Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Microbiological and rheological dynamics of mixed biofilms formed by bacteria and eukaryotic virus
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Microbiological and rheological dynamics of mixed biofilms formed by bacteria and eukaryotic virus

  • Jing Gao1,2,
  • Clémence Abriat1,
  • Magdalena Laekas-Hameder1,
  • Nick Virgilio3,
  • Charles M. Dozois2,4,
  • Caroline Quach1,5,
  • Marie-Claude Heuzey3,
  • Guy Lemay1 &
  • …
  • France Daigle  ORCID: orcid.org/0000-0001-6847-47291,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 391 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Diseases
  • Microbiology

Abstract

Biofilms are structured microbial communities embedded within an extracellular matrix that confers protection against environmental stresses. In both natural and clinical settings, biofilms are rarely composed of a single species and may also involve interactions with bacteriophages or even eukaryotic viruses. Since both biofilms and viruses are ubiquitous, and viruses remain among the neglected components of the microbiome, understanding their interactions is essential. In hospitalized patients, catheter colonization by biofilms markedly increases the risk of bacteremia and septicemia, and biofilm formation is almost inevitable during long-term catheterization. In this study, we investigated biofilm-forming capacities of uropathogenic Escherichia coli (UPEC) and clinical strains associated with catheter-related systemic infections. Selected strains were further examined to evaluate the influence of the ubiquitous mammalian reovirus on bacterial biofilm formation and to evaluate biofilm entrapment of viral particles and its impact on viral infectivity. Bacterial growth, survival and biofilm production were measured in the presence or absence of the virus. While reovirus exhibited no bactericidal effects and biofilm biomass remained largely unchanged, rheological and microscopic analyses revealed strain-specific alterations in biofilm properties. Remarkably, reovirus retains infectivity after release from biofilms, indicating that bacterial biofilms may serve as reservoirs or shelters for eukaryotic viruses.

Similar content being viewed by others

Insights into urinary catheter colonisation and polymicrobial biofilms of Candida- bacteria under flow condition

Article Open access 02 May 2025

Mechanisms of antimicrobial resistance in biofilms

Article Open access 01 October 2024

The biofilm life cycle: expanding the conceptual model of biofilm formation

Article 03 August 2022

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on request.

References

  1. Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575. https://doi.org/10.1038/nrmicro.2016.94 (2016).

    Google Scholar 

  2. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322. https://doi.org/10.1126/science.284.5418.1318 (1999).

    Google Scholar 

  3. Hoyle, B. D. & Costerton, J. W. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res. 37, 91–105. https://doi.org/10.1007/978-3-0348-7139-6_2 (1991).

    Google Scholar 

  4. Bryers, J. D. Medical biofilms. Biotechnol. Bioeng. 100, 1–18. https://doi.org/10.1002/bit.21838 (2008).

    Google Scholar 

  5. Trautner, B. W. & Darouiche, R. O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control. 32, 177–183. https://doi.org/10.1016/j.ajic.2003.08.005 (2004).

    Google Scholar 

  6. Gahlot, R., Nigam, C., Kumar, V., Yadav, G. & Anupurba, S. Catheter-related bloodstream infections. Int. J. Crit. Illn. Inj Sci. 4, 162–167. https://doi.org/10.4103/2229-5151.134184 (2014).

    Google Scholar 

  7. Azevedo, A. S., Almeida, C., Melo, L. F. & Azevedo, N. F. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit. Rev. Microbiol. 43, 423–439. https://doi.org/10.1080/1040841X.2016.1240656 (2017).

    Google Scholar 

  8. Wilks, S. A., Koerfer, V. V., Prieto, J. A., Fader, M. & Keevil, C. W. Biofilm Development on Urinary Catheters Promotes the Appearance of Viable but Nonculturable Bacteria. mBio 12, (2021). https://doi.org/10.1128/mBio.03584-20

  9. Donlan, R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890. https://doi.org/10.3201/eid0809.020063 (2002).

    Google Scholar 

  10. Flores-Mireles, A., Hreha, T. N., Hunstad, D. A. & Pathophysiology Treatment, and prevention of Catheter-Associated urinary tract infection. Top. Spinal Cord Inj Rehabil. 25, 228–240. https://doi.org/10.1310/sci2503-228 (2019).

    Google Scholar 

  11. Peters, B. M., Jabra-Rizk, M. A., O’May, G. A., Costerton, J. W. & Shirtliff, M. E. Polymicrobial interactions: impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213. https://doi.org/10.1128/CMR.00013-11 (2012).

    Google Scholar 

  12. Sadiq, F. A. et al. Trans-kingdom interactions in mixed biofilm communities. FEMS Microbiol. Rev. 46 https://doi.org/10.1093/femsre/fuac024 (2022).

  13. Elias, S. & Banin, E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36, 990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x (2012).

    Google Scholar 

  14. Brogden, K. A., Guthmiller, J. M. & Taylor, C. E. Human polymicrobial infections. Lancet 365, 253–255. https://doi.org/10.1016/S0140-6736(05)17745-9 (2005).

    Google Scholar 

  15. Kilic, T. in Exploring bacterial biofilms (ed InTech)InTech, (2025).

  16. Ugwu, C. et al. Biofilms: structure, resistance mechanism, emerging control strategies, and applications. RCS Pharm. 6 https://doi.org/10.1039/D5PM00094G (2025).

  17. Goller, C. C. & Romeo, T. Environmental influences on biofilm development. Curr. Top. Microbiol. Immunol. 322, 37–66. https://doi.org/10.1007/978-3-540-75418-3_3 (2008).

    Google Scholar 

  18. Biswas, T., Ahmed, M. & Mondal, S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb. Pathog. 195, 106866. https://doi.org/10.1016/j.micpath.2024.106866 (2024).

    Google Scholar 

  19. Joshi, R. V., Gunawan, C. & Mann, R. We are one: multispecies metabolism of a biofilm consortium and their treatment strategies. Front. Microbiol. 12, 635432. https://doi.org/10.3389/fmicb.2021.635432 (2021).

    Google Scholar 

  20. Gordon, V., Bakhtiari, L. & Kovach, K. From molecules to multispecies ecosystems: the roles of structure in bacterial biofilms. Phys. Biol. 16, 041001. https://doi.org/10.1088/1478-3975/ab1384 (2019).

    Google Scholar 

  21. Visnapuu, A., Van der Gucht, M., Wagemans, J. & Lavigne, R. Deconstructing the Phage-Bacterial biofilm interaction as a basis to Establish new antibiofilm strategies. Viruses 14 https://doi.org/10.3390/v14051057 (2022).

  22. Sutherland, I. W., Hughes, K. A., Skillman, L. C. & Tait, K. The interaction of phage and biofilms. FEMS Microbiol. Lett. 232, 1–6. https://doi.org/10.1016/S0378-1097(04)00041-2 (2004).

    Google Scholar 

  23. Chang, C. et al. Bacteriophage-Mediated control of biofilm: A promising new dawn for the future. Front. Microbiol. 13, 825828. https://doi.org/10.3389/fmicb.2022.825828 (2022).

    Google Scholar 

  24. Burkle, M. et al. Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa. ISME J. 19 https://doi.org/10.1093/ismejo/wraf065 (2025).

  25. Wingender, J. & Flemming, H. C. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health. 214, 417–423. https://doi.org/10.1016/j.ijheh.2011.05.009 (2011).

    Google Scholar 

  26. Quignon, F., Sardin, M., Kiene, L. & Schwartzbrod, L. Poliovirus-1 inactivation and interaction with biofilm: a pilot-scale study. Appl. Environ. Microbiol. 63, 978–982. https://doi.org/10.1128/aem.63.3.978-982.1997 (1997).

    Google Scholar 

  27. Ascione, C. et al. Herpes simplex virus-1 entrapped in Candida albicans biofilm displays decreased sensitivity to antivirals and UVA1 laser treatment. Ann. Clin. Microbiol. Antimicrob. 16 https://doi.org/10.1186/s12941-017-0246-5 (2017).

  28. Lacroix-Gueu, P., Briandet, R., Leveque-Fort, S. & Bellon-Fontaine, M. N. Fontaine-Aupart, M. P. In situ measurements of viral particles diffusion inside mucoid biofilms. C R Biol. 328, 1065–1072. https://doi.org/10.1016/j.crvi.2005.09.010 (2005).

    Google Scholar 

  29. Wojciuk, B. et al. Urobiome. Sickness Health Microorganisms. 7 https://doi.org/10.3390/microorganisms7110548 (2019).

  30. Whiteside, S. A., Razvi, H., Dave, S., Reid, G. & Burton, J. P. The Microbiome of the urinary tract–a role beyond infection. Nat. Rev. Urol. 12, 81–90. https://doi.org/10.1038/nrurol.2014.361 (2015).

    Google Scholar 

  31. Bjerre, R. D. et al. Skin dysbiosis in the Microbiome in atopic dermatitis is site-specific and involves bacteria, fungus and virus. BMC Microbiol. 21, 256. https://doi.org/10.1186/s12866-021-02302-2 (2021).

    Google Scholar 

  32. Chen, Y. E. & Tsao, H. The skin microbiome: current perspectives and future challenges. J. Am. Acad. Dermatol. 69, 143–155. https://doi.org/10.1016/j.jaad.2013.01.016 (2013).

    Google Scholar 

  33. Berger, A. K., Yi, H., Kearns, D. B. & Mainou, B. A. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog. 13, e1006768. https://doi.org/10.1371/journal.ppat.1006768 (2017).

    Google Scholar 

  34. Hollenbeck, E. C. et al. Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface. Biophys. J. 107, 2245–2252. https://doi.org/10.1016/j.bpj.2014.10.015 (2014).

    Google Scholar 

  35. Abriat, C. et al. Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids Surf. B Biointerfaces. 188, 110786. https://doi.org/10.1016/j.colsurfb.2020.110786 (2020).

    Google Scholar 

  36. Abriat, C., Virgilio, N., Heuzey, M. C. & Daigle, F. Microbiological and real-time mechanical analysis of Bacillus licheniformis and Pseudomonas fluorescens dual-species biofilm. Microbiol. (Reading). 165, 747–756. https://doi.org/10.1099/mic.0.000819 (2019).

    Google Scholar 

  37. Charlton, S. G. V. et al. Regulating, Measuring, and modeling the viscoelasticity of bacterial biofilms. J. Bacteriol. 201 https://doi.org/10.1128/JB.00101-19 (2019).

  38. Beckwith, J., Ganesan, K., VanEpps, M., Kumar, J. S., Solomon, M. & A. & J. Rheology of Candida albicans fungal biofilms. J. Rheol. 66, 683–697 (2022).

    Google Scholar 

  39. Serra, D. O., Richter, A. M. & Hengge, R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554. https://doi.org/10.1128/JB.00946-13 (2013).

    Google Scholar 

  40. Mobley, H. L. et al. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect. Immun. 58, 1281–1289. https://doi.org/10.1128/iai.58.5.1281-1289.1990 (1990).

    Google Scholar 

  41. Kanai, Y., Kawagishi, T., Matsuura, Y. & Kobayashi, T. In vivo live imaging of oncolytic mammalian orthoreovirus expressing nanoluc luciferase in tumor xenograft mice. J. Virol. 93 https://doi.org/10.1128/JVI.00401-19 (2019).

  42. Hassanbhai, A. M., Phoon, M. C., Chow, V. T. & Ho, B. The association of Helicobacter pylori biofilm with enterovirus 71 prolongs viral viability and survival. Int. J. Mol. Sci. 24 https://doi.org/10.3390/ijms241914500 (2023).

  43. Greaves, J. C. et al. Extended persistence and thermostability of adenovirus 41 in the presence of bacteria. J. Appl. Microbiol. https://doi.org/10.1093/jambio/lxaf221 (2025).

    Google Scholar 

  44. Gagné, M. J., Savard, T. & Brassard, J. Interactions between infectious foodborne viruses and bacterial biofilms formed on different food contact surfaces. Food Environ. Virol. 14, 267–279. https://doi.org/10.1007/s12560-022-09534-z (2022).

    Google Scholar 

  45. Hendricks, M. R. et al. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc. Natl. Acad. Sci. U S A. 113, 1642–1647. https://doi.org/10.1073/pnas.1516979113 (2016).

    Google Scholar 

  46. Kiedrowski, M. R. et al. Staphylococcus aureus Biofilm Growth on Cystic Fibrosis Airway Epithelial Cells Is Enhanced during Respiratory Syncytial Virus Coinfection. mSphere 3, (2018). https://doi.org/10.1128/mSphere.00341-18

  47. Hall, J. et al. Effects of influenza A infection on liberation of bacteria from biofilms and inflammatory response in an in vitro model of chronic rhinosinusitis. Microbiol. (Reading). 171. https://doi.org/10.1099/mic.0.001586 (2025).

  48. Johnson, J. R., Moseley, S. L., Roberts, P. L. & Stamm, W. E. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect. Immun. 56, 405–412. https://doi.org/10.1128/iai.56.2.405-412.1988 (1988).

    Google Scholar 

  49. Johnson, J. R. et al. Distribution and characteristics of Escherichia coli clonal group A. Emerg. Infect. Dis. 11, 141–145. https://doi.org/10.3201/eid1101.040418 (2005).

    Google Scholar 

  50. Manges, A. R., Tabor, H., Tellis, P., Vincent, C. & Tellier, P. P. Endemic and epidemic lineages of Escherichia coli that cause urinary tract infections. Emerg. Infect. Dis. 14, 1575–1583. https://doi.org/10.3201/eid1410.080102 (2008).

    Google Scholar 

  51. Guyomard-Rabenirina, S. et al. Temporal trends and risks factors for antimicrobial resistant Enterobacteriaceae urinary isolates from outpatients in Guadeloupe. BMC Microbiol. 16, 121. https://doi.org/10.1186/s12866-016-0749-9 (2016).

    Google Scholar 

  52. Sandekian, V. & Lemay, G. A single amino acid substitution in the mRNA capping enzyme lambda2 of a mammalian orthoreovirus mutant increases interferon sensitivity. Virology 483, 229–235. https://doi.org/10.1016/j.virol.2015.04.020 (2015).

    Google Scholar 

  53. Danis, C. & Lemay, G. Protein synthesis in different cell lines infected with orthoreovirus serotype 3: Inhibition of host-cell protein synthesis correlates with accelerated viral multiplication and cell killing. Biochem. Cell. Biol. 71, 81–85. https://doi.org/10.1139/o93-012 (1993).

    Google Scholar 

  54. Coombs, K. M. & Mammalian Reoviruses Propagation, Quantification, and storage. Curr. Protoc. 3, e716. https://doi.org/10.1002/cpz1.716 (2023).

    Google Scholar 

  55. Georgi, A., Mottola-Hartshorn, C., Warner, A., Fields, B. & Chen, L. B. Detection of individual fluorescently labeled reovirions in living cells. Proc. Natl. Acad. Sci. U S A. 87, 6579–6583. https://doi.org/10.1073/pnas.87.17.6579 (1990).

    Google Scholar 

  56. Lanoie, D. & Lemay, G. Multiple proteins differing between laboratory stocks of mammalian orthoreoviruses affect both virus sensitivity to interferon and induction of interferon production during infection. Virus Res. 247, 40–46. https://doi.org/10.1016/j.virusres.2018.01.009 (2018).

    Google Scholar 

  57. Desloges, I. et al. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. Microbiologyopen 8, e915. https://doi.org/10.1002/mbo3.915 (2019).

    Google Scholar 

  58. Johnson, J. R. et al. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, Iha and iron (E. coli), among Escherichia coli isolates from patients with Urosepsis. Infect. Immun. 68, 3040–3047. https://doi.org/10.1128/IAI.68.5.3040-3047.2000 (2000).

    Google Scholar 

Download references

Funding

This work was supported by a grant NFRFE-2022-00464 from the New Frontiers in Research Fund and from the Swine and Poultry Infectious Diseases Research Center (CRIPA) funded by Fonds de recherche du Québec - Nature et technologies (FRQNT).

Author information

Authors and Affiliations

  1. Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, Québec, Canada

    Jing Gao, Clémence Abriat, Magdalena Laekas-Hameder, Caroline Quach, Guy Lemay & France Daigle

  2. Faculty of Veterinary Medicine, CRIPA, Swine and Poultry Infectious Diseases Research Center, University of Montreal, St-Hyacinthe, Québec, Canada

    Jing Gao, Charles M. Dozois & France Daigle

  3. Department of Chemical Engineering, CREPEC, Polytechnique Montréal, Montréal, Québec, Canada

    Nick Virgilio & Marie-Claude Heuzey

  4. Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada

    Charles M. Dozois

  5. Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada

    Caroline Quach

Authors
  1. Jing Gao
    View author publications

    Search author on:PubMed Google Scholar

  2. Clémence Abriat
    View author publications

    Search author on:PubMed Google Scholar

  3. Magdalena Laekas-Hameder
    View author publications

    Search author on:PubMed Google Scholar

  4. Nick Virgilio
    View author publications

    Search author on:PubMed Google Scholar

  5. Charles M. Dozois
    View author publications

    Search author on:PubMed Google Scholar

  6. Caroline Quach
    View author publications

    Search author on:PubMed Google Scholar

  7. Marie-Claude Heuzey
    View author publications

    Search author on:PubMed Google Scholar

  8. Guy Lemay
    View author publications

    Search author on:PubMed Google Scholar

  9. France Daigle
    View author publications

    Search author on:PubMed Google Scholar

Contributions

JG performed the bacterial growth, survival and biofilms experiments. CA conducted the rheological analyses. MLH produced the virus stock and luminescent constructs. GL and MCH contributed to data analysis and interpretation. CMD and CQ provided bacterial strains. NV, GL, CQ, MCH and FD secured funding. FD was the major contributor to manuscript writing. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to France Daigle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Abriat, C., Laekas-Hameder, M. et al. Microbiological and rheological dynamics of mixed biofilms formed by bacteria and eukaryotic virus. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39314-9

Download citation

  • Received: 19 November 2025

  • Accepted: 04 February 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39314-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Biofilm
  • Reovirus
  • Bulk rheology
  • Bacteria
  • Escherichia coli
  • Virus-bacteria
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology