Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
From fish to invertebrates: multi-marker eDNA metabarcoding for monitoring wetland biodiversity and non-indigenous species in Macao SAR China
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

From fish to invertebrates: multi-marker eDNA metabarcoding for monitoring wetland biodiversity and non-indigenous species in Macao SAR China

  • M. K. Leong1 na1,
  • I. H. Lau1 na1,
  • F. O. Costa2,3,
  • M. P. Cabezas2,3 &
  • …
  • K. A. Tagulao1 

Scientific Reports , Article number:  (2026) Cite this article

  • 444 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Zoology

Abstract

Urban wetlands provide crucial ecosystem services but are increasingly threatened by urbanization. In Macao, a densely populated city on the Pearl River Estuary, roughly half of the historical wetland habitats have been lost, yet they remain vital for the East Asian–Australasian Flyway. To assess biodiversity in the remaining wetlands, this study applied environmental DNA (eDNA) metabarcoding targeting 12S rRNA, 18S rRNA, and COI genes with a primary focus on fish and invertebrates. The results revealed 85 fish, 298 invertebrate and 9 non-fish chordate species, including 18 non-indigenous fish and several invertebrates. The communities were highly site-specific, showing clear distinctions between inland and coastal wetlands, but non-indigenous fish were widespread, reflecting strong anthropogenic pressure. Moreover, while not observed in fish, coastal invertebrate communities showed strong seasonal turnover. Nevertheless, 56% of COI-derived ESVs could only be assigned to higher taxonomic levels, suggesting substantial diversity remains uncharacterized due to incomplete reference databases. Collectively, these findings demonstrate how fragmentation and seasonal dynamics shape biodiversity differently across taxonomic groups. This study establishes the first comprehensive eDNA baseline for Macao’s wetlands, highlighting the need to expand local reference databases and integrate molecular techniques with traditional surveys to improve monitoring and conservation of urban ecosystems.

Similar content being viewed by others

Assessing a megadiverse but poorly known community of fishes in a tropical mangrove estuary through environmental DNA (eDNA) metabarcoding

Article Open access 29 September 2022

eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters

Article Open access 31 March 2021

Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord

Article Open access 02 May 2024

Data availability

Raw sequencing data generated in this study have been deposited in the NCBI Sequence Read Archive (SRA) under BioProject **PRJNA1344804 (** https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1344804). Supplementary Information provides full lists of detected taxa, including taxonomic identification, primers, and the sites where each taxon was detected, as well as tables summarizing raw reads, merged reads, and reads retained after quality filtering for each library.

References

  1. Alikhani, S., Nummi, P. & Ojala, A. Urban wetlands: A review on ecological and cultural values. Water 13 https://doi.org/10.3390/w13223301 (2021).

  2. Bhowmik, S. Ecological and economic importance of wetlands and their vulnerability: A review. Research Anthology Ecosyst. Conserv. Preserving Biodiversity, 11–27 (2022).

  3. Datri, L. A., Lopez, M., Buchter, S., Pazcel, E. M. & Gandini, M. Functional urban wetlands in dysfunctional cities. Curr. Landsc. Ecol. Rep. 9, 21–30 (2024).

    Google Scholar 

  4. Kumar, S. et al. Constructed wetland management in urban catchments for mitigating floods. Stoch. Env. Res. Risk Assess. 35, 2105–2124 (2021).

    Google Scholar 

  5. McInnes, R. J. Recognising wetland ecosystem services within urban case studies. Mar. Freshw. Res. 65, 575–588 (2013).

    Google Scholar 

  6. Mitsch, W. J., Zhang, L., Griffiths, L. N. & Bays, J. Contrasting two urban wetland parks created for improving habitat and downstream water quality. Ecol. Eng. 192, 106976 (2023).

    Google Scholar 

  7. Rome, M. et al. Application of floating wetlands for the improvement of degraded urban waters: findings from three multi-year pilot-scale installations. Sci. Total Environ. 877, 162669 (2023).

    Google Scholar 

  8. Kulik, M. et al. Half a century of wetland degradation: the present state and trends of changes in Western Polesie-Long-term wetland degradation. Global Ecol. Conserv. 56, e03324 (2024).

    Google Scholar 

  9. Robertson, H. et al. Global Wetland Outlook. https://doi.org/10.69556/GWO-2025-eng (2025)

  10. Ballut-Dajud, G. A. et al. Factors affecting wetland loss: A review. Land 11, 434 (2022).

    Google Scholar 

  11. Huang, X., Wu, Z., Zhang, Q. & Cao, Z. How to measure wetland destruction and risk: wetland damage index. Ecol. Ind. 141, 109126 (2022).

    Google Scholar 

  12. Chu, N. et al. Hydrodynamical transport structure and lagrangian connectivity of circulations in the Pearl river estuary. Front. Mar. Sci. 9, 996551 (2022).

    Google Scholar 

  13. Wang, H. et al. Mangrove loss and gain in a densely populated urban estuary: lessons from the Guangdong-Hong Kong-Macao greater Bay area. Front. Mar. Sci. 8, 693450 (2021).

    Google Scholar 

  14. Yang, X. et al. Restoration of urban waterbird diversity: A case study of the construction of a waterbird ecological corridor in the Guangdong-Hong Kong-Macao greater Bay Area, Southern China. Global Ecol. Conserv. 39, e02277 (2022).

    Google Scholar 

  15. Yi, G., Fenzhen, S., Xiaoyu, S., Zhenshan, X. & Yawen, H. 429–432 (IEEE).

  16. Nanwei, L. Geografia natural de Macau. (1992).

  17. Quelhas, P. et al. Geology of the Macao special administrative region (China). J. Maps. 17, 257–267 (2021).

    Google Scholar 

  18. Carvalho, J. Taipa Coloane: Macau Da Outra Banda (Câmara Municipal das Ilhas, 1998).

  19. Statistics and Census Service (DSEC). Demographic Statistics for the First Three Quarters of 2025 (Macao SAR Government, 2025).

  20. Macau & Land Public Works and Transport Bureau (DSSOPT). Macao Urban Master Plan (2020–2040) (Macao SAR Government, 2021).

  21. Kaller, M. D., Kelso, W. E. & Trexler, J. C. In Wetland Techniques: Volume 2: Organisms 197–263 (Springer, 2013).

  22. Coleman, R., Raadik, T., Pettigrove, V. & Hoffmann, A. Taking advantage of adaptations when managing threatened species within variable environments: The case of the Dwarf galaxias, Galaxiella pusilla (Teleostei, Galaxiidae). Mar. Freshw. Res. 68, 175–186 (2016).

    Google Scholar 

  23. King, A. J., George, A., Buckle, D. J., Novak, P. A. & Fulton, C. J. Efficacy of remote underwater video cameras for monitoring tropical wetland fishes. Hydrobiologia 807, 145–164 (2018).

    Google Scholar 

  24. Fediajevaite, J., Priestley, V., Arnold, R. & Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 11, 4803–4815 (2021).

    Google Scholar 

  25. Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. & Gough, K. C. The detection of aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).

    Google Scholar 

  26. Martin, M. E. et al. Conservation of rare and cryptic species: Challenges of uncertainty and opportunities for progress. Conserv. Sci. Pract. 4, e12809 (2022).

    Google Scholar 

  27. Lindenmayer, D. et al. A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. J. Environ. Manage. 262, 110312 (2020).

    Google Scholar 

  28. Banerjee, P. et al. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AoB Plants. 14, plac031 (2022).

    Google Scholar 

  29. Larson, E. R. et al. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18, 194–202 (2020).

    Google Scholar 

  30. Yoon, H. J., Seo, J. H., Shin, S. H., Abedlhamid, M. A. & Pack, S. P. Bioinformation and monitoring technology for environmental DNA analysis: A review. Biosensors 15, 494 (2025).

    Google Scholar 

  31. Zhang, S., Zhao, J. & Yao, M. Urban landscape-level biodiversity assessments of aquatic and terrestrial vertebrates by environmental DNA metabarcoding. J. Environ. Manage. 340, 117971 (2023).

    Google Scholar 

  32. Liu, Y. S. et al. Investigation of fish diversity in lake Taihu based on eDNA metabarcoding. (2023). https://doi.org/10.7524/AJE.1673-5897.20230717002

  33. Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    Google Scholar 

  34. Nhat, N. H., Saito, M., Hamada, M. & Onodera, S. -i. Evaluation of the effects of environmental factors on seasonal variations in fish diversity on a coastal Island in Western Japan. Environ. (Basel Switzerland). 11, 60. https://doi.org/10.3390/environments11030060 (2024).

    Google Scholar 

  35. Stoeck, T. et al. Multiple marker parallel Tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x (2010).

    Google Scholar 

  36. Environmental Protection Bureau (DSPA). Zonas Ecológicas do Cotai. (2024).

  37. Nelson, S. M., Roline, R. A., Thullen, J. S., Sartoris, J. J. & Boutwell, J. E. Invertebrate assemblages and trace element bioaccumulation associated with constructed wetlands. Wetlands 20, 406–415 (2000).

    Google Scholar 

  38. Kumari, D. Paul Dilip Kumar. Assessing the role of bioindicators in freshwater ecosystem. J. Interdisciplinary Cycle Res. 12, 17 (2020).

    Google Scholar 

  39. Ferreira, A. O. et al. Multi-marker DNA metabarcoding for precise species identification in ichthyoplankton samples. Sci. Rep. 14, 19772–19714. https://doi.org/10.1038/s41598-024-69963-7 (2024).

    Google Scholar 

  40. Leite, B. R., Vieira, P. E., Troncoso, J. S. & Costa, F. O. Comparing species detection success between molecular markers in DNA metabarcoding of coastal macroinvertebrates. Metabarcoding Metagenomics. 5, 249–260. https://doi.org/10.3897/mbmg.5.70063 (2021).

    Google Scholar 

  41. Zhang, S., Zhao, J., Yao, M. & Gilbert, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625. https://doi.org/10.1111/2041-210X.13485 (2020).

    Google Scholar 

  42. Fais, M. et al. Small-scale Spatial variation of meiofaunal communities in Lima estuary (NW Portugal) assessed through metabarcoding. Estuar. Coast. Shelf Sci. 238, 106683. https://doi.org/10.1016/j.ecss.2020.106683 (2020).

    Google Scholar 

  43. Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Royal Soc. B: Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).

    Google Scholar 

  44. Lavrador, A. S. et al. Comprehensive DNA metabarcoding-based detection of non-indigenous invertebrates in recreational marinas through a multi-substrate approach. Mar. Environ. Res. 200, 106660 (2024).

    Google Scholar 

  45. van der Reis, A. L., Beckley, L. E., Olivar, M. P. & Jeffs, A. G. Nanopore short-read sequencing: A quick, cost‐effective and accurate method for DNA metabarcoding. Environ. DNA (Hoboken N J). 5, 282–296. https://doi.org/10.1002/edn3.374 (2023).

    Google Scholar 

  46. Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Soc. Open. Sci. 2, 150088 (2015).

    Google Scholar 

  47. I.A.M. Macau Municipal Affairs Bureau, https://www.iam.gov.mo/e/default/).

  48. Perkin, J. S., Gido, K. B. & Nilsson, C. Fragmentation alters stream fish community structure in dendritic ecological networks. Ecol. Appl. 22, 2176–2187. https://doi.org/10.1890/12-0318.1 (2012).

    Google Scholar 

  49. SchÜCkel, U. & Kroncke, I. Temporal changes in intertidal macrofauna communities over eight decades: A result of eutrophication and climate change. Estuar. Coast. Shelf Sci. 117, 210–218. https://doi.org/10.1016/j.ecss.2012.11.008 (2013).

    Google Scholar 

  50. Beisel, J. N., Usseglio-Polatera, P. & Moreteau, J. C. The Spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia 422–423, 163–171. https://doi.org/10.1023/A:1017094606335 (2000).

    Google Scholar 

  51. Whitfield, A. K. & Elliott, M. Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. J. Fish Biol. 61, 229–250. https://doi.org/10.1006/jfbi.2002.2079 (2002).

    Google Scholar 

  52. Lai, H. et al. Seasonal variation in the functional structure of demersal fish communities and response to the environmental changes in the Pearl river Estuary, China. Ecol. Ind. 144, 109525. https://doi.org/10.1016/j.ecolind.2022.109525 (2022).

    Google Scholar 

  53. Li, Z. et al. A comparison of seasonal composition and structure of fish community between environmental DNA technology and gillnetting in the Pearl river Estuary, China. Ecol. Ind. 147, 109915. https://doi.org/10.1016/j.ecolind.2023.109915 (2023).

    Google Scholar 

  54. Bernery, C. et al. Freshwater fish invasions: A comprehensive review. Annu. Rev. Ecol. Evol. Syst. 53, 427–456. https://doi.org/10.1146/annurev-ecolsys-032522-015551 (2022).

    Google Scholar 

  55. Environmental Protection Bureau (DSPA). Survey of the Ecological Environment of Macao. (2020).

  56. Shuai, F. et al. Nile tilapia (Oreochromis niloticus) invasions disrupt the functional patterns of fish community in a large subtropical river in China. Fish. Manag. Ecol. 26, 578–589. https://doi.org/10.1111/fme.12368 (2019).

    Google Scholar 

  57. Tsang, A. H. F. & Dudgeon, D. Do exotic poeciliids affect the distribution or trophic niche of native fishes? Absence of evidence from Hong Kong streams. Freshw. Biol. 66, 1751–1764. https://doi.org/10.1111/fwb.13789 (2021).

    Google Scholar 

  58. Tsang, A. H. F. & Dudgeon, D. Can the functional response to prey predict invasiveness? A comparison of native fishes and alien poeciliids in Hong Kong. Biol. Invasions. 23, 2143–2154. https://doi.org/10.1007/s10530-021-02493-9 (2021).

    Google Scholar 

  59. Tsang, A. H. F. & Dudgeon, D. A comparison of the ecological effects of two invasive poeciliids and two native fishes: a mesocosm approach. Biol. Invasions. 23, 1517–1532. https://doi.org/10.1007/s10530-020-02455-7 (2021).

    Google Scholar 

  60. Zhou, L., Wang, G., Kuang, T., Guo, D. & Li, G. Fish assemblage in the Pearl river estuary: Spatial-seasonal variation, environmental influence and trends over the past three decades. J. Appl. Ichthyol. 35, 884–895. https://doi.org/10.1111/jai.13912 (2019).

    Google Scholar 

  61. Qiao, L. et al. Spatial distribution and introduction pathways of non-native freshwater fish species in China. Water Biology Secur. 3, 100276. https://doi.org/10.1016/j.watbs.2024.100276 (2024).

    Google Scholar 

  62. Chan, J. et al. The non-native freshwater fishes of Hong kong: diversity, distributions, and origins. Raffles Bull. Zool. 71, 128–168. https://doi.org/10.26107/RBZ-2023-0012 (2023).

    Google Scholar 

  63. Yang, R., Cao, R., Gong, X. & Feng, J. Large shifts of niche and range in the golden Apple snail (Pomacea canaliculata), an aquatic invasive species. Ecosphere 14, e4391 (2023).

    Google Scholar 

  64. Xiao, R., Liu, D., Xu, Y., Li, T. & Ma, J. A review of the effects of limnoperna Fortunei (Dunker, 1857): invasion on hydraulic structures and ecosystems and their control. Sustainability 17, 2240 (2025).

    Google Scholar 

  65. Kennedy, V. S. The invasive dark falsemussel mytilopsis leucophaeata (Bivalvia: Dreissenidae): a literature review. Aquat. Ecol. 45, 163–183 (2011).

    Google Scholar 

  66. Roots, B. J. et al. Hypersalinity drives dramatic shifts in the invertebrate fauna of estuaries. Anim. (Basel). 15, 1629. https://doi.org/10.3390/ani15111629 (2025).

    Google Scholar 

  67. Peng, L. K. Characteristics of Water Quality in Macau Waters. (n.d.).

  68. Ye, S. et al. Community characteristics and influencing factors of macrobenthos in Pearl river estuary. South. China Fisheries Sci. 19, 39–47. https://doi.org/10.12131/20230048 (2023).

    Google Scholar 

  69. Li, K. Z., Yin, J. Q., Huang, L. M. & Tan, Y. H. Spatial and Temporal variations of mesozooplankton in the Pearl river estuary, China. Estuar. Coast. Shelf Sci. 67, 543–552. https://doi.org/10.1016/j.ecss.2005.12.008 (2006).

    Google Scholar 

  70. Li, Z. et al. Seasonal changes in metacommunity assembly mechanisms of benthic macroinvertebrates in a subtropical river basin. Sci. Total Environ. 729, 139046. https://doi.org/10.1016/j.scitotenv.2020.139046 (2020).

    Google Scholar 

  71. Zhang, F. et al. Taxonomic and functional diversity of macroinvertebrate community along the elevation gradient and in different seasons in the upper Jinsha river (Qinghai-Tibet Plateau). Global Ecol. Conserv. 62, e03703. https://doi.org/10.1016/j.gecco.2025.e03703 (2025).

    Google Scholar 

  72. Lind, P. R., Robson, B. J. & Mitchell, B. D. The influence of reduced flow during a drought on patterns of variation in macroinvertebrate assemblages across a Spatial hierarchy in two lowland rivers. Freshw. Biol. 51, 2282–2295. https://doi.org/10.1111/j.1365-2427.2006.01650.x (2006).

    Google Scholar 

  73. Stitz, L., Fabbro, L. & Kinnear, S. Response of macroinvertebrate communities to seasonal hydrologic changes in three sub-tropical Australian streams. Environ. Monit. Assess. 189, 254–254. https://doi.org/10.1007/s10661-017-5957-8 (2017).

    Google Scholar 

  74. Attrill, M. J. & Thomas, R. M. Long-term distribution patterns of mobile estuarine invertebrates (Ctenophora, Cnidaria, crustacea: Decapoda) in relation to hydrological parameters. Mar. Ecol. Progress Ser. (Halstenbek). 143, 25–36. https://doi.org/10.3354/meps143025 (1996).

    Google Scholar 

  75. Abramova, E. & Tuschling, K. A 12-year study of the seasonal and interannual dynamics of mesozooplankton in the Laptev sea: significance of salinity regime and life cycle patterns. Glob. Planet Change. 48, 141–164. https://doi.org/10.1016/j.gloplacha.2004.12.010 (2005).

    Google Scholar 

  76. Uye, S., Shimazu, T., Yamamuro, M., Ishitobi, Y. & Kamiya, H. Geographical and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in lake Shinji–Ohashi River–Lake Nakaumi brackish-water system, Japan. J. Mar. Syst. 26, 193–207. https://doi.org/10.1016/S0924-7963(00)00054-3 (2000).

    Google Scholar 

  77. Steyaert, M. et al. Responses of intertidal nematodes to short-term anoxic events. J. Exp. Mar. Biol. Ecol. 345, 175–184. https://doi.org/10.1016/j.jembe.2007.03.001 (2007).

    Google Scholar 

  78. Fu, S., Cai, L., Cao, J. & Chen, X. Nematode responses to the invasion of exotic spartina in Mangrove wetlands in Southern China. Estuaries Coasts. 40, 1437–1449. https://doi.org/10.1007/s12237-017-0208-3 (2017).

    Google Scholar 

  79. Alves, A. S., Caetano, A., Costa, J. L., Costa, M. J. & Marques, J. C. Estuarine intertidal meiofauna and nematode communities as indicator of ecosystem’s recovery following mitigation measures. Ecol. Ind. 54, 184–196. https://doi.org/10.1016/j.ecolind.2015.02.013 (2015).

    Google Scholar 

  80. Lu, G., Pan, K., Zhu, A., Dong, Y. & Wang, W. X. Spatial-temporal variations and trends predication of trace metals in oysters from the Pearl river estuary of China during 2011–2018. Environ. Pollution (1987). 264, 114812. https://doi.org/10.1016/j.envpol.2020.114812 (2020).

    Google Scholar 

  81. Simaika, J. P. et al. Towards harmonized standards for freshwater biodiversity monitoring and biological assessment using benthic macroinvertebrates. Sci. Total Environ. 918, 170360. https://doi.org/10.1016/j.scitotenv.2024.170360 (2024).

    Google Scholar 

  82. Bogdan, K. G. & Gilbert, J. J. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and bosmina: clearance rates, selectivities, and contributions to community grazing [Keratella cochlearis, Polyarthra vulgaris, Polyarthra dolichoptera, bosmina longirostris]. Limnol. Oceanogr. 27, 918–934. https://doi.org/10.4319/lo.1982.27.5.0918 (1982).

    Google Scholar 

  83. Botterell, Z. L., Lindeque, P. K., Thompson, R. C. & Beaumont, N. J. An assessment of the ecosystem services of marine zooplankton and the key threats to their provision. Ecosyst. Serv. 63, 101542 (2023).

    Google Scholar 

  84. Heininger, P., Höss, S., Claus, E., Pelzer, J. & Traunspurger, W. Nematode communities in contaminated river sediments. Environ. Pollut. 146, 64–76 (2007).

    Google Scholar 

  85. Majdi, N. & Traunspurger, W. Free-living nematodes in the freshwater food web: A review. J. Nematology. 47, 28 (2015).

    Google Scholar 

  86. Aston, R. J. Tubificids and water quality: A review. Environ. Pollut. 5, 1–10. https://doi.org/10.1016/0013-9327(73)90050-5 (1973).

    Google Scholar 

  87. Hong, A. H. et al. Examining molluscs as bioindicators of shrimp aquaculture effluent contamination in a Southeast Asian Mangrove. Ecol. Ind. 115, 106365 (2020).

    Google Scholar 

  88. Giarratano, E., Trovant, B. & Hernández-Moresino, R. D. Asian clam Corbicula fluminea as potential biomonitor of microplastics and metal(oid)s in a Patagonian river. Mar. Environ. Res. 198, 106548. https://doi.org/10.1016/j.marenvres.2024.106548 (2024).

    Google Scholar 

  89. Iacaruso, N. J., Reves, O. P., Merkelz, S. J., Waldrep, C. L. & Davis, M. A. A systematic review evaluating the performance of eDNA methods relative to conventional methods for biodiversity monitoring. Ecography (Copenhagen). https://doi.org/10.1002/ecog.07952 (2025).

    Google Scholar 

  90. Antich, A. et al. Marine biomonitoring with eDNA: can metabarcoding of water samples cut it as a tool for surveying benthic communities? Mol. Ecol. 30, 3175–3188. https://doi.org/10.1111/mec.15641 (2021).

    Google Scholar 

  91. Raupach, M. J. et al. The application of DNA barcodes for the identification of marine crustaceans from the North sea and adjacent regions. PloS One. 10, e0139421. https://doi.org/10.1371/journal.pone.0139421 (2015).

    Google Scholar 

  92. Atienza, S. et al. DNA metabarcoding of Deep-Sea sediment communities using COI: community Assessment, Spatio-Temporal patterns and comparison with 18S rDNA. Divers. (Basel). 12, 123. https://doi.org/10.3390/d12040123 (2020).

    Google Scholar 

  93. Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PloS One. 14, e0220953. https://doi.org/10.1371/journal.pone.0220953 (2019).

    Google Scholar 

  94. Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 30, 3270–3288. https://doi.org/10.1111/mec.15592 (2021).

    Google Scholar 

  95. dos Santos, R. A. & Blabolil, P. Comparison of bioinformatic pipelines for eDNA metabarcoding data analysis of fish populations. Fishes 10, 214. https://doi.org/10.3390/fishes10050214 (2025).

    Google Scholar 

  96. Alberdi, A., Aizpurua, O., Gilbert, M. T. P., Bohmann, K. & Mahon, A. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147. https://doi.org/10.1111/2041-210X.12849 (2018).

    Google Scholar 

  97. Chang, H., Ye, T., Xie, Z. & Liu, X. Application of environmental DNA in aquatic ecosystem monitoring: Opportunities, challenges and prospects. Water (Basel). 17, 661. https://doi.org/10.3390/w17050661 (2025).

    Google Scholar 

  98. ArcGIS. ArcGIS - System Software, < (2025). https://www.arcgis.com/index.html

  99. Minamoto, T. et al. An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environ. DNA. 3, 8–13 (2021).

    Google Scholar 

  100. eDNA Methods Standardization Committee. Environmental DNA Sampling and Experiment Manual Version 2.1. (2019).

  101. Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    Google Scholar 

  102. Lobo, J. et al. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol. 13, 34 (2013).

    Google Scholar 

  103. Buchner, D., Macher, T. H. & Leese, F. APSCALE: Advanced pipeline for simple yet comprehensive analyses of DNA metabarcoding data. Bioinformatics 38, 4817–4819 (2022).

    Google Scholar 

  104. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  105. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Google Scholar 

  106. Leray, M., Knowlton, N. & Machida, R. J. MIDORI2: A collection of quality controlled, preformatted, and regularly updated reference databases for taxonomic assignment of eukaryotic mitochondrial sequences. Environ. Dna. 4, 894–907 (2022).

    Google Scholar 

  107. Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Google Scholar 

  108. Iwasaki, W. et al. MitoFish and mitoannotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol. Biol. Evol. 30, 2531–2540 (2013).

    Google Scholar 

  109. Buchner, D. & Leese, F. BOLDigger–a python package to identify and organise sequences with the barcode of life data systems. Metabarcoding Metagenomics. 4, e53535 (2020).

    Google Scholar 

  110. Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188–1111. https://doi.org/10.1038/s41467-017-01312-x (2017).

    Google Scholar 

  111. Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated – reducing sequence-to‐sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303. https://doi.org/10.1111/1755-0998.12402 (2015).

    Google Scholar 

  112. Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).

    Google Scholar 

  113. Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926. https://doi.org/10.1002/ece3.3192 (2017).

    Google Scholar 

  114. R. A Language and Environment for Statistical Computing v. v4.5.0 (Vienna, 2025).

  115. GraphPad Prism version 9 for MacGraphPad Software, San Diego, California, USA, (2020).

  116. Adobe Illustrator v. 29.8. San Jose, California, USA, (2025).

  117. Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574. https://doi.org/10.1890/12-2010.1 (2013).

    Google Scholar 

Download references

Acknowledgements

We acknowledge members of the ME-BARCODE team from the University of Minho, particularly Tadeu Fontes, Jorge Moutinho, and André Ferreira, for their valuable ideas and support during the data analysis process as well as Darwi Htoo Saw and Steve Si Tou for the assistance during the field sampling.

Funding

This research was funded by the Drop by Drop Project through the WASH Foundation and Las Vegas Sands, grant number WASH/2023.

Author information

Author notes
  1. M. K. Leong and I. H. Lau contributed equally to this work.

Authors and Affiliations

  1. Institute of Science and Environment, University of Saint Joseph (USJ), Macao, SAR, China

    M. K. Leong, I. H. Lau & K. A. Tagulao

  2. Department of Biology, Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, University of Minho, Braga, Portugal

    F. O. Costa & M. P. Cabezas

  3. Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal

    F. O. Costa & M. P. Cabezas

Authors
  1. M. K. Leong
    View author publications

    Search author on:PubMed Google Scholar

  2. I. H. Lau
    View author publications

    Search author on:PubMed Google Scholar

  3. F. O. Costa
    View author publications

    Search author on:PubMed Google Scholar

  4. M. P. Cabezas
    View author publications

    Search author on:PubMed Google Scholar

  5. K. A. Tagulao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.K. Leong¹ prepared the Introduction and Methods sections, formatted the manuscript, conducted sampling and experiments, and assisted in figure production. I.H. Lau¹ was responsible for data collection and analysis, prepared the Results and Discussion sections, performed sampling and experiments, and produced figures. F.O. Costa² provided advice on the metabarcoding approach and data analysis techniques and contributed to reviewing the manuscript. M.P. Cabezas² offered guidance on metabarcoding data analysis methodologies and participated in reviewing and refining the manuscript. K. Tagulao¹ conceptualized the project, designed the sampling/experiments, secured funding, coordinated research activities, and contributed to reviewing and finalizing the manuscript.

Corresponding author

Correspondence to K. A. Tagulao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, M.K., Lau, I.H., Costa, F.O. et al. From fish to invertebrates: multi-marker eDNA metabarcoding for monitoring wetland biodiversity and non-indigenous species in Macao SAR China. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39652-8

Download citation

  • Received: 16 December 2025

  • Accepted: 06 February 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39652-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • eDNA metabarcoding
  • COI-12S-18S markers
  • Molecular biodiversity assessment
  • Wetland biodiversity
  • Freshwater and estuarine wetlands
  • Macao
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene