Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Spatiotemporal infestation patterns of Aceria litchii Keifer (Acari: Eriophyidae) in a lychee orchard in South Florida
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Spatiotemporal infestation patterns of Aceria litchii Keifer (Acari: Eriophyidae) in a lychee orchard in South Florida

  • Livia M. S. Ataide  ORCID: orcid.org/0000-0003-2159-72671,
  • Simon Riley  ORCID: orcid.org/0000-0002-4833-20262,
  • Jully Dutra  ORCID: orcid.org/0009-0000-9140-63611,
  • Marcello De Giosa  ORCID: orcid.org/0000-0002-7457-001X1,
  • Maria A. Canon  ORCID: orcid.org/0000-0002-0152-98331,
  • Jaqueline F. Della Vechia  ORCID: orcid.org/0000-0001-7648-06271,
  • Aline D. Tassi  ORCID: orcid.org/0000-0002-8622-59771,
  • Paola Villamarin  ORCID: orcid.org/0009-0004-0896-42661,
  • Jonathan H. Crane  ORCID: orcid.org/0000-0002-8309-36221,
  • Daniel Carrillo  ORCID: orcid.org/0000-0003-2291-18441 &
  • …
  • Alexandra M. Revynthi  ORCID: orcid.org/0000-0002-3284-31041 

Scientific Reports , Article number:  (2026) Cite this article

  • 220 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Zoology

Abstract

The lychee erinose mite (LEM), Aceria litchii, is an invasive eriophyoid mite posing notable risks to lychee (Litchi chinensis) production worldwide. First detected in Florida’s Lee County in 2018, LEM has since spread to all lychee producing counties in the state. This study investigated LEM’s dispersal dynamics following its initial detection in a lychee orchard in Homestead, Florida. A total of 190 lychee trees (‘Brewster’, ‘Mauritius’, and ‘Sweetheart’ cultivars) were monitored bi-weekly to detect new infestations and determine the LEM spread within the orchard and in the canopy of each tree. The overall LEM spread across cultivars, the infestation levels per tree, the colonization patterns within each canopy, and the spatiotemporal dispersion dynamics of LEM within the orchard were evaluated. Factors such as wind direction, temperature, cultivar susceptibility, tree height, flushing, flowering, and fruiting intensity were analyzed for their influence on LEM dispersion. LEM infested the first 10% of the trees in 78.6 days, with the following 90% of the infestation occurring exponentially over the next 100 days. LEM infestation level was significantly linked to the nearest affected tree within the orchard, canopy structure and tree height, suggesting a preference for short-distance (ambulatory movement) over long-distance dispersal (wind and phoresy). The progression of LEM within and between trees correlated with rising temperatures, flushing, and flowering intensity, suggests that dispersion through phoresy using pollinators may have also occurred. ‘Brewster’ was less susceptible to LEM infestation compared to ‘Mauritius’ and ‘Sweetheart’. The relevance of these findings is discussed.

Data availability

The datasets generated and analyzed during the current study are available in the figshare repository (https://doi.org/10.6084/m9.figshare.31251415).

References

  1. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576. https://doi.org/10.1038/s41586-021-03405-6 (2021).

    Google Scholar 

  2. Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).

    Google Scholar 

  3. Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions. 16, 401–414. https://doi.org/10.1007/s10530-013-0529-5 (2014).

    Google Scholar 

  4. de Lillo, E., Pozzebon, A., Valenzano, D. & Duso, C. An intimate relationship between eriophyoid mites and their host plants - A review. Front. Plant. Sci. 9, 1786. https://doi.org/10.3389/fpls.2018.01786 (2018).

    Google Scholar 

  5. Chetverikov, P. et al. Gallogenesis induced by eriophyoids (Acariformes: Eriophyoidea). Parazitologiia 49, 365–375. https://doi.org/10.1134/S0013873815080217 (2015).

    Google Scholar 

  6. Revynthi, A. M. et al. Evaluation of abamectin as a potential chemical control for the lychee Erinose mite (Acari: Eriophyidae), a new invasive pest in Florida. Fl Entomol. 105, 1–5. https://doi.org/10.1653/024.105.0101 (2022).

    Google Scholar 

  7. Song, Q. et al. The effect of Aceria Litchii (Keifer) infestation on the surface properties of Litchi leaf hosts. Pest Manag Sci. 80, 2647–2657. https://doi.org/10.1002/ps.7981 (2024).

    Google Scholar 

  8. Navia, D., Ochoa, R., Welbourn, C. & Ferragut, P. Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges. Exp. Appl. Acarol. 51, 225–255. https://doi.org/10.1007/s10493-009-9327-2 (2010).

    Google Scholar 

  9. Lindquist, E. E. & Oldfield, G. N. Chapter 1.5 evolution and phylogeny 1.5.1 evolution of eriophyoid mites in relation to their host plants. In: (eds Lindquist, E. E., Sabelis, M. W. & Bruin, J.) World Crop Pests. Elsevier, 277–300 (1996).

  10. Sabelis, M. W. & Bruin, J. 1.5.3. Evolutionary ecology: life history patterns, food plant choice and dispersal. In: (eds Lindquist, E. E., Sabelis, M. W. & Bruin, J.) World Crop Pests. Elsevier, 329–366 (1996).

  11. Zhao, S. & Amrine, J. W. A new method for studying aerial dispersal behaviour of eriophyoid mites (Acari: Eriophyoidea). Syst. Appl. Acarol. 2, 107–110. https://doi.org/10.11158/saa.2.1.14 (1997).

    Google Scholar 

  12. Majer, A., Laska, A., Kuczyński, L. & Skoracka, A. Hitchhiking or Hang gliding? Dispersal strategies of two cereal-feeding eriophyoid mite species. Exp. Appl. Acarol. 85, 131–146. https://doi.org/10.1007/s10493-021-00661-z (2021).

    Google Scholar 

  13. Lindquist, E. E. & Bruin, J. & Sabelis M. W. Eriophyoid Mites: their biology, Natural Enemies and Control (Elsevier, 1996).

  14. Nishida, T. & Holdaway, F. G. The Erinose mite of lychee. In Hawaii Agriculture Experiment Station; Circular No. 48; University of Hawaii (Honolulu, HI, 1955).

    Google Scholar 

  15. Pinese, B. Erinose mite—A serious Litchi pest. Queensl Agric. J. 107, 79–81 (1981).

    Google Scholar 

  16. Sharma, D. D. Major pests of Litchi in Bihar. Indian Farming. 35, 25–26 (1985).

    Google Scholar 

  17. Papademetriou, M. K. & Dent, F. J. Lychee Production in the Asia-pacific Region (FAO: Bangkok, 2002).

  18. Waite, G. & McAlpine, J. Honey-Bees as Carriers of Lychee Erinose Mite Eriophyes litchii (Acari: Eriophyiidae). Exp. Appl. Acarol. 15, 299–302. https://doi.org/10.1007/BF01246570 (1992).

    Google Scholar 

  19. Carrillo, D. et al. Detection of the lychee Erinose mite, Aceria litchii (Keifer) (Acari: Eriophyidae) in Florida, USA: a comparison with other alien populations. Insects 11, 235. https://doi.org/10.3390/insects11040235 (2020).

    Google Scholar 

  20. Ataide, L. M. S., Della Vechia, J., Ochoa, R., Carrillo, D. & Revynthi, A. Influence of temperature on the population size of Aceria litchii (Acari: Eriophyidae) and the development of its galls. Exp. Appl. Acarol. 92, 13–25. https://doi.org/10.1007/s10493-023-00872-6 (2024).

    Google Scholar 

  21. Haque, M. M. Eriophyoid mites (Acari: Eriophyoidea) from Bangladesh. Orient. Insects. 32, 35–40. https://doi.org/10.1080/00305316.1998.10433765 (1998).

    Google Scholar 

  22. Raga, A., Miniero, J. L. C., Sato, M. E., Moraes, G. J. & Flechtmann, C. H. W. First report of Aceria Litchii (Keifer) (Prostigmata: Eriophyidae) on Litchi trees in Brazil. Rev. Bras. Frutic. 32, 628–629 (2010).

    Google Scholar 

  23. Huang, T. A. Study on morphological features of Erinose mite of Litchi (Eriophyes Litchii Keifer) and an observation on the conditions of its damage. Plant. Prot. Bull. 9, 35–46 (1967).

    Google Scholar 

  24. Keifer, H. H. Eriophyid studies XIII. State Calif. Dep Agric. Bull. 32, 212–222 (1943).

    Google Scholar 

  25. Alam, Z. M. & Wadud, M. A. On the biology of Litchi mite, Aceria Litchii Keifer (Eriophyidae: Acarina) in East Pakistan. Pak J. Sci. 15, 232–240 (1963).

    Google Scholar 

  26. Keifer, H. H. & Knorr, L. C. Eriophyid mites of Thailand. Plant Prot. Serv. Tech. Bull. (Bangkok). 38, 1–36 (1978).

    Google Scholar 

  27. Giordano, T. et al. Invasion of the Erinose mite Aceria litchii (Eriophyoidea, Eriophyidae) in Europe. Int. J. Acarol. 50, 392–394. https://doi.org/10.1080/01647954.2024.2336015 (2024).

    Google Scholar 

  28. Evans, E., Degner, R. & Morgan, K. Six ways to improve the profitability of lychee in South Florida: FE497/FE497, 11/2004. EDIS https://doi.org/10.32473/edis-fe497-2004 (2004).

    Google Scholar 

  29. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).

    Google Scholar 

  30. Chen, H. & Walton, A. Mountain pine beetle dispersal: Spatiotemporal patterns and role in the spread and expansion of the present outbreak. Ecosphere 2, art66. https://doi.org/10.1890/ES10-00172.1 (2011).

    Google Scholar 

  31. Travis, J. M. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540. https://doi.org/10.1111/j.1600-0706.2013.00399.x (2013).

    Google Scholar 

  32. Logan, J. A., White, P., Bentz, B. J. & Powell, J. A. Model analysis of Spatial patterns in mountain pine beetle outbreaks. Theor. Popul. Biol. 53, 236–255 (1998).

    Google Scholar 

  33. Ataide, L. M. S. et al. Volatile characterization of lychee plant tissues (Litchi chinensis) and the effect of key compounds on the behavior of the lychee Erinose mite (Aceria litchii). Biomolecules 13, 933. https://doi.org/10.3390/biom13060933 (2023).

    Google Scholar 

  34. van Baalen, M. & Sabelis, M. W. The Milker-Killer dilemma in spatially structured predator-prey interactions. Oikos 74, 391–400. https://doi.org/10.2307/3545984 (1995).

    Google Scholar 

  35. Pels, B. & Sabelis, M. W. Local dynamics, overexploitation and predator dispersal in an acarine predator-prey system. Oikos 86, 573–583. https://doi.org/10.2307/3546662 (1999).

    Google Scholar 

  36. Revynthi, A. M., Egas, M., Janssen, A. & Sabelis, M. W. Prey exploitation and dispersal strategies vary among natural populations of a predatory mite. Ecol. Evol. 8, 10384–10394. https://doi.org/10.1002/ece3.4446 (2018).

    Google Scholar 

  37. Revynthi, A. M., van Pol, K. E., Janssen, A. & Egas, M. Males cannibalise and females disperse in the predatory mite Phytoseiulus persimilis. Exp. Appl. Acarol. 82, 185–198. https://doi.org/10.1007/s10493-020-00552-9 (2020).

    Google Scholar 

  38. Revynthi, A. M., Verkleij, D., Janssen, A. & Egas, M. Artificial selection for timing of dispersal in predatory mites yields lines that differ in prey exploitation strategies. Ecol. Evol. 12, e8760. https://doi.org/10.1002/ece3.8760 (2022).

    Google Scholar 

  39. Michalska, K., Skoracka, A., Navia, D. & Amrine, J. W. Behavioural studies on eriophyoid mites: an overview. Exp. Appl. Acarol. 51, 31–59. https://doi.org/10.1007/s10493-009-9319-2 (2010).

    Google Scholar 

  40. Waite, G. K. New evidence further incriminates honey-bees as vectors of lychee Erinose mite Aceria litchii (Acari: Eriophyiidae). Exp. Appl. Acarol. 23, 145–147. https://doi.org/10.1023/A:1006002611074 (1999).

    Google Scholar 

  41. Crane, J. Tropical fruit production in florida: Trials, tribulations and opportunities. Proc. Fla. State Hort Soc. 131, ix–xii (2018).

    Google Scholar 

  42. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R–project.org/, (2022).

  43. Goode, K., Rey, K. & ggResidpanel Panels and interactive versions of diagnostic plots using ‘ggplot2’. (2019).

  44. Lenth, R. V. & emmeans Estimated marginal means, aka least-squares means. (2022).

  45. Wickham, H. Advanced r (Chapman and Hall/CRC, 2019).

    Google Scholar 

  46. Bolker, B. M. Ecological models and data in R (Princeton University Press, 2008).

    Google Scholar 

  47. Lyles, R. H., Poindexter, C., Evans, A., Brown, M. & Cooper, C. R. Nonlinear model-based estimates of IC50 for studies involving continuous therapeutic dose–response data. Contemp. Clin. Trials. 29, 878–886 (2008).

    Google Scholar 

  48. Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-PLUS (Springer New York, 2000).

  49. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. &. nlme: Linear and Nonlinear Mixed Effects Models [R package]. CRAN. https://CRAN.R-project.org/package=nlme(2021).

  50. Miguez, F. nlraa: Nonlinear regression for agricultural applications. R package version 1.9.11. https://femiguez.r-universe.dev/nlraa?utm_source=chatgpt.com(2023).

  51. Wood, S. N. Generalized additive models: an introduction with R. chapman and hall/CRC. (2017).

  52. Wikle, C. K., Zammit-Mangion, A. & Cressie, N. Spatio-temporal Statistics with R (Chapman and Hall/CRC, 2019).

  53. Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  54. Crawley, M. J. The R book. John Wiley & Sons, Hoboken, NJ, USA, ISBN 0-470-97392-7 (2012).

  55. Ripley, B. et al. MASS: Support functions and datasets for Venables and ripley’s MASS (Version 7.3–60.0.1) [Computer software] https://cran.r-project.org/web/packages/MASS/index.html(2024).

  56. Guo, J. et al. Trustees of Columbia University, Sklyar, O., Oehlschlaegel-Akiyoshi, J., Maddock, J., Bristow, P., Agrawal, N., Kormanyos, C., & Steve, B. rstan: R Interface to Stan (Version 2.32.6) [Computer software] https://CRAN.R-project.org/package=rstan(2024).

Download references

Acknowledgements

We thank FDACS-DPI for providing us with the permit, Ray Melcon for assistance with phenology data collection, and the TREC field crew for maintaining the lychee orchard.

Funding

This research was funded in part by USDA-NIFA Research Capacity Fund (Hatch) projects (Accession Numbers 7000779 and 7006818), USDA-APHIS project AP21PPQS&T00C075 and FDACS Specialty Crop Block Grant Program (30739). The findings and conclusions in this preliminary publication have not been formally disseminated by the U.S. Department of Agriculture and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA; USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

  1. Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, 33031, USA

    Livia M. S. Ataide, Jully Dutra, Marcello De Giosa, Maria A. Canon, Jaqueline F. Della Vechia, Aline D. Tassi, Paola Villamarin, Jonathan H. Crane, Daniel Carrillo & Alexandra M. Revynthi

  2. IFAS Statistical Consulting Unit, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA

    Simon Riley

Authors
  1. Livia M. S. Ataide
    View author publications

    Search author on:PubMed Google Scholar

  2. Simon Riley
    View author publications

    Search author on:PubMed Google Scholar

  3. Jully Dutra
    View author publications

    Search author on:PubMed Google Scholar

  4. Marcello De Giosa
    View author publications

    Search author on:PubMed Google Scholar

  5. Maria A. Canon
    View author publications

    Search author on:PubMed Google Scholar

  6. Jaqueline F. Della Vechia
    View author publications

    Search author on:PubMed Google Scholar

  7. Aline D. Tassi
    View author publications

    Search author on:PubMed Google Scholar

  8. Paola Villamarin
    View author publications

    Search author on:PubMed Google Scholar

  9. Jonathan H. Crane
    View author publications

    Search author on:PubMed Google Scholar

  10. Daniel Carrillo
    View author publications

    Search author on:PubMed Google Scholar

  11. Alexandra M. Revynthi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Experimental design, material preparation and data collection were performed by Livia M.S. Ataide, Jully Dutra, Marcello De Giosa, Maria A. Canon, Jaqueline F. Della Vechia, Aline D. Tassi, Paola Villamarin, Jonathan H. Crane, Daniel Carrillo, Alexandra M. Revynthi. Analyses of the data were performed by Simon Riley and Livia M.S. Ataide. The first draft of the manuscript was written by Livia M.S. Ataide and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Livia M. S. Ataide or Alexandra M. Revynthi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataide, L.M.S., Riley, S., Dutra, J. et al. Spatiotemporal infestation patterns of Aceria litchii Keifer (Acari: Eriophyidae) in a lychee orchard in South Florida. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39535-y

Download citation

  • Received: 03 November 2025

  • Accepted: 05 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39535-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Biological invasion
  • Lychee erinose mite
  • Mite dispersal
  • Invasive pest
  • Exploitation strategies
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene