Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Isotopic evidence for human adaptation to island environments in the Canary Islands during the Amazigh period
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Isotopic evidence for human adaptation to island environments in the Canary Islands during the Amazigh period

  • Elías Sánchez-Cañadillas1,
  • Aarón Morquecho Izquier1,
  • Colin Smith2,
  • Eneko Iriarte2 &
  • …
  • Jonathan Santana1 

Scientific Reports , Article number:  (2026) Cite this article

  • 600 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Archaeology
  • Climate-change adaptation
  • Population dynamics

Abstract

This study investigates subsistence strategies and ecological adaptations among the Indigenous populations of the Canary Islands from the 1st to the 15th centuries CE, employing stable carbon (δ13C) and nitrogen (δ15N) isotope analyses of human bone collagen. A total of 457 isotopic data points from all seven main islands of the archipelago were analyzed, supported by a robust chronological framework based on 155 radiocarbon dates and Bayesian modeling. Results reveal distinct dietary patterns shaped by ecological conditions: populations on the western islands (La Palma, La Gomera, and El Hierro) exhibited a diet predominantly reliant on C3 plants and wild terrestrial resources, with evidence for intensified wild plant utilization during periods of agricultural stress. In contrast, central islands (Tenerife and Gran Canaria) showed narrower isotopic variance, indicating stable agricultural production complemented by varying degrees of marine resource exploitation. The desert-like eastern islands (Lanzarote and Fuerteventura) demonstrated isotopic signatures indicative of diets heavily influenced by high-trophic-level marine foods, likely complicated by aridity and marine aerosol effects. Additionally, temporal analysis indicates isotopic values correspond closely with climatic fluctuations, notably warmer and drier conditions during the Roman Warm Period and Medieval Climate Anomaly, and cooler, moister conditions during the Little Ice Age. These environmental shifts appear to have driven subtle dietary adaptations over time. Overall, the findings highlight the Indigenous populations’ resilience and adaptive capacity in response to insular ecological variability and climatic change, underscoring the importance of tailored isotopic baselines for accurate dietary reconstructions in diverse oceanic island settings.

Data availability

All the study data and codes used are included in the article and/or supplementary material. Data and code needed to carry out these analyses are in an OSF repository at https://github.com/JonSantana/Isotopic-evidence-of-human-adaptations-to-diverse-island-environments.

References

  1. Kintigh, K. W. et al. Grand challenges for archaeology. Am. Antiq. 79, 5–24. https://doi.org/10.7183/0002-7316.79.1.5 (2014).

    Google Scholar 

  2. Santana, J. et al. Climate, biogeography, and human resilience in the demographic history of the Canary Islands during the Amazigh period. Sci. Rep. 15, 19485. https://doi.org/10.1038/s41598-025-04302-y (2025).

    Google Scholar 

  3. Fernández-Palacios, J. M. & Whittaker, R. J. The canaries: an important biogeographical meeting place. J. Biogeogr. 35, 379–387. https://doi.org/10.1111/j.1365-2699.2008.01890.x (2008).

    Google Scholar 

  4. Morales, J., Rodríguez, A., Alberto, V., Machado, C. & Criado, C. The impact of human activities on the natural environment of the Canary Islands (Spain) during the pre-Hispanic stage (3rd–2nd century BC to 15th century AD): an overview. Environ. Archaeol. 14, 27–36. https://doi.org/10.1179/174963109X400655 (2009).

    Google Scholar 

  5. De Nascimento, L. et al. Human impact and ecological changes during prehistoric settlement on the Canary Islands. Q. Sci. Rev. 239, 106332. https://doi.org/10.1016/j.quascirev.2020.106332 (2020).

    Google Scholar 

  6. Santana, J. et al. The chronology of the human colonization of the Canary Islands. Proc. Natl. Acad. Sci. U S A. 121, e2302924121. https://doi.org/10.1073/pnas.2302924121 (2024).

    Google Scholar 

  7. Morales, J. et al. Agriculture and crop dispersal in the Western periphery of the old world: the Amazigh/Berber settling of the Canary Islands (ca. 2nd–15th centuries ce). Veg. History Archaeobotany. https://doi.org/10.1007/s00334-023-00920-6 (2023).

    Google Scholar 

  8. del Arco Aguilar M. del C. Economía y sociedad En Las culturas prehistóricas. in Historia De Canarias 61–80, Prensa Ibérica S.A. (1992).

  9. Pais Pais, F. J. La economía de producción En La prehistoria de La Isla de La palma: La ganadería. Estudios prehispánicos. 3, 537 (1996).

    Google Scholar 

  10. Morales, J., Rodríguez, A. & Henríquez, P. Agricultura y recolección vegetal en la arqueología prehispánica de las Islas Canarias (siglos III-XV d.C.) La contribución de los estudios carpológicos. in Miscelánea en homenaje a Lydia Zapata Peña: ( 189–218 (Universidad del País Vasco, 2017). (1965).

  11. Velasco-Vázquez, J. et al. Bone histology of prehistoric inhabitants of the Canary islands: comparison between El Hierro and Gran Canaria. Am. J. Phys. Anthropol. 110, 201–213. https://doi.org/10.1002/(SICI)1096-8644(199910)110:2%3C201::AID-AJPA6%3E3.0.CO;2-N (1999).

    Google Scholar 

  12. Arnay-de-la-Rosa, M. et al. Paleodietary analysis of the prehistoric population of the Canary Islands inferred from stable isotopes (carbon, nitrogen and hydrogen) in bone collagen. J. Archaeol. Sci. 37, 1490–1501. https://doi.org/10.1016/j.jas.2010.01.009 (2010).

    Google Scholar 

  13. Delgado Darias, T. La historia En Los dientes: Una aproximación a La prehistoria de Gran Canaria desde La antropología dental. Ed Cabildo De Gran Canaria Las Palmas De Gran Canaria (2009).

  14. Morales Padrón, F. Historia Del Descubrimiento Y Conquista De América (Biblioteca Hernán Malo González, 1990).

  15. Gonzalez-Reimers, E., Velasco-Vázquez, J., Arnay-de-la-Rosa, M. & Machado-Calvo, M. Quantitative computerized tomography for the diagnosis of osteopenia in prehistoric skeletal remains. J. Archaeol. Sci. 34, 554–561. https://doi.org/10.1016/j.jas.2006.06.004 (2007).

    Google Scholar 

  16. Morquecho Izquier, A., García González, R., Santana Cabrera, J. & Stress Life History, and linear enamel hypoplasia: insights from the Indigenous populations of the Canary Islands. Am. J. Biol. Anthropol. 188, e70116. https://doi.org/10.1002/ajpa.70116 (2025).

    Google Scholar 

  17. Santana-Cabrera, J. Reflexionando sobre La Mujer aborigen de Gran canaria: integrando arqueología y etnohistoria desde Una perspectiva de género. Complutum 29, 207–224 (2018).

    Google Scholar 

  18. Morales, J. et al. The archaeobotany of Long-term crop storage in Northwest African communal granaries: A case study from Pre-Hispanic Gran Canaria (cal AD 1000–1500). Veg. History Archaeobotany. 21, 789–804. https://doi.org/10.1007/s00334-014-0444-4 (2014).

    Google Scholar 

  19. Henríquez-Valido, P., Morales, J., Vidal-Matutano, P. & Santana-Cabrera, J. Rodríguez Rodríguez, A. Arqueoentomología y arqueobotánica de Los espacios de Almacenamiento a Largo plazo: El Granero de Risco Pintado, Temisas (Gran Canaria). Trab Prehist. 76, 120–137. https://doi.org/10.3989/tp.2019.12229 (2019).

    Google Scholar 

  20. Hernández-Marrero, J. C. et al. An approach to prehistoric shepherding in La gomera (Canary Islands) through the study of domestic spaces. Quatern. Int. 414, 337–349. https://doi.org/10.1016/j.quaint.2015.11.092 (2016).

    Google Scholar 

  21. Fernández-Palacios, E. et al. Distinguishing between sheep and goat in archaeological fumiers through faecal lipid biomarkers: the case of Belmaco cave (Canary Islands, Spain). Quatern. Int. 683–684, 135–144. https://doi.org/10.1016/j.quaint.2023.08.012 (2024).

    Google Scholar 

  22. Meco, J. Los ovicaprinos paleocanarios de Villaverde. Diseño paleontológico y Marco paleoambiental. Estudios Prehispánicos 2, (1992).

  23. Galván Santos, B. et al. Poblamiento prehistórico En La Costa de Buenavista Del Norte (Tenerife). Investigaciones Arqueológicas 9–258 (1999).

  24. Alberto-Barroso, V. Los animales en el ritual. A propósito de un ara de sacrificio en El Julan (La Frontera, El Hierro). in El Julan 125–145 (Dirección General de Patrimonio Histórico, (2002).

  25. Alberto-Barroso, V. De carne y hueso: La ganadería En época prehispánica. El Pajar: Cuaderno De Etnografía Canaria. 18, 4–8 (2004).

    Google Scholar 

  26. Alberto-Barroso, V., Navarro-Mederos, J. F. & Castellano-Alonso, P. Animales y ritual. Los registros fáunicos de Las Aras de sacrificio Del Alto de Garajonay (La Gomera, Islas Canarias). Zephyrvs 76, 159–179 (2015).

    Google Scholar 

  27. Arnay-de-la-Rosa, M. et al. Dietary patterns during the early prehispanic settlement in La gomera (Canary Islands). J. Archaeol. Sci. 36, 1972–1981. https://doi.org/10.1016/j.jas.2009.05.018 (2009).

    Google Scholar 

  28. Lecuyer, C. et al. Climatic change and diet of the pre-Hispanic population of Gran Canaria (Canary Archipelago, Spain) during the medieval warm period and little ice age. J. Archaeol. Sci. 128, 105336. https://doi.org/10.1016/j.jas.2021.105336 (2021).

    Google Scholar 

  29. Sánchez Cañadillas, E. et al. Dietary changes across time: Studying the indigenous period of La Gomera using δ13C and δ15N stable isotope analysis and radiocarbon dating. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24220 (2021).

    Google Scholar 

  30. Sánchez-Cañadillas, E., Beaumont, J., Santana-Cabrera, J., Gorton, M. & Arnay-de-la-Rosa, M. The early lives of the islanders: stable isotope analysis of incremental dentine collagen from the prehispanic period of the Canary Islands. Am. J. Biol. Anthropol. 182 (2), 300–317. https://doi.org/10.1002/ajpa.24828 (2023).

    Google Scholar 

  31. Alberto-Barroso, V. Los Otros animales, Consumo de Gallotia goliath y Canaryiomis bravoi En La prehistoria de Tenerife. El Museo Canario. 53, 59–86 (1998).

    Google Scholar 

  32. Rando, J. New data of fossil birds from El Hierro (Canary Islands): probable causes of extinction and some biogeographical considerations. Ardeola 49, 39–49 (2002).

    Google Scholar 

  33. Martín Oval, M., Arnay-de-la-Rosa, M. & Ponte Lira, E. Estudio preliminar de La fauna Del Conchero de Guinea (Frontera, El Hierro). Tabona: Revista De Prehistoria Y Arqueología. 6, 227–240 (1987).

    Google Scholar 

  34. Rodríguez Santana, C. G. La Pesca Entre Los canarios, Guanches Y Auaritas: Las Ictiofaunas arqueológicas Del Archipiélago Canario (Cabildo Insular de Gran Canaria, 1996).

  35. Mesa Hernández, E., Hernández-Marrero, J. C., Navarro, J. F. & López Lorenzo, J. G. Archaeological shell middens and shellfish gathering on La gomera Island (Canary Islands, Spain). Munibe 31, 286–293 (2010).

    Google Scholar 

  36. Velasco Vázquez, J., Martín Rodríguez, E., González Reimers, E. & De La Rosa, A. Betancor Rodríguez, A. Contribución de La bioantropología a La reconstrucción de Los procesos productivos prehistóricos. Exostosis En El Canal auditivo En La población prehispánica de Gran Canaria. Trab Prehist. 58, 109–125. https://doi.org/10.3989/tp.2001.v58.i1.236 (2001).

    Google Scholar 

  37. Delgado-Darias, T., Alberto-Barroso, V. & Velasco-Vázquez, J. Living on an island. Cultural change, chronology, and Climatic factors in the relationship with the sea among canarian-amazigh populations on Gran Canaria (Canary Islands). Q. Sci. Rev. 303, 107978. https://doi.org/10.1016/j.quascirev.2023.107978 (2023).

    Google Scholar 

  38. Morquecho Izquier, A., García González, R., Sánchez Cañadillas, E. & Santana, J. Analysis of oral conditions to explore subsistence strategies in the ecologically diverse environments of the Canary Islands during the Amazigh period (1st to 15th centuries CE). Arch. Oral Biol. 174, 106236. https://doi.org/10.1016/j.archoralbio.2025.106236 (2025).

    Google Scholar 

  39. Carracedo, J. C. & Troll, V. The Geology of the Canary Islands (Elsevier, 2016).

  40. Herrera, R. G., Puyol, D. G., MartÍn, E. H., Presa, L. G. & Rodríguez, P. R. Influence of the North Atlantic Oscillation on the Canary Islands precipitation. J. Clim. 14, 3889–3903. https://doi.org/10.1175/1520-0442(2001)014%3C3889:IOTNAO%3E2.0.CO;2 (2001).

    Google Scholar 

  41. Tanarhte, M., De Vries, A. J., Zittis, G. & Chfadi, T. Severe droughts in North africa: A review of drivers, impacts and management. Earth Sci. Rev. 250, 104701. https://doi.org/10.1016/j.earscirev.2024.104701 (2024).

    Google Scholar 

  42. Del Arco Aguilar, M. J., González-González, R. & Garzón-Machado, V. Pizarro-Hernández, B. Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers. Conserv. 19, 3089–3140. https://doi.org/10.1007/s10531-010-9881-2 (2010).

    Google Scholar 

  43. Mestre, A. & Felipe, L. Atlas climático de los archipiélagos de Canarias, Madeira y Azores. (Agencia Estatal de Meteorología, https://doi.org/10.31978/281-12-006-X(2012).

  44. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 40, 503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443 (1989).

    Google Scholar 

  45. Santana, J. et al. Food globalization in the early modern period: isotopic evidence of maize introduction and dietary diversification on Gran Canaria, Canary Islands, Spain (16th–18th CE). Am. J. Biol. Anthropol. 186, e70027. https://doi.org/10.1002/ajpa.70027 (2025).

    Google Scholar 

  46. Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta. 48, 625–639. https://doi.org/10.1016/0016-7037(84)90091-7 (1984).

    Google Scholar 

  47. Sealy, J. C., Van Der Merwe, N. J., Thorp, J. A. L. & Lanham, J. L. Nitrogen isotopic ecology in Southern africa: implications for environmental and dietary tracing. Geochim. Cosmochim. Acta. 51, 2707–2717. https://doi.org/10.1016/0016-7037(87)90151-7 (1987).

    Google Scholar 

  48. Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-Carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216, 1131–1132. https://doi.org/10.1126/science.216.4550.1131 (1982).

    Google Scholar 

  49. Katzenberg, M. A., Waters-Rist, A., L. STABLE ISOTOPE ANALYSIS: A TOOL FOR STUDYING PAST DIET, D. E. M. O. G. R. A. P. H. Y., AND LIFE HISTORY. & in In Biological Anthropology of the Human Skeleton. 467–504 (eds Katzenberg, M. A. & Grauer, A. L.) https://doi.org/10.1002/9781119151647.ch14(Wiley, 2018).

  50. Makarewicz, C. & Sealy, J. Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. JAS 56, 146–158. https://doi.org/10.1016/j.jas.2015.02.035 (2015).

    Google Scholar 

  51. Deniro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta. 45, 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).

    Google Scholar 

  52. Kinaston, R. L., Buckley, H. R. & Gray, A. Diet and social status on Taumako, a Polynesian outlier in the southeastern Solomon Islands. Am. J. Phys. Anthropol. 151, 589–603. https://doi.org/10.1002/ajpa.22314 (2013).

    Google Scholar 

  53. Heaton, T. H. E. Ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmospheric Environ. (1967). 21, 843–852. https://doi.org/10.1016/0004-6981(87)90080-1 (1987).

    Google Scholar 

  54. Ambrose, S. H. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317. https://doi.org/10.1016/0305-4403(91)90067-Y (1991).

    Google Scholar 

  55. Ambrose, S. H. & DeNiro, M. J. Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature 319, 321–324. https://doi.org/10.1038/319321a0 (1986).

    Google Scholar 

  56. Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343. https://doi.org/10.1016/j.jas.2006.04.009 (2007).

    Google Scholar 

  57. Styring, A. K., Knipper, C., Müller-Scheeßel, N., Grupe, G. & Bogaard, A. The proof is in the pudding: crop isotope analysis provides direct insights into agricultural production and consumption. Environ. Archaeol. 27, 61–72. https://doi.org/10.1080/14614103.2018.1497832 (2022).

    Google Scholar 

  58. Bird, M. I., Crabtree, S. A., Haig, J., Ulm, S. & Wurster, C. M. A global carbon and nitrogen isotope perspective on modern and ancient human diet. Proc. Natl. Acad. Sci. U S A https://doi.org/10.1073/pnas.2024642118 (2021).

    Google Scholar 

  59. Copley, M. S. et al. Short- and long-term foraging and foddering strategies of domesticated animals from Qasr Ibrim, Egypt. J. Archaeol. Sci. 31, 1273–1286. https://doi.org/10.1016/j.jas.2004.02.006 (2004).

    Google Scholar 

  60. Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. An isotopic palaeoenvironmental study of human skeletal remains from the nile Valley. Palaeogeogr., Palaeoclimatol. Palaeoecol. 126, 15–30. https://doi.org/10.1016/S0031-0182(96)00067-3 (1996).

    Google Scholar 

  61. Schwarcz, H. P., Dupras, T. L. & Fairgrieve, S. I. 15 N enrichment in the sahara: in search of a global relationship. J. Archaeol. Sci. 26, 629–636. https://doi.org/10.1006/jasc.1998.0380 (1999).

    Google Scholar 

  62. Thompson, D. R., Bury, S. J., Hobson, K. A., Wassenaar, L. I. & Shannon, J. P. Stable isotopes in ecological studies. Oecologia 144, 517–519. https://doi.org/10.1007/s00442-005-0171-8 (2005).

    Google Scholar 

  63. Parkinson, E. W. et al. Multiproxy bioarchaeological data reveals interplay between growth, diet and population dynamics across the transition to farming in the central mediterranean. Sci. Rep. 13, 21965. https://doi.org/10.1038/s41598-023-49406-5 (2023).

    Google Scholar 

  64. Morales, J., Navarro-Mederos, J. F. & Rodríguez, A. Plant offerings to the gods: seed remains from a Pre-Hispanic sacrificial altar in La gomera Island (Canary Islands, Spain). Windows Afr. Past Curr. Approaches Afr. Archaeobotany. 1, 67–78 (2011).

    Google Scholar 

  65. García-González, R., Morquecho Izquier, A. & Santana, J. Differences in Dental Size Among the Indigenous Population of the Canary Islands. Intl J. Osteoarchaeol. https://doi.org/10.1002/oa.3385 (2025).

    Google Scholar 

  66. Serrano, J. G. et al. The genomic history of the Indigenous people of the Canary Islands. Nat. Commun. 14, 4641. https://doi.org/10.1038/s41467-023-40198-w (2023).

    Google Scholar 

  67. Hagenblad, J. et al. Utilising ancient DNA to understand crop population dynamics across a millennium: A case study of archaeological barley (Hordeum vulgare L.) from Gran Canaria, Spain. J. Archaeol. Sci. 167, 106001. https://doi.org/10.1016/j.jas.2024.106001 (2024).

    Google Scholar 

  68. Hagenblad, J. & Morales, J. An evolutionary approach to the history of barley (Hordeum vulgare) cultivation in the Canary Islands. Afr. Archaeol. Rev. 37, 579–595. https://doi.org/10.1007/s10437-020-09415-5 (2020).

    Google Scholar 

  69. Rodríguez, A. R. et al. Un Lugar entre Las dunas. Aprovechamiento Oportunista de Un espacio Costero Durante La Etapa preeuropea de La Isla de Gran Canaria (circa Siglos VIII-XI AD). Trabajos De Prehistoria. 78, 325–343. https://doi.org/10.3989/tp.2021.12279 (2021).

    Google Scholar 

  70. Arnay-de-la-Rosa, M., Reimers, G. & Velasco-Vázquez, E. Santolaria Fernandez, F. Auricular exostoses among the prehistoric population of different Islands of the Canary Archipelago. Annals Otology Rhinology Laryngology. 110, 1080–1083 (2001).

    Google Scholar 

  71. Santana-Sagredo, F., Lee‐Thorp, J. A., Schulting, R. & Uribe, M. Isotopic evidence for divergent diets and mobility patterns in the A Tacama D esert, Northern C hile, during the L ate I ntermediate P Eriod (AD 900–1450). Am. J. Phys. Anthropol. 156, 374–387. https://doi.org/10.1002/ajpa.22663 (2015).

    Google Scholar 

  72. Von Suchodoletz, H. et al. Loess-like and palaeosol sediments from Lanzarote (Canary Islands/Spain) — Indicators of palaeoenvironmental change during the late quaternary. Palaeogeogr., Palaeoclimatol. Palaeoecol. 278, 71–87. https://doi.org/10.1016/j.palaeo.2009.03.019 (2009).

    Google Scholar 

  73. Göhring, A. et al. Approximation of the sea spray effect and limnic influence on δ34S and δ15N values of archaeological human and terrestrial and freshwater animal skeletal finds. Doc. Archaeobiologiae. 12, 169–188 (2015).

    Google Scholar 

  74. Göhring, A. et al. Palaeobiodiversity research based on stable isotopes: correction of the sea spray effect on bone carbonate δ13C and δ18O by Gaussian mixture model clustering. Palaeogeogr., Palaeoclimatol. Palaeoecol. 490, 673–686. https://doi.org/10.1016/j.palaeo.2017.11.057 (2018).

    Google Scholar 

  75. Göhring, A. et al. Evidence for sea spray effect on oxygen stable isotopes in bone phosphate — Approximation and correction using Gaussian mixture model clustering. Sci. Total Environ. 673, 668–684. https://doi.org/10.1016/j.scitotenv.2019.04.072 (2019).

    Google Scholar 

  76. Araus, J. L., Ferrio, J. P., Voltas, J., Aguilera, M. & Buxó, R. Agronomic conditions and crop evolution in ancient near East agriculture. Nat. Commun. 5, 3953. https://doi.org/10.1038/ncomms4953 (2014).

    Google Scholar 

  77. Margaritelli, G. et al. Persistent warm mediterranean surface waters during the Roman period. Sci. Rep. 10, 10431. https://doi.org/10.1038/s41598-020-67281-2 (2020).

    Google Scholar 

  78. Zaky, A. S. et al. Climate variability in Northern Africa during the late holocene: A multiproxy perspective from El-Beida lake (Wadi El-Natrun, Egypt). Q. Sci. Rev. 337, 108801. https://doi.org/10.1016/j.quascirev.2024.108801 (2024).

    Google Scholar 

  79. Kinaston, R. et al. Lapita diet in remote oceania: new stable isotope evidence from the 3000-Year-Old Teouma Site, Efate Island, Vanuatu. PLOS ONE. 9, 1–18. https://doi.org/10.1371/journal.pone.0090376 (2014).

    Google Scholar 

  80. Abrantes, F. et al. The climate of the common era off the Iberian Peninsula. Clim. Past. 13, 1901–1918. https://doi.org/10.5194/cp-13-1901-2017 (2017).

    Google Scholar 

  81. Kress, A. et al. Swiss tree rings reveal warm and wet summers during medieval times. Geophys. Res. Lett. 41, 1732–1737. https://doi.org/10.1002/2013GL059081 (2014).

    Google Scholar 

  82. Farquhar, G. & Richards, R. Isotopic composition of plant carbon correlates with Water-Use efficiency of wheat genotypes. Funct. Plant. Biol. 11, 539. https://doi.org/10.1071/PP9840539 (1984).

    Google Scholar 

  83. Díaz, F. P., Frugone, M., Gutiérrez, R. A. & Latorre, C. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet. Sci. Rep. 6, 22226. https://doi.org/10.1038/srep22226 (2016).

    Google Scholar 

  84. Janovský, M. P., Ferenczi, L., Trubač, J. & Klír, T. Stable isotope analysis in soil prospection reveals the type of historic land-use under contemporary temperate forests in Europe. Sci. Rep. 14, 14746. https://doi.org/10.1038/s41598-024-63563-1 (2024).

    Google Scholar 

  85. Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361. https://doi.org/10.1002/ajpa.23273 (2017).

    Google Scholar 

  86. Erlandson, J. M., Fitzpatrick, S. M. & Gill, K. M. Islands of Resilience: Persistence, Adaptation, and Sustainability in Ancient Island Societies. in Sustainability in Ancient Island Societies 1–22, University Press of Florida, https://doi.org/10.5744/florida/9780813069975.003.0001(2024).

  87. Parker, W. G., Yanes, Y., Hernández, E. M. & Surge, D. Oceanic cooling recorded in shells spanning the medieval climate anomaly in the subtropical Eastern North Atlantic ocean. Q. Sci. Rev. 249, 106635. https://doi.org/10.1016/j.quascirev.2020.106635 (2020).

    Google Scholar 

  88. Parker, W. et al. Shellfish exploitation in the Western Canary Islands over the last two Millenia. Enviromental Archaeol. https://doi.org/10.1080/14614103.2018.1497821 (2018).

    Google Scholar 

  89. Raposeiro, P. M. et al. Late holocene climate dynamics in the Azores Archipelago. Q. Sci. Rev. 331, 108617. https://doi.org/10.1016/j.quascirev.2024.108617 (2024).

    Google Scholar 

  90. Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242. https://doi.org/10.1038/230241a0 (1971).

    Google Scholar 

  91. Ambrose, S. Isotopic analysis of paleodiets: methodological and interpretive considerations. in Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology (ed Sandford, M.) 59–130 (Routledge, (1993).

  92. Talamo, S., Fewlass, H., Maria, R. & Jaouen, K. Here we go again: the inspection of collagen extraction protocols for 14 C dating and palaeodietary analysis. STAR: Sci. Technol. Archaeol. Res. 7, 62–77. https://doi.org/10.1080/20548923.2021.1944479 (2021).

    Google Scholar 

  93. J van Klinken, G. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. JAS 26, 687–695. https://doi.org/10.1006/jasc.1998.0385 (1999).

    Google Scholar 

  94. Ambrose, S. H. & Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone (eds Lambert, J. B. & Grupe, G.) 1–37 (Springer, 1993).

    Google Scholar 

  95. Arnay-de-la-Rosa, M. et al. Paleonutritional and paleodietary survey on prehistoric humans from Las Cañadas Del Teide (Tenerife, Canary Islands) based on chemical and histological analysis of bone. JAS 38, 884–895. https://doi.org/10.1016/j.jas.2010.11.018 (2011).

    Google Scholar 

  96. Aufderheide, A. C. Chemical dietary reconstruction of Guanche NEC-2. Eres Arqueología/Bioantropología. 13, 31–35 (2005).

    Google Scholar 

  97. Tieszen, L., Matzner, S. & K. Buesman, S. Dietary reconstruction based on stable isotopes (13 C,15 N) of the Guanche pre-hispanic Tenerife, Canary Islands. Proc. 1st World Congress Mummies Stud. 1, 41–57 (1995).

    Google Scholar 

  98. Varalli, A. et al. Bronze age innovations and impact on human diet: A multi-isotopic and multi-proxy study of Western Switzerland. PLoS ONE. 16, e0245726. https://doi.org/10.1371/journal.pone.0245726 (2021).

    Google Scholar 

  99. Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M. J. & Grootes, P. Food reconstruction using isotopic transferred signals (FRUITS): A bayesian model for diet reconstruction. PLoS ONE. 9, e87436. https://doi.org/10.1371/journal.pone.0087436 (2014).

    Google Scholar 

  100. Toso, A. et al. Fishing intensification as response to late holocene socio-ecological instability in southeastern South America. Sci. Rep. 11, 23506. https://doi.org/10.1038/s41598-021-02888-7 (2021).

    Google Scholar 

  101. Marino, B. D. & McElroy, M. B. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349, 127–131. https://doi.org/10.1038/349127a0 (1991).

    Google Scholar 

  102. Böhm, F. et al. Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges. Geochem. Geophys. Geosyst. 3, 1–13. https://doi.org/10.1029/2001GC000264 (2002).

    Google Scholar 

  103. Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the oxcal program. Radiocarbon 37, 425–430. https://doi.org/10.1017/S0033822200030903 (1995).

    Google Scholar 

  104. Millard, A. R. Conventions for reporting radiocarbon determinations. Radiocarbon 56, 555–559. https://doi.org/10.2458/56.17455 (2014).

    Google Scholar 

  105. Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833. https://doi.org/10.1017/RDC.2017.108 (2017).

    Google Scholar 

  106. Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).

    Google Scholar 

  107. Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045. https://doi.org/10.1017/S0033822200034093 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the collaborators from the Laboratory of Archaeology of the University of Las Palmas de Gran Canaria. We also thank Prof. Matilde Arnay de la Rosa for her contributions to the field.

Funding

The research for this article was supported by the ERC Starting Grant project IsoCAN (grant 851733, European Commission), and the RTI2018-101923-J-I00, RYC2019-028346 and CNS2022-136039 projects (Spanish Ministry of Science and Innovation). ESC is supported by a Postdoctoral Fellowship “Ayudas Margarita Salas para la formación de jóvenes doctores” (BDNS: 572262) financed by the Universidad de La Laguna.

Author information

Authors and Affiliations

  1. Tarha Research Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, C/Pérez del Toro s/n. Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, E-35004, Spain

    Elías Sánchez-Cañadillas, Aarón Morquecho Izquier & Jonathan Santana

  2. Laboratory of Human Evolution-IsoTOPIK Lab, Department of History, Geography and Communication, Faculty of Humanities and Communication, University of Burgos, Burgos, Spain

    Colin Smith & Eneko Iriarte

Authors
  1. Elías Sánchez-Cañadillas
    View author publications

    Search author on:PubMed Google Scholar

  2. Aarón Morquecho Izquier
    View author publications

    Search author on:PubMed Google Scholar

  3. Colin Smith
    View author publications

    Search author on:PubMed Google Scholar

  4. Eneko Iriarte
    View author publications

    Search author on:PubMed Google Scholar

  5. Jonathan Santana
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Sánchez-Cañadillas, Elías: Writing- original draft, Writing – review & editing, Methodology, Formal analysis, Data Curation, Conceptualization.Morquecho Izquier, Aarón: Writing- original draft, Writing – review & editing, Methodology, Formal analysis, Data Curation, Conceptualization.Smith, Colin: Writing- original draft, Writing – review & editing, Methodology, Formal analysis, Data Curation, Conceptualization, Funding acquisition.Iriarte, Eneko: Writing- original draft, Writing – review & editing, Methodology, Formal analysis, Data Curation, Conceptualization, Funding acquisition.Santana, Jonathan; Writing- original draft, Writing – review & editing, Methodology, Formal analysis, Data Curation, Conceptualization, Funding acquisition, Lead research.

Corresponding author

Correspondence to Elías Sánchez-Cañadillas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

Permissions needed to analyze ancient human remains were granted by the local authority (Dirección General de Patrimonio Cultural del Gobierno de Canarias; reference 51/2020-0717115014) and island museums. This authority is responsible for overseeing the heritage of the indigenous communities of the archipelago, including approval for publication of the results. Our research focuses exclusively on archaeological materials dating from the Amazigh and pre-European period of the Canary Islands. Currently, there are no communities within the Canary Islands that identify as direct descendants of the archipelago’s indigenous population. Additionally, we obtained the necessary permission from the different island archaeological museums.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Cañadillas, E., Morquecho Izquier, A., Smith, C. et al. Isotopic evidence for human adaptation to island environments in the Canary Islands during the Amazigh period. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39695-x

Download citation

  • Received: 23 June 2025

  • Accepted: 06 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39695-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Stable isotopes
  • Diet
  • Human-environment interactions
  • Island biogeography
  • Island archaeology
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing