Abstract
Fungi belonging to the genus Phaeoacremonium are recognized as cross-kingdom pathogens, that affect both agricultural crops and human health. Here, we report the first comprehensive large-scale chemotaxonomic study based on untargeted MS-based metabolomics of 28 isolates representing 24 Phaeoacremonium species. The chemometric analysis was integrated with in vitro toxicity on human keratinocytes and cucumber (Cucumis sativus) cotyledons, serving as representative models for human and plant hosts, respectively. A targeted LC–MS/MS method validated the production of the naphthoquinones scytalone and isosclerone, previously associated with grapevine trunk diseases, but revealed high interspecific variability in their abundance. Chemometric analysis revealed that cultures of Phaeoacremonium species can be distinguished based on their chemical fingerprints. In total, 206 significant metabolic features were uncovered, spanning several chemical classes including prenol lipids, carboxylic acid derivatives, organooxygen compounds, and macrolides. Nevertheless, 36 metabolites were putatively identified. Under our experimental conditions, scytalone and isosclerone showed negligible cytotoxicity and only mild phytotoxicity. In contrast, several crude extracts gave strong toxic effects, suggesting that activity may depend on complex metabolite interactions rather than single compounds. Notably, extracts from grapevine-associated species displayed stronger phytotoxicity and cytotoxicity compared to those from olive or human sources, highlighting a more diverse or more potent array of bioactive metabolites. Together, these results expand the known chemical space of Phaeoacremonium and underscore the need for targeted in vivo studies to elucidate the ecological roles and potential health implications of their secondary metabolites.
Similar content being viewed by others
Data availability
All Data are available in the manuscript and supplementary material. Raw mass spectrometry data will be made available on request by contacting Dr. Pierluigi Reveglia at [pierluigi.reveglia@unifg.it].
References
Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio https://doi.org/10.1128/mbio.00449-00420 (2020).
Brown, G. D. et al. The pathobiology of human fungal infections. Nat. Rev. Microbiol. 22, 687–704 (2024).
Casalini, G., Giacomelli, A. & Antinori, S. The WHO fungal priority pathogens list: A crucial reappraisal to review the prioritisation. Lancet Microbe 5, 717–724 (2024).
Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from one health and global health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).
Reveglia, P., Paolillo, C. & Corso, G. The significance of fungal specialized metabolites in one health perspectives. Int. J. Mol. Sci. 26, 3120. https://doi.org/10.3390/ijms26073120 (2025).
Woods, M., McAlister, J. A. & Geddes-McAlister, J. A One Health approach to overcoming fungal disease and antifungal resistance. WIREs Mech. Dis. 15, e1610 (2023).
Crous, P. W., Gams, W., Wingfield, M. J. & Van Wyk, P. Phaeoacremonium gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia 88, 786–796 (1996).
Mugnai, L., Graniti, A. & Surico, G. Esca (black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis. 83, 404–418 (1999).
Adalat, K., Gubler, W., Rooney, S. & Whiting, C. Pathogenicity of three species of Phaeoacremonium spp. on grapevine in California. Phytopathol. Mediterr. 2000, 1000–1008 (2000).
Carlucci, A., Lops, F., Cibelli, F. & Raimondo, M. L. Phaeoacremonium species associated with olive wilt and decline in southern Italy. Eur. J. Plant Pathol. 141, 717–729 (2015).
Spies, C., Moyo, P., Halleen, F. & Mostert, L. Phaeoacremonium species diversity on woody hosts in the western cape province of South Africa. Persoonia 40, 26–62 (2018).
Mostert, L. et al. Species of Phaeoacremonium associated with infections in humans and environmental reservoirs in infected woody plants. J. Clin. Microbiol. 43, 1752–1767 (2005).
Mostert, L. et al. Phaeoacremonium tuscanicum and Phaeoacremonium indicum sp. nov. associated with subcutaneous phaeohyphomycosis. Mycology 15, 129–135 (2024).
Liu, X., Lu, X., Zheng, J., Liu, S. & Li, M. Phaeoacremonium iranianum-a new corneal pathogen. BMC Ophthalmol. 25, 1–7 (2025).
Guarro, J. et al. Two cases of subcutaneous infection due to Phaeoacremonium spp. J. Clin. Microbiol. 41, 1332–1336 (2003).
Padhye, A. A. et al. Phaeohyphomycosis caused by Phaeoacremonium inflatipes. J. Clin. Microbiol. 36, 2763–2765 (1998).
Awuchi, C. G. et al. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods 10, 1279. https://doi.org/10.3390/foods10061279 (2021).
Masi, M. et al. Advances on fungal phytotoxins and their role in grapevine trunk diseases. J. Agr. Food Chem. 66, 5948–5958 (2018).
Poynton, E. F. et al. The Natural Products Atlas 3.0: extending the database of microbially derived natural products. Nucl. Ac. Res. 53, D691–D699 (2025).
Chandrasekhar, V. et al. COCONUT 2.0: a comprehensive overhaul and curation of the collection of open natural products database. Nucl. Ac. Res. 53, D634–D643 (2025).
Reátegui, R. F., Wicklow, D. T. & Gloer, J. B. Phaeofurans and sorbicillin analogues from a fungicolous Phaeoacremonium species (NRRL 32148). J. Nat. Prod. 69, 113–117 (2006).
Silva, G. H. et al. Lactone derivatives produced by a Phaeoacremonium sp., an endophytic fungus from Senna spectabilis. J. Nat. Prod. 80, 1674–1678 (2017).
Wolfender, J.-L., Marti, G., Thomas, A. & Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chrom. A 1382, 136–164 (2015).
Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Prot. 15, 1954–1991 (2020).
Hoskisson, P. A. & Seipke, R. F. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. MBio https://doi.org/10.1128/mbio.02642-02620 (2020).
Evidente, A., Bruno, G., Andolfi, A. & Sparapano, L. Two naphthalenone pentakides from liquid cultures of Phaeoacremonium aleophilum, a fungus associated with esca of grapevine. Phytopathol. Mediterr. 39, 1000–1007 (2000).
Evidente, A. et al. Lipophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathol. Mediterr. 49, 74–79 (2010).
Laidani, M., Raimondo, M. L., D’Onghia, A. M. & Carlucci, A. Structure analysis of the ribosomal intergenic spacer region of Phaeoacremonium italicum as a study model. Phytopathol. Mediterr. 60, 549–570 (2021).
Reveglia, P. et al. Untargeted and targeted LC-MS/MS based metabolomics study on In Vitro culture of Phaeoacremonium species. J. Fungi. 8, 55. https://doi.org/10.3390/jof8010055 (2022).
Tsugawa, H. et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Met. 12, 523–526 (2015).
Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucl. Ac. Res. 49(W1), W388–W396 (2021).
Alseekh, S. et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Met. 18, 747–756 (2021).
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).
Hossain, M. N. et al. Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L.(Broccoli). Sci. Rep. 12, 14362 (2022).
Shigeura, H. T. & Gordon, C. N. The biological activity of tenuazonic acid. Biochemistry 2, 1132–1137 (1963).
Xu, J. et al. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorg. Med. Chem. 17, 7362–7367 (2009).
Lehmann, V. K. et al. The Sole antiviral compound in mature fruiting bodies of Omphalotus illudens. J. Nat. Prod. 66, 1257–1258 (2003).
Lee, L. W. et al. Isolation and characterization of sesquiterpenes from Arecophila saccharicola YMJ96022401 with NO production inhibitory activity. Phytochemistry 85, 129–136 (2013).
Hiramatsu, F., Murayama, T., Koseki, T. & Shiono, Y. Strobilols A-D: Four cadinane-type sesquiterpenes from the edible mushroom Strobilurus ohshimae. Phytochem. 68, 1267–1271 (2007).
Zhang, K. et al. Mono-and bis-furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia 92, 79–84 (2014).
Krohn, K. et al. Secondary metabolites isolated from an endophytic Phoma sp. – Absolute configuration of tetrahydropyrenophorol using the solid-State TDDFT CD methodology. Eur. J. Org. Chem. 19, 3206–3211 (2007).
Malmstrøm, J. et al. Bioactive metabolites from a marine-derived strain of the fungus Emericella variecolor. J. Nat. Prod. 65, 364–367 (2002).
Macías, F. A. et al. Bioactive Carotanes from Trichoderma virens. J. Nat. Prod. 63, 1197–1200 (2000).
Clericuzio, M., Han, F., Pan, F., Pang, Z. & Sterner, O. The sesquiterpenoid contents of fruit bodies of Russula delica. Acta Chem. Scand. 52, 1333–1337 (1998).
Lu, K., Zhang, Y., Li, L., Wang, X. & Ding, G. Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS. 860.68). Molecules 18, 10944–10952 (2013).
Carmi, R., Carmeli, S., Levy, E. & Gough, F. J. (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J. Nat. Prod. 57, 1200–1205 (1994).
Liebermann, B., Nussbaum, R.-P. & Günther, W. Bicycloalternarenes produced by the phytopathogenic fungus Alternaria alternata. Phytochemistry 55, 987–992 (2000).
Shang, Z. et al. New PKS-NRPS tetramic acids and pyridinone from an Australian marine-derived fungus. Chaunopycnis sp. Org. Biomol. Chem. 13, 7795–7802 (2015).
Chen, Y. C., Sugiyama, Y. & Hirota, A. Isolation of a new metabolite from biotransformation of daidzein by Aspergillus oryzae. Biosci. Biotechnol. Biochem. 73, 1877–1879 (2009).
Grambow, H. J. & Grambow, G. E. The involvement of epicuticular and cell wall phenols of the host plant in the in vitro development of Puccinia graminis f. sp. tritici.. Z. Pflanzenphysiol. 90, 1–9 (1978).
Jiang, M. Y., Zhang, L., Liu, R., Dong, Z. J. & Liu, J. K. Speciosins A-K, oxygenated cyclohexanoids from the basidiomycete Hexagonia speciosa. J. Nat. Prod. 72, 1405–1409 (2009).
Ayer, W. A. & Craw, P. Metabolites of the fairy ring fungus, Marasmius oreades. Part 2. Norsesquiterpenes, further sesquiterpenes, and agrocybin. Can. J. Chem. 67, 1371–1380 (1989).
Sterner, O., Bergman, R., Franzén, C. & Wickberg, B. New sesquiterpenes in a proposed Russulaceae chemical defense system. Tetr. Lett. 26, 3163–3166 (1985).
Choi, H. G., Kim, J. W., Choi, H., Kang, K. S. & Shim, S. H. New hydroxydecanoic acid derivatives produced by an endophytic yeast Aureobasidium pullulans AJF1 from flowers of Aconitum carmichaeli. Molecules 24, 4051. https://doi.org/10.3390/molecules24224051 (2019).
Hayes, M. A. et al. Novel drimane sesquiterpene esters from Aspergillus ustus var. pseudodeflectus with endothelin receptor binding activity. J. Antibiot. 49, 505–512 (1996).
Iwatsuki, M. et al. Biverlactones A-D, new circumventors of arbekacin resistance in MRSA, produced by Penicillium sp. FKI-4429. Tetrahedron 67, 6644–6648 (2011).
Kuschel, A. et al. The mniopetals, new inhibitors of reverse transcriptases from a Mniopetalum species (basidiomycetes) I. producing organism, fermentation, isolation and biological activities. J. Antibiot. 47, 733–739 (1994).
Petersen, L. M., Hoeck, C., Frisvad, J. C., Gotfredsen, C. H. & Larsen, T. O. Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules 19, 10898–10921 (2014).
Donnelly, D. M., Coveney, D. J., Fukuda, N. & Polonsky, J. New sesquiterpene aryl esters from Armillaria mellea. J. Nat Prod. 49(1), 111–116 (1986).
Engström, K. Sesquiterpenoid spiro compounds from potato tubers infected with Phoma foveata and Fusarium spp.. Phytochemistry 47, 985–990 (1998).
Reading, C. & Cole, M. Clavulanic acid: A beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).
Pontius, A., Krick, A., Kehraus, S., Brun, R. & König, G. M. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 71, 1579–1584 (2008).
Pang, X. et al. Perylenequione derivatives with anticancer activities isolated from the marine sponge-derived fungus, Alternaria sp. SCSIO41014. Mar. Drugs 16, 280. https://doi.org/10.3390/md16080280 (2018).
Sun, L., Li, D. L., Tao, M. H., Dan, F. J. & Zhang, W. M. Two new sesquiterpenes from the marine fungus Eutypella scoparia FS26 from the South China Sea. Helv. Chim. Acta 95, 157–162 (2012).
Liu, L. et al. Brasilamides A-D: Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur. J. Org. Chem. 17, 3302–3306 (2010).
Zhou, G. X. et al. Aspochalasins I, J, and K: three new cytotoxic cytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of the Sonoran Desert. J. Nat. Prod. 67, 328–332 (2004).
López, V. & Les, F. Fungal Quinones: Benzo-, Naphtho-, and Anthraquinones. In Natural Secondary Metabolites: From Nature, Through Science, to Industry 607–626 (Springer, 2023).
Morita, T. & Aoki, H. Isosclerone, a new metabolite of Sclerotinia sclerotiorum (Lib.) De Bary. Agr. Biol. Chem. 38, 1501–1505 (1974).
Abou-Mansour, A., Tabacchi, R. & Couché, E. Do fungal naphthalenones have a role in the development of esca symptoms?. Phytopahol. Mediterr. 43, 1000–1008 (2004).
Rutz, A. et al. Taxonomically informed scoring enhances confidence in natural products annotation. Front. Plant Sci. 10, 1329 (2019).
Gauglitz, J. M. et al. Enhancing untargeted metabolomics using metadata-based source annotation. Nat. Biotechnol. 41, 1656–1661 (2022).
Lee, K.-C. et al. Metabolomics analysis reveals specific novel tetrapeptide and potential anti-inflammatory metabolites in pathogenic Aspergillus species. Int. J Mol. Sci. 16, 13850–13867 (2015).
Liigand, P. et al. Think negative: Finding the best electrospray ionization/MS mode for your analyte. Anal. Chem. 89, 5665–5668 (2017).
Dai, Q., Zhang, F.-L. & Feng, T. Sesquiterpenoids specially produced by fungi: Structures, biological activities, chemical and biosynthesis (2015–2020). J. Fungi 7, 1026. https://doi.org/10.3390/jof7121026 (2021).
Galindo-Solís, J. M. & Fernández, F. J. Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms 10, 339. https://doi.org/10.3390/microorganisms10020339 (2022).
Keller, N. P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).
Abdullah, S., Oh, Y. S., Kwak, M.-K. & Chong, K. Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense. J. Microbiol. 59, 164–174 (2021).
Zhuk, T. S., Skorobohatko, O. S., Albuquerque, W. & Zorn, H. Scope and limitations of biocatalytic carbonyl reduction with white-rot fungi. Bioorg. Chem. 108, 104651 (2021).
Evidente, A. Fungal bioactive macrolides. Nat. Prod. Rep. 39, 1591–1621 (2022).
Caesar, L. K., Nogo, S., Naphen, C. N. & Cech, N. B. Simplify: A mass spectrometry metabolomics approach to identify additives and synergists from complex mixtures. Anal. Chem. 91, 11297–11305 (2019).
Farinella, V. F. et al. OSMAC strategy integrated with molecular networking for accessing griseofulvin derivatives from endophytic fungi of Moquiniastrum polymorphum (Asteraceae). Molecules 26, 7316. https://doi.org/10.3390/molecules26237316 (2021).
Spatafora, J. W. & Bushley, K. E. Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Cur. Op. Plant Biol. 26, 37–44 (2015).
Caesar, L. K. & Cech, N. B. Synergy and antagonism in natural product extracts: When 1+ 1 does not equal 2. Nat. Prod. Rep. 36, 869–888 (2019).
Fioretto, L. et al. The Janus effect of colloidal self-assembly on the biological response of amphiphilic drugs. Pharmacol. Res. 208, 107400. https://doi.org/10.1016/j.phrs.2024.107400 (2024).
Manzo, E. et al. Preparation, supramolecular aggregation and immunological activity of the bona fide vaccine adjuvant sulfavant s.. Mar. Drugs 18, 451. https://doi.org/10.3390/md18090451 (2020).
Kellogg, J. J. et al. Biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod. 79, 376–386 (2016).
Wasilewicz, A. et al. Combining the Strengths of MS and NMR in Biochemometrics: A Case Study on Buddleja officinalis. J. Nat. Prod. 88, 1099–1110 (2025).
Acknowledgements
Published with a contribution from 5 x 1000 IRPEF funds in favour of the University of Foggia, in memory of Gianluca Montel"
Funding
This research was carried out within the Program for the Finanziamento della Ricerca di Ateneo (FRA) 2022 dell’Università degli Studi di Napoli Federico II and within the Agritech National Research Center and received funding from the European Union Next-Generation EU (Piano Nazionale di Ripresa e Resilienza (PNRR)_Missione 4 Componente 2, Investimento 1.4_D.D.1032 17/06/2022, CN00000022). The MS-based research was supported by the H2020 European Research Infrastructures for Marine Bioprospecting (EUREMAP, Grant Agreement No. 101131663). The study contributed to the establishment of the European Federation of National Academic Chemical Collections (EU-FNACC).
Author information
Authors and Affiliations
Contributions
P.R., M.L.R. and An.C. designed the experiments. P.R., M.L.R., C.P., M.M., M.Z., L.C., T.C. and G.R. performed the experiments. P.R., M.L.R. and C.P. analysed the data. Al.C., G.C., A.F. and An.C. provided resources and financial support. P.R., M.L.R., C.P. and M.Z., wrote the original draft of the manuscript. M.M., Al.C., G.C., An.C. and A.F. revised the draft manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Reveglia, P., Raimondo, M.L., Paolillo, C. et al. Diversity of specialized metabolites in Phaeoacremonium species revealed by untargeted metabolomics and bioactivity assays. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39382-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39382-x


