Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Diversity of specialized metabolites in Phaeoacremonium species revealed by untargeted metabolomics and bioactivity assays
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Diversity of specialized metabolites in Phaeoacremonium species revealed by untargeted metabolomics and bioactivity assays

  • Pierluigi Reveglia1,
  • Maria Luisa Raimondo2,
  • Carmela Paolillo1,
  • Marco Masi3,
  • Marcello Ziaco4,
  • Lucia Lecce1,
  • Thomas Conte2,
  • Gaetana Ricciardi2,
  • Alessio Cimmino3,
  • Gaetano Corso1,
  • Angelo Fontana4,5 &
  • …
  • Antonia Carlucci2 

Scientific Reports , Article number:  (2026) Cite this article

  • 862 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Chemical biology
  • Microbiology
  • Plant sciences

Abstract

Fungi belonging to the genus Phaeoacremonium are recognized as cross-kingdom pathogens, that affect both agricultural crops and human health. Here, we report the first comprehensive large-scale chemotaxonomic study based on untargeted MS-based metabolomics of 28 isolates representing 24 Phaeoacremonium species. The chemometric analysis was integrated with in vitro toxicity on human keratinocytes and cucumber (Cucumis sativus) cotyledons, serving as representative models for human and plant hosts, respectively. A targeted LC–MS/MS method validated the production of the naphthoquinones scytalone and isosclerone, previously associated with grapevine trunk diseases, but revealed high interspecific variability in their abundance. Chemometric analysis revealed that cultures of Phaeoacremonium species can be distinguished based on their chemical fingerprints. In total, 206 significant metabolic features were uncovered, spanning several chemical classes including prenol lipids, carboxylic acid derivatives, organooxygen compounds, and macrolides. Nevertheless, 36 metabolites were putatively identified. Under our experimental conditions, scytalone and isosclerone showed negligible cytotoxicity and only mild phytotoxicity. In contrast, several crude extracts gave strong toxic effects, suggesting that activity may depend on complex metabolite interactions rather than single compounds. Notably, extracts from grapevine-associated species displayed stronger phytotoxicity and cytotoxicity compared to those from olive or human sources, highlighting a more diverse or more potent array of bioactive metabolites. Together, these results expand the known chemical space of Phaeoacremonium and underscore the need for targeted in vivo studies to elucidate the ecological roles and potential health implications of their secondary metabolites.

Similar content being viewed by others

Dual-functionality of Nocardiopsis alba B57 in biocontrol and plant growth: a metabolomic approach to agricultural sustainability

Article Open access 18 August 2025

Pathogenicity of monokaryotic and dikaryotic mycelia of Ganoderma boninense revealed via LC–MS-based metabolomics

Article Open access 04 March 2024

Antifungal activity of bio-active cell-free culture extracts and volatile organic compounds (VOCs) synthesised by endophytic fungal isolates of Garden Nasturtium

Article Open access 16 May 2024

Data availability

All Data are available in the manuscript and supplementary material. Raw mass spectrometry data will be made available on request by contacting Dr. Pierluigi Reveglia at [pierluigi.reveglia@unifg.it].

References

  1. Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio https://doi.org/10.1128/mbio.00449-00420 (2020).

    Google Scholar 

  2. Brown, G. D. et al. The pathobiology of human fungal infections. Nat. Rev. Microbiol. 22, 687–704 (2024).

    Google Scholar 

  3. Casalini, G., Giacomelli, A. & Antinori, S. The WHO fungal priority pathogens list: A crucial reappraisal to review the prioritisation. Lancet Microbe 5, 717–724 (2024).

    Google Scholar 

  4. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from one health and global health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    Google Scholar 

  5. Reveglia, P., Paolillo, C. & Corso, G. The significance of fungal specialized metabolites in one health perspectives. Int. J. Mol. Sci. 26, 3120. https://doi.org/10.3390/ijms26073120 (2025).

    Google Scholar 

  6. Woods, M., McAlister, J. A. & Geddes-McAlister, J. A One Health approach to overcoming fungal disease and antifungal resistance. WIREs Mech. Dis. 15, e1610 (2023).

    Google Scholar 

  7. Crous, P. W., Gams, W., Wingfield, M. J. & Van Wyk, P. Phaeoacremonium gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia 88, 786–796 (1996).

    Google Scholar 

  8. Mugnai, L., Graniti, A. & Surico, G. Esca (black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis. 83, 404–418 (1999).

    Google Scholar 

  9. Adalat, K., Gubler, W., Rooney, S. & Whiting, C. Pathogenicity of three species of Phaeoacremonium spp. on grapevine in California. Phytopathol. Mediterr. 2000, 1000–1008 (2000).

    Google Scholar 

  10. Carlucci, A., Lops, F., Cibelli, F. & Raimondo, M. L. Phaeoacremonium species associated with olive wilt and decline in southern Italy. Eur. J. Plant Pathol. 141, 717–729 (2015).

    Google Scholar 

  11. Spies, C., Moyo, P., Halleen, F. & Mostert, L. Phaeoacremonium species diversity on woody hosts in the western cape province of South Africa. Persoonia 40, 26–62 (2018).

    Google Scholar 

  12. Mostert, L. et al. Species of Phaeoacremonium associated with infections in humans and environmental reservoirs in infected woody plants. J. Clin. Microbiol. 43, 1752–1767 (2005).

    Google Scholar 

  13. Mostert, L. et al. Phaeoacremonium tuscanicum and Phaeoacremonium indicum sp. nov. associated with subcutaneous phaeohyphomycosis. Mycology 15, 129–135 (2024).

    Google Scholar 

  14. Liu, X., Lu, X., Zheng, J., Liu, S. & Li, M. Phaeoacremonium iranianum-a new corneal pathogen. BMC Ophthalmol. 25, 1–7 (2025).

    Google Scholar 

  15. Guarro, J. et al. Two cases of subcutaneous infection due to Phaeoacremonium spp. J. Clin. Microbiol. 41, 1332–1336 (2003).

    Google Scholar 

  16. Padhye, A. A. et al. Phaeohyphomycosis caused by Phaeoacremonium inflatipes. J. Clin. Microbiol. 36, 2763–2765 (1998).

    Google Scholar 

  17. Awuchi, C. G. et al. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods 10, 1279. https://doi.org/10.3390/foods10061279 (2021).

    Google Scholar 

  18. Masi, M. et al. Advances on fungal phytotoxins and their role in grapevine trunk diseases. J. Agr. Food Chem. 66, 5948–5958 (2018).

    Google Scholar 

  19. Poynton, E. F. et al. The Natural Products Atlas 3.0: extending the database of microbially derived natural products. Nucl. Ac. Res. 53, D691–D699 (2025).

    Google Scholar 

  20. Chandrasekhar, V. et al. COCONUT 2.0: a comprehensive overhaul and curation of the collection of open natural products database. Nucl. Ac. Res. 53, D634–D643 (2025).

    Google Scholar 

  21. Reátegui, R. F., Wicklow, D. T. & Gloer, J. B. Phaeofurans and sorbicillin analogues from a fungicolous Phaeoacremonium species (NRRL 32148). J. Nat. Prod. 69, 113–117 (2006).

    Google Scholar 

  22. Silva, G. H. et al. Lactone derivatives produced by a Phaeoacremonium sp., an endophytic fungus from Senna spectabilis. J. Nat. Prod. 80, 1674–1678 (2017).

    Google Scholar 

  23. Wolfender, J.-L., Marti, G., Thomas, A. & Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chrom. A 1382, 136–164 (2015).

    Google Scholar 

  24. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Prot. 15, 1954–1991 (2020).

    Google Scholar 

  25. Hoskisson, P. A. & Seipke, R. F. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. MBio https://doi.org/10.1128/mbio.02642-02620 (2020).

    Google Scholar 

  26. Evidente, A., Bruno, G., Andolfi, A. & Sparapano, L. Two naphthalenone pentakides from liquid cultures of Phaeoacremonium aleophilum, a fungus associated with esca of grapevine. Phytopathol. Mediterr. 39, 1000–1007 (2000).

    Google Scholar 

  27. Evidente, A. et al. Lipophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathol. Mediterr. 49, 74–79 (2010).

    Google Scholar 

  28. Laidani, M., Raimondo, M. L., D’Onghia, A. M. & Carlucci, A. Structure analysis of the ribosomal intergenic spacer region of Phaeoacremonium italicum as a study model. Phytopathol. Mediterr. 60, 549–570 (2021).

    Google Scholar 

  29. Reveglia, P. et al. Untargeted and targeted LC-MS/MS based metabolomics study on In Vitro culture of Phaeoacremonium species. J. Fungi. 8, 55. https://doi.org/10.3390/jof8010055 (2022).

    Google Scholar 

  30. Tsugawa, H. et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Met. 12, 523–526 (2015).

    Google Scholar 

  31. Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucl. Ac. Res. 49(W1), W388–W396 (2021).

    Google Scholar 

  32. Alseekh, S. et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Met. 18, 747–756 (2021).

    Google Scholar 

  33. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    Google Scholar 

  34. Hossain, M. N. et al. Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L.(Broccoli). Sci. Rep. 12, 14362 (2022).

    Google Scholar 

  35. Shigeura, H. T. & Gordon, C. N. The biological activity of tenuazonic acid. Biochemistry 2, 1132–1137 (1963).

    Google Scholar 

  36. Xu, J. et al. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorg. Med. Chem. 17, 7362–7367 (2009).

    Google Scholar 

  37. Lehmann, V. K. et al. The Sole antiviral compound in mature fruiting bodies of Omphalotus illudens. J. Nat. Prod. 66, 1257–1258 (2003).

    Google Scholar 

  38. Lee, L. W. et al. Isolation and characterization of sesquiterpenes from Arecophila saccharicola YMJ96022401 with NO production inhibitory activity. Phytochemistry 85, 129–136 (2013).

    Google Scholar 

  39. Hiramatsu, F., Murayama, T., Koseki, T. & Shiono, Y. Strobilols A-D: Four cadinane-type sesquiterpenes from the edible mushroom Strobilurus ohshimae. Phytochem. 68, 1267–1271 (2007).

    Google Scholar 

  40. Zhang, K. et al. Mono-and bis-furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia 92, 79–84 (2014).

    Google Scholar 

  41. Krohn, K. et al. Secondary metabolites isolated from an endophytic Phoma sp. – Absolute configuration of tetrahydropyrenophorol using the solid-State TDDFT CD methodology. Eur. J. Org. Chem. 19, 3206–3211 (2007).

    Google Scholar 

  42. Malmstrøm, J. et al. Bioactive metabolites from a marine-derived strain of the fungus Emericella variecolor. J. Nat. Prod. 65, 364–367 (2002).

    Google Scholar 

  43. Macías, F. A. et al. Bioactive Carotanes from Trichoderma virens. J. Nat. Prod. 63, 1197–1200 (2000).

    Google Scholar 

  44. Clericuzio, M., Han, F., Pan, F., Pang, Z. & Sterner, O. The sesquiterpenoid contents of fruit bodies of Russula delica. Acta Chem. Scand. 52, 1333–1337 (1998).

    Google Scholar 

  45. Lu, K., Zhang, Y., Li, L., Wang, X. & Ding, G. Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS. 860.68). Molecules 18, 10944–10952 (2013).

    Google Scholar 

  46. Carmi, R., Carmeli, S., Levy, E. & Gough, F. J. (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J. Nat. Prod. 57, 1200–1205 (1994).

    Google Scholar 

  47. Liebermann, B., Nussbaum, R.-P. & Günther, W. Bicycloalternarenes produced by the phytopathogenic fungus Alternaria alternata. Phytochemistry 55, 987–992 (2000).

    Google Scholar 

  48. Shang, Z. et al. New PKS-NRPS tetramic acids and pyridinone from an Australian marine-derived fungus. Chaunopycnis sp. Org. Biomol. Chem. 13, 7795–7802 (2015).

    Google Scholar 

  49. Chen, Y. C., Sugiyama, Y. & Hirota, A. Isolation of a new metabolite from biotransformation of daidzein by Aspergillus oryzae. Biosci. Biotechnol. Biochem. 73, 1877–1879 (2009).

    Google Scholar 

  50. Grambow, H. J. & Grambow, G. E. The involvement of epicuticular and cell wall phenols of the host plant in the in vitro development of Puccinia graminis f. sp. tritici.. Z. Pflanzenphysiol. 90, 1–9 (1978).

    Google Scholar 

  51. Jiang, M. Y., Zhang, L., Liu, R., Dong, Z. J. & Liu, J. K. Speciosins A-K, oxygenated cyclohexanoids from the basidiomycete Hexagonia speciosa. J. Nat. Prod. 72, 1405–1409 (2009).

    Google Scholar 

  52. Ayer, W. A. & Craw, P. Metabolites of the fairy ring fungus, Marasmius oreades. Part 2. Norsesquiterpenes, further sesquiterpenes, and agrocybin. Can. J. Chem. 67, 1371–1380 (1989).

    Google Scholar 

  53. Sterner, O., Bergman, R., Franzén, C. & Wickberg, B. New sesquiterpenes in a proposed Russulaceae chemical defense system. Tetr. Lett. 26, 3163–3166 (1985).

    Google Scholar 

  54. Choi, H. G., Kim, J. W., Choi, H., Kang, K. S. & Shim, S. H. New hydroxydecanoic acid derivatives produced by an endophytic yeast Aureobasidium pullulans AJF1 from flowers of Aconitum carmichaeli. Molecules 24, 4051. https://doi.org/10.3390/molecules24224051 (2019).

    Google Scholar 

  55. Hayes, M. A. et al. Novel drimane sesquiterpene esters from Aspergillus ustus var. pseudodeflectus with endothelin receptor binding activity. J. Antibiot. 49, 505–512 (1996).

    Google Scholar 

  56. Iwatsuki, M. et al. Biverlactones A-D, new circumventors of arbekacin resistance in MRSA, produced by Penicillium sp. FKI-4429. Tetrahedron 67, 6644–6648 (2011).

    Google Scholar 

  57. Kuschel, A. et al. The mniopetals, new inhibitors of reverse transcriptases from a Mniopetalum species (basidiomycetes) I. producing organism, fermentation, isolation and biological activities. J. Antibiot. 47, 733–739 (1994).

    Google Scholar 

  58. Petersen, L. M., Hoeck, C., Frisvad, J. C., Gotfredsen, C. H. & Larsen, T. O. Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules 19, 10898–10921 (2014).

    Google Scholar 

  59. Donnelly, D. M., Coveney, D. J., Fukuda, N. & Polonsky, J. New sesquiterpene aryl esters from Armillaria mellea. J. Nat Prod. 49(1), 111–116 (1986).

    Google Scholar 

  60. Engström, K. Sesquiterpenoid spiro compounds from potato tubers infected with Phoma foveata and Fusarium spp.. Phytochemistry 47, 985–990 (1998).

    Google Scholar 

  61. Reading, C. & Cole, M. Clavulanic acid: A beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    Google Scholar 

  62. Pontius, A., Krick, A., Kehraus, S., Brun, R. & König, G. M. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 71, 1579–1584 (2008).

    Google Scholar 

  63. Pang, X. et al. Perylenequione derivatives with anticancer activities isolated from the marine sponge-derived fungus, Alternaria sp. SCSIO41014. Mar. Drugs 16, 280. https://doi.org/10.3390/md16080280 (2018).

    Google Scholar 

  64. Sun, L., Li, D. L., Tao, M. H., Dan, F. J. & Zhang, W. M. Two new sesquiterpenes from the marine fungus Eutypella scoparia FS26 from the South China Sea. Helv. Chim. Acta 95, 157–162 (2012).

    Google Scholar 

  65. Liu, L. et al. Brasilamides A-D: Sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur. J. Org. Chem. 17, 3302–3306 (2010).

    Google Scholar 

  66. Zhou, G. X. et al. Aspochalasins I, J, and K: three new cytotoxic cytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of the Sonoran Desert. J. Nat. Prod. 67, 328–332 (2004).

    Google Scholar 

  67. López, V. & Les, F. Fungal Quinones: Benzo-, Naphtho-, and Anthraquinones. In Natural Secondary Metabolites: From Nature, Through Science, to Industry 607–626 (Springer, 2023).

  68. Morita, T. & Aoki, H. Isosclerone, a new metabolite of Sclerotinia sclerotiorum (Lib.) De Bary. Agr. Biol. Chem. 38, 1501–1505 (1974).

    Google Scholar 

  69. Abou-Mansour, A., Tabacchi, R. & Couché, E. Do fungal naphthalenones have a role in the development of esca symptoms?. Phytopahol. Mediterr. 43, 1000–1008 (2004).

    Google Scholar 

  70. Rutz, A. et al. Taxonomically informed scoring enhances confidence in natural products annotation. Front. Plant Sci. 10, 1329 (2019).

    Google Scholar 

  71. Gauglitz, J. M. et al. Enhancing untargeted metabolomics using metadata-based source annotation. Nat. Biotechnol. 41, 1656–1661 (2022).

    Google Scholar 

  72. Lee, K.-C. et al. Metabolomics analysis reveals specific novel tetrapeptide and potential anti-inflammatory metabolites in pathogenic Aspergillus species. Int. J Mol. Sci. 16, 13850–13867 (2015).

    Google Scholar 

  73. Liigand, P. et al. Think negative: Finding the best electrospray ionization/MS mode for your analyte. Anal. Chem. 89, 5665–5668 (2017).

    Google Scholar 

  74. Dai, Q., Zhang, F.-L. & Feng, T. Sesquiterpenoids specially produced by fungi: Structures, biological activities, chemical and biosynthesis (2015–2020). J. Fungi 7, 1026. https://doi.org/10.3390/jof7121026 (2021).

    Google Scholar 

  75. Galindo-Solís, J. M. & Fernández, F. J. Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms 10, 339. https://doi.org/10.3390/microorganisms10020339 (2022).

    Google Scholar 

  76. Keller, N. P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).

    Google Scholar 

  77. Abdullah, S., Oh, Y. S., Kwak, M.-K. & Chong, K. Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense. J. Microbiol. 59, 164–174 (2021).

    Google Scholar 

  78. Zhuk, T. S., Skorobohatko, O. S., Albuquerque, W. & Zorn, H. Scope and limitations of biocatalytic carbonyl reduction with white-rot fungi. Bioorg. Chem. 108, 104651 (2021).

    Google Scholar 

  79. Evidente, A. Fungal bioactive macrolides. Nat. Prod. Rep. 39, 1591–1621 (2022).

    Google Scholar 

  80. Caesar, L. K., Nogo, S., Naphen, C. N. & Cech, N. B. Simplify: A mass spectrometry metabolomics approach to identify additives and synergists from complex mixtures. Anal. Chem. 91, 11297–11305 (2019).

    Google Scholar 

  81. Farinella, V. F. et al. OSMAC strategy integrated with molecular networking for accessing griseofulvin derivatives from endophytic fungi of Moquiniastrum polymorphum (Asteraceae). Molecules 26, 7316. https://doi.org/10.3390/molecules26237316 (2021).

    Google Scholar 

  82. Spatafora, J. W. & Bushley, K. E. Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Cur. Op. Plant Biol. 26, 37–44 (2015).

    Google Scholar 

  83. Caesar, L. K. & Cech, N. B. Synergy and antagonism in natural product extracts: When 1+ 1 does not equal 2. Nat. Prod. Rep. 36, 869–888 (2019).

    Google Scholar 

  84. Fioretto, L. et al. The Janus effect of colloidal self-assembly on the biological response of amphiphilic drugs. Pharmacol. Res. 208, 107400. https://doi.org/10.1016/j.phrs.2024.107400 (2024).

    Google Scholar 

  85. Manzo, E. et al. Preparation, supramolecular aggregation and immunological activity of the bona fide vaccine adjuvant sulfavant s.. Mar. Drugs 18, 451. https://doi.org/10.3390/md18090451 (2020).

    Google Scholar 

  86. Kellogg, J. J. et al. Biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod. 79, 376–386 (2016).

    Google Scholar 

  87. Wasilewicz, A. et al. Combining the Strengths of MS and NMR in Biochemometrics: A Case Study on Buddleja officinalis. J. Nat. Prod. 88, 1099–1110 (2025).

    Google Scholar 

Download references

Acknowledgements

Published with a contribution from 5 x 1000 IRPEF funds in favour of the University of Foggia, in memory of Gianluca Montel"

Funding

This research was carried out within the Program for the Finanziamento della Ricerca di Ateneo (FRA) 2022 dell’Università degli Studi di Napoli Federico II and within the Agritech National Research Center and received funding from the European Union Next-Generation EU (Piano Nazionale di Ripresa e Resilienza (PNRR)_Missione 4 Componente 2, Investimento 1.4_D.D.1032 17/06/2022, CN00000022). The MS-based research was supported by the H2020 European Research Infrastructures for Marine Bioprospecting (EUREMAP, Grant Agreement No. 101131663). The study contributed to the establishment of the European Federation of National Academic Chemical Collections (EU-FNACC).

Author information

Authors and Affiliations

  1. Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71121, Foggia, Italy

    Pierluigi Reveglia, Carmela Paolillo, Lucia Lecce & Gaetano Corso

  2. Department of Agricultural Sciences, Food, Natural Resources and Engineering, Via Napoli 25, 71122, Foggia, Italy

    Maria Luisa Raimondo, Thomas Conte, Gaetana Ricciardi & Antonia Carlucci

  3. Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126, Napoli, Italy

    Marco Masi & Alessio Cimmino

  4. Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy

    Marcello Ziaco & Angelo Fontana

  5. Department of Biology, University of Napoli Federico II, Via Cupa Nuova Cinthia 21, 80126, Napoli, Italy

    Angelo Fontana

Authors
  1. Pierluigi Reveglia
    View author publications

    Search author on:PubMed Google Scholar

  2. Maria Luisa Raimondo
    View author publications

    Search author on:PubMed Google Scholar

  3. Carmela Paolillo
    View author publications

    Search author on:PubMed Google Scholar

  4. Marco Masi
    View author publications

    Search author on:PubMed Google Scholar

  5. Marcello Ziaco
    View author publications

    Search author on:PubMed Google Scholar

  6. Lucia Lecce
    View author publications

    Search author on:PubMed Google Scholar

  7. Thomas Conte
    View author publications

    Search author on:PubMed Google Scholar

  8. Gaetana Ricciardi
    View author publications

    Search author on:PubMed Google Scholar

  9. Alessio Cimmino
    View author publications

    Search author on:PubMed Google Scholar

  10. Gaetano Corso
    View author publications

    Search author on:PubMed Google Scholar

  11. Angelo Fontana
    View author publications

    Search author on:PubMed Google Scholar

  12. Antonia Carlucci
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.R., M.L.R. and An.C. designed the experiments. P.R., M.L.R., C.P., M.M., M.Z., L.C., T.C. and G.R. performed the experiments. P.R., M.L.R. and C.P. analysed the data. Al.C., G.C., A.F. and An.C. provided resources and financial support. P.R., M.L.R., C.P. and M.Z., wrote the original draft of the manuscript. M.M., Al.C., G.C., An.C. and A.F. revised the draft manuscript.

Corresponding authors

Correspondence to Maria Luisa Raimondo or Antonia Carlucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reveglia, P., Raimondo, M.L., Paolillo, C. et al. Diversity of specialized metabolites in Phaeoacremonium species revealed by untargeted metabolomics and bioactivity assays. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39382-x

Download citation

  • Received: 23 October 2025

  • Accepted: 04 February 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39382-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phaeoacremonium species
  • non-targeted metabolomics
  • one health
  • specialized metabolites
  • I in  in vitro bioassays
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology