: a multi-proxy perspective

  • G. S. Joju1,
  • Anish Kumar Warrier1,
  • B. S. Mahesh2,
  • Avirajsinh Jadav2,
  • Cheryl A. Noronha-D’Mello2,
  • Masud Kawsar3,4,
  • M. C. Manoj4,5,
  • A. S. Yamuna Sali1,
  • Gokul Valsan1,
  • A. A. Krishnaprasad6,
  • Shardool Kokare6,
  • K. Balakrishna7 &
  • …
  • Rahul Mohan2 

Scientific Reports , Article number:  (2026) Cite this article

  • 518 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Environmental sciences
  • Limnology
  • Ocean sciences

Abstract

Coastal lakes in Antarctica provide exceptional archives of past climatic and environmental change. Their evolution is closely linked to variations in relative sea level (RSL) driven by deglaciation, making them ideal natural laboratories for investigating marine-lacustrine transitions and reconstructing ancient sea levels. This study presents a high-resolution reconstruction of mid- to late-Holocene paleoenvironmental changes from Heart Lake, a low-elevation coastal lake in the Larsemann Hills, East Antarctica. Multiple proxies, including diatom assemblages, environmental magnetic parameters, geochemical indicators, and sedimentological features, were employed to decipher the regional paleoclimate and environmental history. The lake existed as a submarine basin from approximately 6.37 to 3.07 cal ka BP. Around 4.3 cal ka BP, increasing chemical weathering indices suggest a trend toward warmer conditions in the lake. The first appearance of lacustrine diatoms around 3.07 cal ka BP marks the onset of environmental transition within the basin. By ~ 1.75 cal ka BP, the lake had become an isolated freshwater system. This shift from a marine to a lacustrine environment was likely driven by a post-glacial isostatic rebound and the consequent uplift of the land surface.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper, its supplementary information files and extended data files.

References

  1. Mackintosh, A. N. et al. Retreat history of the East Antarctic ice sheet since the last glacial maximum. Quat Sci. Rev. 100, 10–30 (2014).

    Google Scholar 

  2. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosph 7, 375–393 (2013).

    Google Scholar 

  3. Robinson, D. E., Menzies, J., Wellner, J. S. & Clark, R. W. Subglacial sediment deformation in the Ross Sea, Antarctica. Quat Sci. Adv. 4, 100029 (2021).

    Google Scholar 

  4. Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic ice sheet. Nat. Commun. 10, 503 (2019).

    Google Scholar 

  5. Verleyen, E., Hodgson, D. A., Sabbe, K. & Vyverman, W. Late quaternary deglaciation and climate history of the Larsemann Hills(East Antarctica). J. Quat Sci. 19, 361–375 (2004).

    Google Scholar 

  6. Mahesh, B. S., Warrier, A. K., Avadhani, A., Mohan, R. & Tiwari, M. Palaeolimnological records of regime shifts from Marine-To-Lacustrine system in a coastal Antarctic lake in response to Post-Glacial isostatic uplift. Curr. Sci. 115, 1679 (2018).

    Google Scholar 

  7. Matsuoka, K. et al. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic Islands. Environ. Model. Softw. 140, 105015 (2021).

    Google Scholar 

  8. Cox, S. C. et al. A continent-wide detailed geological map dataset of Antarctica. Sci. Data. 10, 250 (2023).

    Google Scholar 

  9. Gao, Y. et al. Ice sheet changes and GIA-induced surface displacement of the Larsemann hills during the last 50 Kyr. J. Geophys. Res. Solid Earth 125, e2020JB020167 (2020).

  10. Mahesh, B. S., Nair, A., Ghadi, P., Warrier, A. K. & Mohan, R. Holocene sedimentology in an isolation basin in the Larsemann Hills, East Antarctica. Polar Sci. 30, 100729 (2021).

    Google Scholar 

  11. Hodgson, D. A. et al. Rapid early holocene sea-level rise in Prydz Bay, East Antarctica. Glob Planet. Change. 139, 128–140 (2016).

    Google Scholar 

  12. Noronha-D’Mello, C. A. et al. Glacial-Holocene climate-driven shifts in lacustrine and terrestrial environments: rock magnetic and geochemical evidence from East Antarctic Mochou lake. Palaeogeogr Palaeoclimatol Palaeoecol. 576, 110505 (2021).

    Google Scholar 

  13. Warrier, A. K. et al. Glacial–interglacial Climatic variations at the schirmacher Oasis, East antarctica: the first report from environmental magnetism. Palaeogeogr Palaeoclimatol Palaeoecol. 412, 249–260 (2014).

    Google Scholar 

  14. Čejka, T. et al. Timing of the neoglacial onset on the North-Eastern Antarctic Peninsula based on lacustrine archive from lake Anónima, Vega Island. Glob Planet. Change. 184, 103050 (2020).

    Google Scholar 

  15. Warrier, A. K., Mahesh, B. S., Mohan, R. & Shankar, R. A 43-ka mineral magnetic record of environmental variations from lacustrine sediments of schirmacher Oasis, East Antarctica. Catena 202, 105300 (2021).

    Google Scholar 

  16. Bertler, N. A. N., Mayewski, P. A. & Carter, L. Cold conditions in Antarctica during the little ice Age — Implications for abrupt climate change mechanisms. Earth Planet. Sci. Lett. 308, 41–51 (2011).

    Google Scholar 

  17. Lüning, S., Gałka, M. & Vahrenholt, F. The medieval climate anomaly in Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol. 532, 109251 (2019).

    Google Scholar 

  18. Joju, G. S. et al. A high-resolution record of Mid- to Late-Holocene environmental changes from a land-locked lake in schirmacher Oasis, East Antarctica. Holocene 34, 881–894 (2024).

    Google Scholar 

  19. Noronha-D’Mello, C. A., Nair, A., Mahesh, B. S., Warrier, A. K. & Mohan, R. Mid to Late-Holocene environmental dynamics recorded in lake pup Lagoon, East antarctica: insights from environmental magnetism and biogeochemical proxies. Holocene 34, 1572–1586 (2024).

    Google Scholar 

  20. Sproson, A. D. et al. Beryllium isotopes in sediments from lake Maruwan Oike and lake Skallen, East Antarctica, reveal substantial glacial discharge during the late holocene. Quat Sci. Rev. 256, 106841 (2021).

    Google Scholar 

  21. Suganuma, Y. et al. Regional sea-level highstand triggered holocene ice sheet thinning across coastal Dronning Maud Land, East Antarctica. Commun. Earth Environ. 3, 273 (2022).

    Google Scholar 

  22. Verleyen, E. et al. Ice sheet retreat and glacio-isostatic adjustment in Lützow-Holm Bay, East Antarctica. Quat Sci. Rev. 169, 85–98 (2017).

    Google Scholar 

  23. Gasparon, M., Lanyon, R., Burgess, J. S. & Sigurdsson, I. A. The Freshwater Lakes of the Larsemann Hills, East Antarctica: Chemical Characteristics of the Water Column. (2002).

  24. Gillieson, D. An Atlas of the Lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica Vol. 74 (Australian National Antarctic Research Expeditions, 1990).

  25. Hodgson, D. A. et al. Were the Larsemann hills ice-free through the last glacial maximum? Antarct. Sci. 13, 440–454 (2001).

    Google Scholar 

  26. Asthana, R. et al. Sedimentary processes in two different Polar periglacial environments: examples from schirmacher Oasis and Larsemann Hills, East Antarctica. Geol. Soc. Spec. Publ. 381, 411–427 (2013).

    Google Scholar 

  27. Carson, C. J. & Grew, E. S. Geology of the Larsemann Hills Region Antarctica (1: 25000 Scale Map) (Geoscience Australia, 2007).

  28. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  29. R Core Team. R: A Language and Environment for Statistical Computing. at (2021). https://www.r-project.org

  30. Hogg, A. G. et al. SHCal20 Southern hemisphere Calibration, 0–55,000 years Cal BP. Radiocarbon 62, 759–778 (2020).

    Google Scholar 

  31. Heaton, T. J. et al. Marine20 - The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Google Scholar 

  32. Rathburn, A. E., Pichon, J. J., Ayress, M. A. & De Deckker, P. Microfossil and stable-isotope evidence for changes in late holocene palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region of Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol. 131, 485–510 (1997).

    Google Scholar 

  33. Verleyen, E., Hodgson, D. A., Sabbe, K., Vanhoutte, K. & Vyverman, W. Coastal oceanographic conditions in the Prydz Bay region (East Antarctica) during the holocene recorded in an isolation basin. Holocene 14, 246–257 (2004).

    Google Scholar 

  34. Ingólfsson, Ó. et al. Antarctic glacial history since the last glacial maximum: an overview of the record on land. Antarct. Sci. 10, 326–344 (1998).

    Google Scholar 

  35. Berkman, P. A. et al. Circum-Antarctic coastal environmental shifts during the late quaternary reflected by emerged marine deposits. Antarct. Sci. 10, 345–362 (1998).

    Google Scholar 

  36. Thompson, R. & Oldfield, F. Environmental Magnetism (Springer Netherlands, 1986). https://doi.org/10.1007/978-94-011-8036-8

  37. Walden, J., Oldfield, F. & Smith, J. Environmental Magnetism: A Practical Guide (Quaternary Research Association, 1999).

  38. Liu, Q. et al. Environmental magnetism: principles and applications. Rev. Geophys. 50, RG4002 (2012).

    Google Scholar 

  39. Liu, Q., Roberts, A. P., Torrent, J., Horng, C. S. & Larrasoaña, J. C. What do the HIRM and S-ratio really measure in environmental magnetism? Geochem. Geophys. Geosyst. 8, 1–10 (2007).

  40. USEPA. United States Environmental Protection Agency (USEPA) (1996) Method 3050B: Acid Digestion of Sludges, Sediments, and Soils, Revision, 2. (1996). https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf

  41. Nesbitt, H. W. & Young, G. M. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).

    Google Scholar 

  42. Fedo, C. M., Nesbitt, W., Young, G. M. & H. & Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921 (1995).

    Google Scholar 

  43. Cox, R., Lowe, D. R. & Cullers, R. L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the Southwestern united States. Geochim. Cosmochim. Acta. 59, 2919–2940 (1995).

    Google Scholar 

  44. Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110 (2001).

    Google Scholar 

  45. Santisteban, J. I. et al. Loss on ignition: A qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J. Paleolimnol. 32, 287–299 (2004).

    Google Scholar 

  46. Dean, W. E. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolimnol. 21, 375–393 (1999).

    Google Scholar 

  47. Paterson, G. A. & Heslop, D. New methods for unmixing sediment grain size data. Geochem. Geophys. Geosyst. 16, 4494–4506 (2015).

    Google Scholar 

  48. Blott, S. J., Pye, K. & Gradistat A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Land. 26, 1237–1248 (2001).

    Google Scholar 

  49. Petersen, N., Von Dobeneck, T. & Vali, H. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic ocean. Nature 320, 611–615 (1986).

    Google Scholar 

  50. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  51. Frontier, S. Étude de La décroissance des valeurs propres Dans Une analyse En composantes principales: comparaison avec Le modd́le du bâton brisé. J. Exp. Mar. Bio Ecol. 25, 67–75 (1976).

    Google Scholar 

  52. Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).

    Google Scholar 

  53. Worm, H. U. On the superparamagnetic - Stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int. 133, 201–206 (1998).

    Google Scholar 

  54. Dearing, J. A., Bird, P. M., Dann, R. J. L. & Benjamin, S. F. Secondary ferrimagnetic minerals in Welsh soils: A comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int. 130, 727–736 (1997).

    Google Scholar 

  55. Maher, B. A. Magnetic properties of some synthetic sub-micron magnetites. Geophys. J. 94, 83–96 (1988).

    Google Scholar 

  56. Oldfield, F. Environmental magnetism - A personal perspective. Quat Sci. Rev. 10, 73–85 (1991).

    Google Scholar 

  57. Evans, M. & Heller, F. Environmental Magnetism: Principles and Applications of Enviromagnetics, Int. Geophys. Ser Vol. 86 (Academic, 2003).

  58. Chaparro, M. A. E., Moralejo, M. P., Böhnel, H. N. & Acebal, S. G. Iron oxide mineralogy in Mollisols, aridisols and entisols from Southwestern Pampean region (Argentina) by environmental magnetism approach. Catena 190, 104534 (2020).

    Google Scholar 

  59. King, J., Banerjee, S. K., Marvin, J. & Özdemir, Ö. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett. 59, 404–419 (1982).

    Google Scholar 

  60. Joju, G. S. et al. Mineral magnetic properties of surface soils from the Broknes and Grovnes Peninsula, Larsemann Hills, East Antarctica. Polar Sci. 38, 100968 (2023).

    Google Scholar 

  61. Paasche, Ø., Løvlie, R., Dahl, S. O., Bakke, J. & Nesje, A. Bacterial magnetite in lake sediments: late glacial to holocene climate and sedimentary changes in Northern Norway. Earth Planet. Sci. Lett. 223, 319–333 (2004).

    Google Scholar 

  62. Snowball, I. F. Magnetic hysteresis properties of greigite (Fe3S4) and a new occurrence in holocene sediments from Swedish Lappland. Phys. Earth Planet. Inter. 68, 32–40 (1991).

    Google Scholar 

  63. Oldfield, F. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments. J. Geophys. Res. 99, 9045–9050 (1994).

    Google Scholar 

  64. Liu, W. J. et al. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, china: implications for chemical weathering and parent materials. J. Asian Earth Sci. 67–68, 138–152 (2013).

    Google Scholar 

  65. Tsai, P. H., You, C. F., Huang, K. F., Chung, C. H. & Sun, Y. Bin. Lithium distribution and isotopic fractionation during chemical weathering and soil formation in a loess profile. J. Asian Earth Sci. 87, 1–10 (2014).

    Google Scholar 

  66. Wei, G. Y. et al. A chemical weathering control on the delivery of particulate iron to the continental shelf. Geochim. Cosmochim. Acta. 308, 204–216 (2021).

    Google Scholar 

  67. Davies, S. J., Lamb, H. F. & Roberts, S. J. Micro-XRF core scanning in palaeolimnology: recent developments. Micro-XRF Stud. Sediment. Cores. 189–226. https://doi.org/10.1007/978-94-017-9849-5_7 (2015).

  68. Burnett, A. P., Soreghan, M. J., Scholz, C. A. & Brown, E. T. Tropical East African climate change and its relation to global climate: A record from lake Tanganyika, tropical East Africa, over the past 90 + kyr. Palaeogeogr Palaeoclimatol Palaeoecol. 303, 155–167 (2011).

    Google Scholar 

  69. Chen, H. F. et al. The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia. J. Asian Earth Sci. 73, 31–38 (2013).

    Google Scholar 

  70. Reichart, G. J., Dulk, D., Visser, M., Van Der Weijden, H. J., Zachariasse, W. J. & C. H. & A 225 Kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray ridge (Northern Arabian Sea). Palaeogeogr Palaeoclimatol Palaeoecol. 134, 149–169 (1997).

    Google Scholar 

  71. An, F. Y., Ma, H. Z., Wei, H. C. & Lai, Z. P. Distinguishing aeolian signature from lacustrine sediments of the Qaidam basin in Northeastern Qinghai-Tibetan plateau and its palaeoclimatic implications. Aeolian Res. 4, 17–30 (2012).

    Google Scholar 

  72. Warrier, A. K., Pednekar, H., Mahesh, B. S., Mohan, R. & Gazi, S. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from schirmacher Oasis, East antarctica: paleoenvironmental significance. Polar Sci. 10, 89–100 (2016).

    Google Scholar 

  73. Gkinis, V. et al. Oxygen-18 isotope ratios from the EPICA Dome C ice core at 11 cm resolution. at (2021). https://doi.org/10.1594/PANGAEA.939445

  74. Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M. & Fischer, H. Centennial mineral dust variability in high-resolution ice core data from dome C, Antarctica. Clim. Past. 8, 609–623 (2012).

    Google Scholar 

  75. Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004).

    Google Scholar 

  76. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat Sci. Rev. 10, 297–317 (1991).

    Google Scholar 

  77. Etourneau, J. et al. Holocene climate variations in the Western Antarctic peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability. Clim. Past. 9, 1431–1446 (2013).

    Google Scholar 

  78. Passega, R. Texture as characteristic of clastic deposition. Am. Assoc. Pet. Geol. Bull. 41, 1952–1984 (1957).

    Google Scholar 

  79. Johnson, K. M. et al. Sensitivity of holocene East Antarctic productivity to subdecadal variability set by sea ice. Nat. Geosci. 14, 762–768 (2021).

    Google Scholar 

  80. Sverdrup, H. U. The currents off the Coast of queen Maud land. Nor. Geogr. Tidsskr - Nor. J. Geogr. 14, 239–249 (1953).

    Google Scholar 

  81. Whitworth, T., Orsi, A. H., Kim, S. J., Nowlin, W. D. & Locarnini, R. A. Water Masses and Mixing Near the Antarctic Slope Front. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin (eds. Jacobs, S. S. & Weiss, R. F.) 1–27American Geophysical Union, (1998). https://doi.org/10.1029/ar075p0001

  82. Kim, C. S. et al. Variability of the Antarctic coastal current in the Amundsen sea. Estuar. Coast Shelf Sci. 181, 123–133 (2016).

    Google Scholar 

  83. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Sci. (80-). 317, 793–796 (2007).

    Google Scholar 

  84. Denis, D. et al. Holocene glacier and deep water dynamics, Adélie land region, East Antarctica. Quat Sci. Rev. 28, 1291–1303 (2009).

    Google Scholar 

  85. Davison, W. Iron and manganese in lakes. Earth Sci. Rev. 34, 119–163 (1993).

    Google Scholar 

  86. Wang, H., Liu, H., Liu, Y., Cui, H. & Abrahamsen, N. Mineral magnetism and other characteristics of sediments from an alpine lake (3,410 m a.s.l.) in central China and implications for late holocene climate and environment. J. Paleolimnol. 43, 345–367 (2010).

    Google Scholar 

  87. Dearing, J. A. Holocene environmental change from magnetic proxies in lake sediments. In Quaternary climates, Environments and Magnetism (eds Maher, B. A. & Thompson, R.) 231–278 (Cambridge University Press Cambridge, 1999).

    Google Scholar 

  88. Larrasoaña, J. C. et al. Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 333–334, 122–133 (2012).

    Google Scholar 

  89. Paleari, C. I. et al. Aeolian dust provenance in central East Antarctica during the holocene: environmental constraints from Single-Grain Raman spectroscopy. Geophys. Res. Lett. 46, 9968–9979 (2019).

    Google Scholar 

  90. Verleyen, E., Hodgson, D. A., Milne, G. A., Sabbe, K. & Vyverman, W. Relative sea-level history from the Lambert glacier region, East Antarctica, and its relation to deglaciation and holocene glacier readvance. Quat Res. 63, 45–52 (2005).

    Google Scholar 

  91. Verleyen, E. et al. Post-glacial regional climate variability along the East Antarctic coastal margin-Evidence from shallow marine and coastal terrestrial records. Earth Sci. Rev. 104, 199–212 (2011).

    Google Scholar 

  92. Shi, G., Teng, J., Ma, H., Wang, D. & Li, Y. Metals in topsoil in Larsemann Hills, an ice-free area in East antarctica: lithological and anthropogenic inputs. Catena 160, 41–49 (2018).

    Google Scholar 

  93. Mahesh, B. S., Warrier, A. K., Nair, A., Fernandes, R. & Mohan, R. Evolutionary inferences from the sedimentary deposits of lake LH73, Larsemann Hills, East Antarctica. Catena 203, 105341 (2021).

    Google Scholar 

  94. Rhodes, R. H. et al. Little ice age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Clim. Past. 8, 1223–1238 (2012).

    Google Scholar 

  95. Koffman, B. G. et al. Abrupt changes in atmospheric circulation during the medieval climate anomaly and little ice age recorded by Sr-Nd isotopes in the Siple dome ice Core, Antarctica. Paleoceanogr. Paleoclimatol. 38, e2022PA004543 (2023).

Download references

Acknowledgements

A.K.W. gratefully acknowledges the Director of CSIR-NIO, Goa, and Dr. Firoz Badesab (CSIR-NIO) for providing access to magnetic instrumentation facilities. M.B.S., C.D., and R.M. thank the Director of NCPOR for continuous support and encouragement. J.G.S. expresses gratitude to Dr. Lino Yovan, Dr. Raksha Shetty, and Ms. Ashwathy C., research scholars at Manipal Institute of Technology, for their assistance with location map preparation and ICP-OES analysis. We are thankful to the Antarctic Logistics Division, NCPOR, and to the leader, station commander, and members of the 33rd Indian Scientific Expedition to Antarctica for their invaluable assistance during fieldwork. Financial support for this research was provided by the ESSO-National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, through a project awarded to AKW and KB (Sanction: NCPOR/2019/PACER-POP/ES-02 dated 05/07/2019) under the PACER Outreach Programme (POP) initiative. We also thank the editor and reviewers for their constructive comments, which greatly improved the clarity and overall quality of the manuscript. This is NCPOR contribution no. J-87/2025-26.

Funding

Open access funding provided by Manipal Academy of Higher Education, Manipal. Financial support for this research was provided by the ESSO-National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, through a project awarded to AKW and KB (Sanction: NCPOR/2019/PACER-POP/ES-02 dated 05/07/2019) under the PACER Outreach Programme (POP) initiative.

Author information

Authors and Affiliations

  1. Centre for Climate Studies, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India

    G. S. Joju, Anish Kumar Warrier, A. S. Yamuna Sali & Gokul Valsan

  2. Antarctic Science Division, National Centre for Polar and Ocean Research, Headland Sada, Vasco-da-Gama, 403804, Goa, India

    B. S. Mahesh, Avirajsinh Jadav, Cheryl A. Noronha-D’Mello & Rahul Mohan

  3. Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, 411008, India

    Masud Kawsar

  4. Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, 226007, Uttar Pradesh, India

    Masud Kawsar & M. C. Manoj

  5. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India

    M. C. Manoj

  6. Department of Sciences, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India

    A. A. Krishnaprasad & Shardool Kokare

  7. Centre for Smart Coastal Sustainability, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India

    K. Balakrishna

Authors
  1. G. S. Joju
    View author publications

    Search author on:PubMed Google Scholar

  2. Anish Kumar Warrier
    View author publications

    Search author on:PubMed Google Scholar

  3. B. S. Mahesh
    View author publications

    Search author on:PubMed Google Scholar

  4. Avirajsinh Jadav
    View author publications

    Search author on:PubMed Google Scholar

  5. Cheryl A. Noronha-D’Mello
    View author publications

    Search author on:PubMed Google Scholar

  6. Masud Kawsar
    View author publications

    Search author on:PubMed Google Scholar

  7. M. C. Manoj
    View author publications

    Search author on:PubMed Google Scholar

  8. A. S. Yamuna Sali
    View author publications

    Search author on:PubMed Google Scholar

  9. Gokul Valsan
    View author publications

    Search author on:PubMed Google Scholar

  10. A. A. Krishnaprasad
    View author publications

    Search author on:PubMed Google Scholar

  11. Shardool Kokare
    View author publications

    Search author on:PubMed Google Scholar

  12. K. Balakrishna
    View author publications

    Search author on:PubMed Google Scholar

  13. Rahul Mohan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.G.S., A.K.W. and M.B. conceived the idea for the study. Fieldwork was carried out by A.K.W., M.B., and C.D. Analytical work was performed by J.G.S., A.S.Y., K.A.A., A.J., M.K., S.K. and M.C.M. G.V. assisted with figure preparation and data curation. The manuscript was written by J.G.S. with inputs from A.K.W, M.B., C.D., M.K., M.C.M., R.M. and K.B.

Corresponding author

Correspondence to Anish Kumar Warrier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joju, G.S., Warrier, A.K., Mahesh, B.S. et al. Environmental evolution of a coastal lake in the Larsemann Hills, East Antarctica during the Holocene: a multi-proxy perspective. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39218-8

Download citation

  • Received: 07 June 2025

  • Accepted: 03 February 2026

  • Published: 15 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39218-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Quaternary palaeoclimate and environment

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene