Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Application of sewage sludge as a soil biofertilizer enhances crop productivity of alfalfa plants (Medicago sativa L.) and improves soil quality without heavy metal toxicity
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Application of sewage sludge as a soil biofertilizer enhances crop productivity of alfalfa plants (Medicago sativa L.) and improves soil quality without heavy metal toxicity

  • Ebrahem M. Eid1,
  • Mohamed T. Ahmed2,
  • Sulaiman A. Alrumman2,
  • Shaimaa G. Salama3,
  • Kholod A. Khattab3,
  • Pankaj Kumar4,5,
  • Ivan Širić6 &
  • …
  • Nasser Sewelam7 

Scientific Reports , Article number:  (2026) Cite this article

  • 889 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Environmental sciences
  • Plant sciences

Abstract

The rising economic and environmental burdens associated with intensive use of chemical fertilizers, required to compensate for continuous nutrient depletion from agricultural soils, limit sustainable crop production. In parallel, the increasing generation of sewage sludge (SS) poses a major disposal challenge, necessitating the development of safe, cost-effective, and sustainable management strategies. Here, alfalfa plants were grown in soil amended with different sewage sludge (SS) rates (0, 10, 20, 30, and 40 g/kg soil) to evaluate its potential as a biofertilizer for improving soil quality, crop productivity, and nutrient recirculation to soil–plant systems. Our results showed that, among the tested SS doses, the 10 g/kg dose significantly improved the growth parameters of the alfalfa plants. The levels of the tested nine heavy metals (HMs) (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in the alfalfa plants grown on the SS treated soil did not exceed the permissible limits in plant shoots, with an indication that alfalfa plants had the ability to recirculate micronutrients to food chains. Our results showed that a 10 g/kg SS dose was adequate to improve the post-harvest soil properties including organic matter (OM), the contents of the macronutrients; nitrogen (N), phosphorous (P) and potassium (K), and soil water holding capacity (SWHC), with no toxic levels of the tested HMs in the post-harvest SS-amended soil. Overall, the results presented here suggest that soil amendment with SS dose of 10 g/kg is reasonable to enhance plant growth and improve soil quality without considerable hazard effects on agricultural soil or plant health in terms of HMs toxicity.

Data availability

Data will be made available at reasonable request to corresponding author.

References

  1. Gao, N., Kamran, K., Quan, C. & Williams, P. T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 79, 100843. https://doi.org/10.1016/j.pecs.2020.100843 (2020).

    Google Scholar 

  2. Garrido-Baserba, M. et al. Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J. Clean. Prod. 107, 410–419. https://doi.org/10.1016/j.jclepro.2014.11.021 (2015).

    Google Scholar 

  3. Kelessidis, A. & Stasinakis, A. S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manage. 32 (6), 1186–1195. https://doi.org/10.1016/j.wasman.2012.01.012 (2012).

    Google Scholar 

  4. Lishan, X., Tao, L., Yin, W., Zhilong, Y. & Jiangfu, L. Comparative life cycle assessment of sludge management: A case study of Xiamen, China. J. Clean. Prod. 192, 354–363. https://doi.org/10.1016/j.jclepro.2018.04.171 (2018).

    Google Scholar 

  5. Grűbel, K., Machnicka, A., Nowicka, E. & Wacławek, S. Mesophilic-thermophilic fermentation process of waste activated sludge after hybrid disintegration. Ecol. Chem. Eng. S. 21, 125–136. https://doi.org/10.2478/eces-2014-0011 (2014).

    Google Scholar 

  6. Bai, Y. et al. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils. Sci. Total Environ. 578, 47–55. https://doi.org/10.1016/j.scitotenv.2016.06.083 (2017).

    Google Scholar 

  7. Matos, A. T., Diniz, C., Matos, M. P., Borges, A. C. & Pereira, A. A. Degradation rate of anaerobically digested sewage sludge in soil. J. Water Sanitation Hygiene Dev. 8 (1), 17–26. https://doi.org/10.2166/washdev.2017.138 (2017).

    Google Scholar 

  8. Bagheri, M., Bauer, T., Burgman, L. E. & Wetterlund, E. Fifty years of sewage sludge management research: mapping researchers’ motivations and concerns. J. Environ. Manage. 325 (Part A), 116412. https://doi.org/10.1016/j.jenvman.2022.116412 (2023).

    Google Scholar 

  9. Börjesson, G. & Kätterer, T. Correction to: Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agrosyst. 114 (2), 171–172. https://doi.org/10.1007/s10705-019-09988-x (2019).

    Google Scholar 

  10. Eid, E. M. et al. A sustainable food security approach: controlled land application of sewage sludge recirculates nutrients to agricultural soils and enhances crop productivity. Food Energy Secur. 9 (2). https://doi.org/10.1002/fes3.197 (2020).

  11. Munns, R. & Millar, A. H. Seven plant capacities to adapt to abiotic stress. J. Exp. Bot. 74 (15), 4308–4323. https://doi.org/10.1093/jxb/erad179 (2023).

    Google Scholar 

  12. FAO. Inorganic fertilizers 2000–2021. FAOSTAT Analytical Brief Series No. 68. Rome. (2023). https://doi.org/10.4060/cc6823en

  13. Semba, R. D., Askari, S., Gibson, S., Bloem, M. W. & Kraemer, K. The potential impact of climate change on the Micronutrient-Rich food supply. Adv. Nutr. 13 (1). https://doi.org/10.1093/advances/nmab104 (2022).

  14. Grobelak, A. et al. Effects of single sewage sludge application on soil phytoremediation. J. Clean. Prod. 155 (Part 1), 189–197. https://doi.org/10.1016/j.jclepro.2016.10.005 (2017).

    Google Scholar 

  15. Kirchmann, H., Börjesson, G., Kätterer, T. & Cohen, Y. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio 46 (2), 143–154. https://doi.org/10.1007/s13280-016-0816-3 (2016).

    Google Scholar 

  16. Kominko, H., Gorazda, K. & Wzorek, Z. Potentiality of sewage sludge-based organo-mineral fertilizer production in Poland considering nutrient value, heavy metal content and phytotoxicity for rapeseed crops. J. Environ. Manage. 248, 109283. https://doi.org/10.1016/j.jenvman.2019.109283 (2019).

    Google Scholar 

  17. da Silva, W. R. et al. Effects of sewage sludge stabilization processes on soil Fertility, mineral Composition, and grain yield of maize in successive cropping. J. Soil. Sci. Plant. Nutr. 21 (2), 1076–1088. https://doi.org/10.1007/s42729-021-00423-1 (2021).

    Google Scholar 

  18. Kayikcioglu, H. H. & Delibacak, S. Changes in soil health and crops yield in response to the short-term application of sewage sludge to typic Xerofluvent soil in Turkey. Appl. Ecol. Environ. Res. 16 (4), 4893–4917. https://doi.org/10.15666/aeer/1604_48934917 (2018).

    Google Scholar 

  19. Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28 (2), 347–358. https://doi.org/10.1016/j.wasman.2006.12.010 (2008).

    Google Scholar 

  20. Zhou, G., Gu, Y., Yuan, H., Gong, Y. & Wu, Y. Selecting sustainable technologies for disposal of municipal sewage sludge using a multi-criterion decision-making method: A case study from China. Resour. Conserv. Recycl. 161, 104881. https://doi.org/10.1016/j.resconrec.2020.104881 (2020).

    Google Scholar 

  21. Achkir, A. et al. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerg. Contaminants. 9 (1), 100200. https://doi.org/10.1016/j.emcon.2022.100200 (2023).

    Google Scholar 

  22. Ghosh, M. & Singh, S. P. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 3, 1–18. https://doi.org/10.15666/aeer/0301_001018 (2005).

    Google Scholar 

  23. Grobelak, A., Calus-Makowska, K., Jasińska, A., Marek Klimasz & Kowalska, A. Environmental impacts and contaminants management in sewage Sludge-to-Energy and fertilizer technologies: current trends and future directions. Energies 17 (19), 4983. https://doi.org/10.3390/en17194983 (2024).

    Google Scholar 

  24. Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116 (1–2), 61–76. https://doi.org/10.1016/s0016-7061(03)00094-6 (2003).

    Google Scholar 

  25. Wei, L. et al. Development, current state and future trends of sludge management in china: based on exploratory data and CO. Environ. Int. 144, 106093. https://doi.org/10.1016/j.envint.2020.106093 (2020).

    Google Scholar 

  26. Eid, E. M. et al. Sewage sludge application enhances the growth of Corchorus olitorius plants and provides a sustainable practice for nutrient recirculation in agricultural soils. J. Soil. Sci. Plant. Nutr. 20 (1), 149–159. https://doi.org/10.1007/s42729-019-00113-z (2019).

    Google Scholar 

  27. Koutroubas, S. D., Antoniadis, V., Fotiadis, S. & Damalas, C. A. Growth, grain yield and nitrogen use efficiency of mediterranean wheat in soils amended with municipal sewage sludge. Nutr. Cycl. Agrosyst. 100 (2), 227–243. https://doi.org/10.1007/s10705-014-9641-x (2014).

    Google Scholar 

  28. Muter, O., Dubova, L., Kassien, O., Cakane, J. & Alsiņa, I. Application of the sewage sludge in agriculture: soil Fertility, Technoeconomic, and Life-Cycle assessment. IntechOpen EBooks. https://doi.org/10.5772/intechopen.104264 (2022).

    Google Scholar 

  29. Sharma, P. & Sharma, A. Heavy Metals in Ground Water Affect the Human Health Global Challenge. In Computational Intelligence and Applications for Pandemics and Healthcare; IGI Global: Hershey, PA, USA. Advances in Medical Technologies and Clinical Practice Book Series, 139–158. (2022). https://doi.org/10.4018/978-1-7998-9831-3.ch007

  30. Singh, R. P. & Agrawal, M. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: metal uptake by plant. Ecol. Eng. 36 (7), 969–972. https://doi.org/10.1016/j.ecoleng.2010.03.008 (2010).

    Google Scholar 

  31. Belhaj, D. et al. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ. Sci. Pollut. Res. Int. 23 (20), 20168–20177. https://doi.org/10.1007/s11356-016-7193-0 (2016).

    Google Scholar 

  32. Han, W. et al. Resource reclamation of municipal sewage sludge based on local conditions: A case study in Xi’an, China. J. Clean. Prod. 316, 128189. https://doi.org/10.1016/j.jclepro.2021.128189 (2021).

    Google Scholar 

  33. Shaltout, K. H. et al. Evaluation of uptake of eight metals by Sorghum bicolor grown in arable soil combined with sewage sludge based on prediction models. Environ. Monit. Assess. 193 (8), 510. https://doi.org/10.1007/s10661-021-09320-7 (2021).

    Google Scholar 

  34. Wang, J. et al. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sci. Total Environ. 877, 162772–162772. https://doi.org/10.1016/j.scitotenv.2023.162772 (2023).

    Google Scholar 

  35. Kacprzak, M. et al. Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39–46. https://doi.org/10.1016/j.envres.2017.03.010 (2017).

    Google Scholar 

  36. Kasim, W. A., Abokassem, E. M., Ragab, G. A. & Sewelam, N. A. Alleviation of lead stress toxicity in vigna unguiculata by Salicylic acid. Egypt. J. Experimental Biology. 10 (1), 37–49 (2014).

    Google Scholar 

  37. Raheem, A. et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 337, 616–641. https://doi.org/10.1016/j.cej.2017.12.149 (2018).

    Google Scholar 

  38. Sewalem, N., Elfeky, S. & El- Shintinawy, F. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant. Journal of Stress Physiology & Biochemistry 10(1), 122–134. (2014). https://doaj.org/article/e460c9b844f04cdab6f8fb44cccce675

  39. Angon, P. B. et al. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 10 (7), e28357–e28357. https://doi.org/10.1016/j.heliyon.2024.e28357 (2024).

    Google Scholar 

  40. Sharma, B., Sarkar, A., Singh, P. & Singh, R. P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manage. 64, 117–132. https://doi.org/10.1016/j.wasman.2017.03.002 (2017).

    Google Scholar 

  41. Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum. 44 (1), 40–51. https://doi.org/10.1111/1477-8947.12187 (2020).

    Google Scholar 

  42. Aloo, S. O., Ofosu, F. K. & Oh, D. H. Effect of germination on alfalfa and buckwheat: phytochemical profiling by UHPLC-ESI-QTOF-MS/MS, bioactive Compounds, and In-Vitro studies of their diabetes and Obesity-Related functions. Antioxidants 10 (10), 1613. https://doi.org/10.3390/antiox10101613 (2021).

    Google Scholar 

  43. Eruygur, N., Dincel, B., Dincel, K., Ucar, E. & N. G., & Comparative study of in vitro antioxidant, acetylcholinesterase and butyrylcholinesterase activity of alfalfa (Medicago sativa L.) collected during different growth stages. Open. Chem. 16 (1), 963–967. https://doi.org/10.1515/chem-2018-0088 (2018).

    Google Scholar 

  44. Hadidi, M., Orellana Palacios, J. C., McClements, D. J., Mahfouzi, M. & Moreno, A. Alfalfa as a sustainable source of plant-based food proteins. Trends Food Sci. Technol. 135, 202–214. https://doi.org/10.1016/j.tifs.2023.03.023 (2023).

    Google Scholar 

  45. Radford, P. J. Growth analysis Formulae - Their use and abuse. Crop Sci. 7 (3), 171–175. https://doi.org/10.2135/cropsci1967.0011183x000700030001x (1967).

    Google Scholar 

  46. Allen, S. Chemical Analysis of Ecological Materials (Blackwell Scientific, 1989).

  47. Klute, A. Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods 2nd edn (American Society of Agronomy, 1986).

  48. Głąb, T. et al. Fertilization effects of compost produced from maize, sewage sludge and Biochar on soil water retention and chemical properties. Soil Tillage. Res. 197, 104493. https://doi.org/10.1016/j.still.2019.104493 (2020).

    Google Scholar 

  49. Kabata-Pendias, A. Trace Elements in Soils and Plants Fourth edition (CRC, 2010). https://doi.org/10.1201/b10158520 pages.

  50. He, Z. L., Yang, X. E. & Stoffella, P. J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med Biol. 19 (2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010 (2005).

    Google Scholar 

  51. Eid, E. M. et al. Monitored sewage sludge application improves soil Quality, enhances plant Growth, and provides evidence for metal remediation by Sorghum bicolor L. J. Soil. Sci. Plant. Nutr. 21 (3), 2325–2338. https://doi.org/10.1007/s42729-021-00524-x (2021a).

    Google Scholar 

  52. Eid, E. et al. Sewage sludge enhances tomato growth and improves fruit-yield quality by restoring soil fertility. Plant. Soil. Environ. 67 (9), 514–523. https://doi.org/10.17221/205/2021-pse (2021b).

    Google Scholar 

  53. Koutroubas, S. D., Antoniadis, V., Damalas, C. A. & Fotiadis, S. Sewage sludge influences nitrogen Uptake, Translocation, and use efficiency in sunflower. J. Soil. Sci. Plant. Nutr. 20, 1912–1922. https://doi.org/10.1007/s42729-020-00262-6 (2020).

    Google Scholar 

  54. Ekmekçi, Y., Tanyolaç, D. & Ayhan, B. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol. Plant. 31 (2), 319–330. https://doi.org/10.1007/s11738-008-0238-3 (2008).

    Google Scholar 

  55. Zhao, F. J., Tang, Z., Song, J. J., Huang, X. Y. & Wang, P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant. 15 (1). https://doi.org/10.1016/j.molp.2021.09.016 (2021).

  56. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. Zinc in plants. New Phytol. 173, 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x (2007).

    Google Scholar 

  57. Palit, S., Sharma, A. & Talukder, G. Effects of Cobalt on plants. Bot. Rev. 60, 149–181. https://doi.org/10.1007/BF02856575 (1994).

    Google Scholar 

  58. Alvarenga, P. et al. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manage. 40, 44–52. https://doi.org/10.1016/j.wasman.2015.01.027 (2015).

    Google Scholar 

  59. Jakubus, M., Marko Černe, I., Palčić, I., Pasković, Ban, S. G. & Ban, D. The application of sewage Sludge-Derived compost or Biochar as a Nature-Based solution (NBS) for healthier soil. Sustainability 17 (4), 1630–1630. https://doi.org/10.3390/su17041630 (2025).

    Google Scholar 

  60. Piccolo, A. & Drosos, M. The essential role of humified organic matter in preserving soil health. Chem. Biol. Technol. Agric. 12 (1). https://doi.org/10.1186/s40538-025-00730-0 (2025).

  61. Parkpain, P., Sirisukhodom, S. & Carbonell-Barrachina, A. A. Heavy metals and nutrients chemistry in sewage sludge amended Thai soils. J. Environ. Sci. Health Part. A. 33 (4), 573–597. https://doi.org/10.1080/10934529809376749 (1998).

    Google Scholar 

  62. Singh, R. P., Singh, P., Ibrahim, M. H. & Hashim, R. Land application of sewage sludge: physicochemical and microbial response. Rev. Environ. Contam. Toxicol. 214, 41–61. https://doi.org/10.1007/978-1-4614-0668-6_3 (2011).

    Google Scholar 

  63. Carbonell, G., de Imperial, R. M., Torrijos, M., Delgado, M. & Rodriguez, J. A. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea Mays L). Chemosphere 85 (10), 1614–1623. https://doi.org/10.1016/j.chemosphere.2011.08.025 (2011).

    Google Scholar 

  64. Shan, Y. et al. Sewage sludge application enhances soil properties and rice growth in a salt-affected mudflat soil. Sci. Rep. 11 (1), 1402. https://doi.org/10.1038/s41598-020-80358-2 (2021).

    Google Scholar 

  65. Carmo, D. L., de do, Lima, L. B. & Silva, C. A. Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Revista Brasileira De Ciência Do Solo. 40 (0). https://doi.org/10.1590/18069657rbcs20150152 (2016).

  66. Bernstein, N., Gorelick, J., Zerahia, R. & Koch, S. Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10 https://doi.org/10.3389/fpls.2019.00736 (2019).

  67. Jiaying, M. et al. Functions of Nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Sci. 29 (2), 166–178. https://doi.org/10.1016/j.rsci.2022.01.005 (2022).

    Google Scholar 

  68. Arrobas, M. et al. Nitrogen-Rich sewage sludge mineralized Quickly, improving lettuce nutrition and Yield, with reduced risk of heavy metal contamination of soil and plant tissues. Agronomy 14 (5), 924–924. https://doi.org/10.3390/agronomy14050924 (2024).

    Google Scholar 

  69. Oueriemmi, H. et al. Evaluation of composted organic wastes and farmyard manure for improving fertility of poor sandy soils in arid regions. Agriculture 11 (5), 415. https://doi.org/10.3390/agriculture11050415 (2021).

    Google Scholar 

  70. Kidd, P. S., Domínguez-Rodríguez, M. J., Díez, J. & Monterroso, C. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66 (8), 1458–1467. https://doi.org/10.1016/j.chemosphere.2006.09.007 (2007).

    Google Scholar 

  71. Hasanuzzaman, M. et al. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8 (3), 31. https://doi.org/10.3390/agronomy8030031 (2018).

    Google Scholar 

  72. Mahdy, A. M., Elkhatib, E. A. & Fathi, N. O. Cadmium, copper, nickel, and lead availability in biosolids-amended alkaline soils. Aust. J. Basic Appl. Sci. 1, 354–363 (2007).

    Google Scholar 

  73. Shevyakova, N. I., Il’ina, E. N. & Kuznetsov, V. V. Polyamines increase plant potential for phytoremediation of soils polluted with heavy metals. Doklady Biol. Sci. 423, 457–460. https://doi.org/10.1134/S0012496608060264 (2008).

    Google Scholar 

  74. Sainju, U. M., Liptzin, D. & Jabro, J. D. Relating soil physical properties to other soil properties and crop yields. Sci. Rep. 12 (1), 1–11. https://doi.org/10.1038/s41598-022-26619-8 (2022).

    Google Scholar 

  75. Blanco-Canqui, H. & Benjamin, J. G. Impacts of soil organic carbon on soil physical behavior. Quantifying Model. Soil. Struct. Dynamics. 11–40. https://doi.org/10.2134/advagricsystmodel3.c2 (2015).

  76. Chen, Z. et al. Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum Alfredii hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. Sci. Total Environ. 932, 173029–173029. https://doi.org/10.1016/j.scitotenv.2024.173029 (2024).

    Google Scholar 

  77. Liu, X., Zhao, Y. & Hao, F. Development of nitrogen efficiency screening system in alfalfa (Medicago sativa L.) and analysis of alfalfa nitrogen efficiency types. PeerJ 10, e13343. https://doi.org/10.7717/peerj.13343 (2022).

    Google Scholar 

  78. Margesin, R. & Schinner, F. Manual for Soil Analysis - Monitoring and Assessing Soil Bioremediation 47–95 (Springer, 2005). https://doi.org/10.1007/3-540-28904-6_2

  79. Nelson, J. T. et al. A Simple, Affordable, Do-It-Yourself method for measuring soil maximum water holding capacity. Commun. Soil Sci. Plant Anal. 55 (8), 1190–1204. https://doi.org/10.1080/00103624.2023.2296988 (2023).

    Google Scholar 

Download references

Acknowledgements

NA.

Funding

This research was funded by the Deanship of Research and Graduate Studies at King Khalid University through the Large Research Project under grant number RGP2/96/46.

Author information

Authors and Affiliations

  1. Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt

    Ebrahem M. Eid

  2. Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia

    Mohamed T. Ahmed & Sulaiman A. Alrumman

  3. Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22516, Egypt

    Shaimaa G. Salama & Kholod A. Khattab

  4. Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India

    Pankaj Kumar

  5. School of Environmental Studies, Maa Shakumbhari University, Saharanpur, 247120, India

    Pankaj Kumar

  6. University of Zagreb Faculty of Agriculture, Svetosimunska 25, Zagreb, 10000, Croatia

    Ivan Širić

  7. Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt

    Nasser Sewelam

Authors
  1. Ebrahem M. Eid
    View author publications

    Search author on:PubMed Google Scholar

  2. Mohamed T. Ahmed
    View author publications

    Search author on:PubMed Google Scholar

  3. Sulaiman A. Alrumman
    View author publications

    Search author on:PubMed Google Scholar

  4. Shaimaa G. Salama
    View author publications

    Search author on:PubMed Google Scholar

  5. Kholod A. Khattab
    View author publications

    Search author on:PubMed Google Scholar

  6. Pankaj Kumar
    View author publications

    Search author on:PubMed Google Scholar

  7. Ivan Širić
    View author publications

    Search author on:PubMed Google Scholar

  8. Nasser Sewelam
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Ebrahem M. Eid: Conceptualization, software, validation, formal analysis, investigation, data curation, writing—original draft preparation, writing—review and editing, visualization, and supervision; Mohamed T. Ahmed: Methodology, resources, writing—review and editing, and formal analysis; Sulaiman A. Alrumman: Methodology, formal analysis, writing—review and editing, and visualization; Shaimaa G. Salama: Writing—review and editing; Kholod A. Khattab: Writing—review and editing; Pankaj Kumar: software, validation, Writing—review and editing; Ivan Širić: Writing—review and editing; Nasser Sewelam: Validation, investigation, data curation, writing—original draft preparation, writing—review and editing, and visualization.

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, E.M., Ahmed, M.T., Alrumman, S.A. et al. Application of sewage sludge as a soil biofertilizer enhances crop productivity of alfalfa plants (Medicago sativa L.) and improves soil quality without heavy metal toxicity. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39561-w

Download citation

  • Received: 16 December 2025

  • Accepted: 05 February 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39561-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Biofertilizers
  • Heavy metals
  • Nutrients
  • Sewage sludge
  • Sustainable agriculture
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene