Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
An intraspecific origin of B chromosomes in Tetragonisca fiebrigi (Apidae: Meliponini) inferred from cytogenetic and nuclear genome size data
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

An intraspecific origin of B chromosomes in Tetragonisca fiebrigi (Apidae: Meliponini) inferred from cytogenetic and nuclear genome size data

  • Marina Souza Cunha  ORCID: orcid.org/0000-0003-3512-791X1,2,
  • José Lino-Neto1,
  • Fernanda Aparecida Ferrari Soares3,
  • Wellington Ronildo Clarindo3,
  • Milton Rönnau4,
  • Lucio Antonio Oliveira Campos1 &
  • …
  • Denilce Meneses Lopes  ORCID: orcid.org/0000-0001-7209-44111 

Scientific Reports , Article number:  (2026) Cite this article

  • 215 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Evolution
  • Genetics

Abstract

Tetragonisca angustula and Tetragonisca fiebrigi are two stingless bees’ species commonly known as “jataí”. Cytogenetic data indicates the presence of B chromosomes in T. fiebrigi and absence in T. angustula, constituting a cytotaxonomic character. The present study aimed to investigate karyotypic and genome size differences between T. angustula and T. fiebrigi, focusing on the possible correlation between number of B chromosomes and DNA content variation. 10 colonies of T. angustula and 16 colonies of T. fiebrigi were sampled from different geographical locations. Conventional cytogenetic analyses were performed, and 1 C DNA content was measured by flow cytometry. Both species showed 2n = 34 and similar karyotype, with biarmed chromosomes composed of one euchromatic and one heterochromatic arm. B chromosomes were found only in T. fiebrigi individuals, varying from 1B to 7B in females and from 0B to 5B in males. The mean 1 C value from 45 T. angustula individuals was 1 C = 0.95 ± 0.079 pg, and the mean 1 C value from 53 T. fiebrigi individuals was 1 C = 0.93 ± 0.048 pg. The ANOVA indicated no statistical difference in 1 C value between T. angustula and T. fiebrigi. The fact that there is no increase in T. fiebrigi genome size points to the direction of an intraspecific origin of the B chromosomes in this species.

Similar content being viewed by others

Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats

Article 04 September 2021

Chromosome-level genome assembly of cotton thrips Thrips tabaci (Thysanoptera: Thripidae)

Article Open access 16 September 2024

Range-wide whole-genome resequencing of the brown bear reveals drivers of intraspecies divergence

Article Open access 06 February 2023

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Ferree, P. M. et al. What is a B chromosome? Early definitions revisited. G3: Genomes Genet. 14, jkae068. https://doi.org/10.1093/g3journal/jkae068 (2024).

    Google Scholar 

  2. Silva, D. M. Z. D. A. et al. Long-term persistence of supernumerary B chromosomes in multiple species of Astyanax fish. BMC Biol. 19, 52. https://doi.org/10.1186/s12915-021-00991-9 (2021a).

    Google Scholar 

  3. Camacho, J. P. M., Ruiz-Ruano, F. J., López-León, M. D., & Cabrero, J. Satellite DNA is an inseparable fellow traveler of B chromosomes in Satellite DNAs in Physiology and Evolution (ed. Ugarković, Ð.) 85–102 (Springer, 2021).

  4. Oliveira, J. I. N., Cabral-de-Mello, D. C., Valente, G. T. & Martins, C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 227, iyae026. https://doi.org/10.1093/genetics/iyae026 (2024).

    Google Scholar 

  5. D Benetta, E., S Akbari, O. & M Ferree, P. Sequence expression of supernumerary B chromosomes: function or fluff? Genes 10, 123. https://doi.org/10.3390/genes10020123 (2019).

    Google Scholar 

  6. Pokorná, M. J. & Reifová, R. Evolution of B chromosomes: from dispensable parasitic chromosomes to essential genomic players. Front. Genet. 12, 727570. https://doi.org/10.3389/fgene.2021.727570 (2021).

    Google Scholar 

  7. Houben, A. B chromosomes–a matter of chromosome drive. Front. Plant. Sci. 8, 210. https://doi.org/10.3389/fpls.2017.00210 (2017).

    Google Scholar 

  8. Camacho, J. P. M. Non-Mendelian segregation and transmission drive of B chromosomes. Chromosome Res. 30, 217–228. https://doi.org/10.1007/s10577-022-09692-7 (2022).

    Google Scholar 

  9. Rajpal, V. R. et al. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front. Cell. Dev. Biol. 10, 1072716. https://doi.org/10.3389/fcell.2022.1072716 (2023).

    Google Scholar 

  10. Ahmad, S. F. & Martins, C. The modern view of B chromosomes under the impact of high scale omics analyses. Cells 8, 156. https://doi.org/10.3390/cells8020156 (2019).

    Google Scholar 

  11. Melo, S. et al. B chromosome dynamics in Prochilodus costatus (Teleostei, Characiformes) and comparisons with supernumerary chromosome system in other Prochilodus species. Comp. Cytogenet. 11, 393. https://doi.org/10.3897/CompCytogen.v11i2.12784 (2017).

    Google Scholar 

  12. Novaes, C. M. et al. Chromosome evolution in the genus Partamona (Apidae: Meliponini), with comments on B chromosome origin. Cytogenet. Genome Res. 161, 520–528. https://doi.org/10.1159/000520552 (2021a).

    Google Scholar 

  13. Amorim, I. C., Milani, D., Cabral-de-Mello, D. C., Rocha, M. F. & Moura, R. C. Possible origin of B chromosome in Dichotomius sericeus (Coleoptera). Genome 59, 575–580. https://doi.org/10.1139/gen-2016-0048 (2016).

    Google Scholar 

  14. Serrano, É. A., Utsunomia, R., Scudeller, P. S., Oliveira, C. & Foresti, F. Origin of B chromosomes in Characidium alipioi (Characiformes, Crenuchidae) and its relationship with supernumerary chromosomes in other Characidium species. Comp. Cytogenet. 11, 81. https://doi.org/10.3897/CompCytogen.v11i1.10886 (2017).

    Google Scholar 

  15. Milani, D. et al. Satellite DNAs unveil clues about the ancestry and composition of B chromosomes in three grasshopper species. Genes 9, 523. https://doi.org/10.3390/genes9110523 (2018).

    Google Scholar 

  16. Ruiz-Ruano, F. J. et al. M. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis Plorans and Locusta migratoria. Cytogenet. Genome Res. 134, 120–126. https://doi.org/10.1159/000324690 (2011).

    Google Scholar 

  17. Bernardino, A. C. et al. B chromosome variants of the grasshopper Xyleus discoideus angulatus are potentially derived from pericentromeric DNA. Cytogenet. Genome Res. 152, 213–221. https://doi.org/10.1159/000480036 (2017).

    Google Scholar 

  18. Milani, D., Palacios-Gimenez, O. M. & Cabral-de-Mello, D. C. The U2 SnDNA is a useful marker for B chromosome detection and frequency Estimation in the grasshopper Abracris flavolineata. Cytogenet. Genome Res. 151, 36–40. https://doi.org/10.1159/000458468 (2017).

    Google Scholar 

  19. Silva, A. A., Rocha, M. P., Pompolo, S. G., Campos, L. A. O. & Tavares, M. G. Karyotypic description of the stingless bee Melipona quinquefasciata Lepeletier, 1836 (Hymenoptera, Meliponini) with emphasis on the presence of B chromosomes. Comp. Cytogenet. 12, 471–482. https://doi.org/10.3897/CompCytogen.v12i4.29165 (2018).

    Google Scholar 

  20. Novaes, C. M. et al. Inter- and intra-population B chromosome variability in Partamona helleri (Apidae: Meliponini). Apidologie 52, 1334–1345. https://doi.org/10.1007/s13592-021-00904-3 (2021b).

    Google Scholar 

  21. Smarda, P. & Bures, P. Understanding intraspecific variation in genome size in plants. Preslia 82, 41–61 (2010).

    Google Scholar 

  22. Stelzer, C. P., Pichler, M., Stadler, P., Hatheuer, A. & Riss, S. Within-population genome size variation is mediated by multiple genomic elements that segregate independently during meiosis. Genome Biol. Evol. 11, 3424–3435. https://doi.org/10.1093/gbe/evz253 (2019).

    Google Scholar 

  23. Cunha, M. S., Cardoso, D. C., Cristiano, M. P., de Oliveira Campos, L. A. & Lopes, D. M. The bee chromosome database (hymenoptera: Apidae). Apidologie 52, 493–502. https://doi.org/10.1007/s13592-020-00838-2 (2021a).

    Google Scholar 

  24. Cunha, M. S. et al. Supernumerary B chromosomes of Tetragonisca fiebrigi share repeat content with standard chromosome set of both T. fiebrigi and Tetragonisca angustula (Apidae: Meliponini). Cytogenet. Genome Res. 163, 52–58. https://doi.org/10.1159/000533431 (2023).

    Google Scholar 

  25. Cunha, M. S., Garcia, M. V. B., Campos, L. A. O. & Lopes, D. M. Cytotaxonomy and karyotype evolution in Neotropical meliponini (Hymenoptera: Apidae) inferred by chromosomal mapping of 18S rDNA and five microsatellites. J. Apic. Res. 63, 208–218. https://doi.org/10.1080/00218839.2023.2179228 (2024a).

    Google Scholar 

  26. Martins, C. C. C., Waldschmidt, A. M. & Costa, M. A. Unprecedented record of ten novel B chromosomes in the stingless bee Partamona helleri (Apidae, Meliponini). Apidologie 45, 431–439. https://doi.org/10.1007/s13592-013-0257-y (2014).

    Google Scholar 

  27. Barth, A., Fernandes, A., Pompolo, S. G. & Costa, M. A. Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): a new contribution to the cytotaxonomy of the genus. Genet. Mol. Biol. 34, 77–79. https://doi.org/10.1590/S1415-47572010005000100 (2011).

    Google Scholar 

  28. Schwarz, H. F. The stingless bees (Meliponidae) of British Guiana and some related forms. Bull. Am. Mus. Nat. Hist. 74, 437–508 (1938).

    Google Scholar 

  29. Cunha, M. S., Ronnau, M., Campos, L. A. O., Lopes, D. M. & Lino-Neto, J. Morphological differences between Tetragonisca angustula and Tetragonisca fiebrigi (Apidae: Meliponini). Apidologie 55, 20. https://doi.org/10.1007/s13592-024-01062-y (2024b).

    Google Scholar 

  30. Camargo, J. M. F., Pedro, S. R. M. & Melo, G. A. R. Meliponini Lepeletier, 1836. In Moure, J. S., Urban, D., & Melo, G. A. R. (Orgs). Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version (2023). Available at https://www.moure.cria.org.br/catalogue. Accessed Aug/12/2025.

  31. Carvalho, A. F. Illegalities in the online trade of stingless bees in Brazil. Insect Conserv. Divers. 15, 673–681. https://doi.org/10.1111/icad.12590 (2022).

    Google Scholar 

  32. Lorite, P. & Palomeque, T. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol News. 13, 89–102 (2010).

    Google Scholar 

  33. Tavares, M. G., Carvalho, C. R. & Soares, F. A. F. Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41, 636–642. https://doi.org/10.1051/apido/20010023 (2010).

    Google Scholar 

  34. Gokhman, V. E., Kuhn, K. L., Woolley, J. B. & Hopper, K. R. Variation in genome size and karyotype among closely related aphid parasitoids (Hymenoptera, Aphelinidae). Comp. Cytogenet. 11, 97–117. https://doi.org/10.3897/CompCytogen.v11i1.10872 (2017).

    Google Scholar 

  35. Cunha, M. S., Soares, F. A. F., Clarindo, W. R., Campos, L. A. O. & Lopes, D. M. Robertsonian rearrangements in Neotropical meliponini karyotype evolution (Hymenoptera: apidae: meliponini). Insect Mol. Biol. 30, 379–389. https://doi.org/10.1111/imb.12702 (2021b).

    Google Scholar 

  36. Cardoso, D. C., Moura, M. N. & Cristiano, M. P. Dynamic development of AT-rich heterochromatin has followed diversification and genome expansion of psammophilous Mycetophylax (Formicidae: attini: Attina). Insect Mol. Biol. 31, 297–307. https://doi.org/10.1111/imb.12759 (2022).

    Google Scholar 

  37. Plačková, K., Bureš, P., Lysak, M. A. & Zedek, F. Centromere drive May propel the evolution of chromosome and genome size in plants. Ann. Bot. 134, 1067–1076. https://doi.org/10.1093/aob/mcae149 (2024).

    Google Scholar 

  38. Travenzoli, N. M. et al. Cytogenetic analysis and chromosomal mapping of repetitive DNA in Melipona species (Hymenoptera, Meliponini). Cytogenet. Genome Res. 158, 213–224. https://doi.org/10.1159/000501754 (2019).

    Google Scholar 

  39. Lopes, D. M., Pompolo, S. D. G., Campos, L. A. O. & Tavares, M. G. Cytogenetic characterization of Melipona rufiventris Lepeletier, 1836 and Melipona Mondury Smith, 1863 (Hymenoptera, Apidae) by C banding and fluorochromes staining. Genet. Mol. Biol. 31, 49–52. https://doi.org/10.1590/S1415-47572008000100010 (2008).

    Google Scholar 

  40. Campos, C. L. et al. New patterns of polymorphism in the karyotypic analysis of the genus Plebeia (Hymenoptera, Apidae). Apidologie 55, 45. https://doi.org/10.1007/s13592-024-01090-8 (2024).

    Google Scholar 

  41. Marthe, J. D. B., Pompolo, S. G., Campos, L. A. O., Salomão, T. M. F. & Tavares, M. G. Cytogenetic characterization of Partamona Cupira (Hymenoptera, Apidae) by fluorochromes. Genet. Mol. Biol. 33, 253–255. https://doi.org/10.1590/S1415-47572010005000029 (2010).

    Google Scholar 

  42. Andrade, B. L., Lopes, A. L. G., Teixeira, G. A. & Tavares, M. G. Karyotypes and chromosomal mapping of some repetitive DNAs in two stingless bee species (Apidae: Meliponini), with the description of a B chromosome in Plebeia genus. Cytogenet. Genome Res. 164, 267–275. https://doi.org/10.1159/000542295 (2024).

    Google Scholar 

  43. Santos, J. L. et al. B chromosome transcriptional inactivation in the spermatogenesis of the grasshopper Eyprepocnemis plorans. Genes 15, 1512. https://doi.org/10.3390/genes15121512 (2024).

    Google Scholar 

  44. Chen, Q., Jahier, J. & Cauderon, Y. The B chromosome system of inner Mongolian Agropyron Gaertn. 3. Cytogenetical evidence for B-A pairing at metaphase I. Hereditas 119, 53–58. https://doi.org/10.1111/j.1601-5223.1993.00053.x (1993).

    Google Scholar 

  45. Birchler, J. A. & Yang, H. The supernumerary B chromosome of maize: drive and genomic conflict. Open. Biol. 11, 210197. https://doi.org/10.1098/rsob.210197 (2021).

    Google Scholar 

  46. Silva, D. M. Z. D. A. et al. Meiotic self-pairing of the Psalidodon (Characiformes, Characidae) iso-B chromosome: A successful perpetuation mechanism. Genet. Mol. Biol. 44, e20210084. https://doi.org/10.1590/1678-4685-GMB-2021-0084 (2021b).

    Google Scholar 

  47. Camacho, J. P. M., Perfectti, F., Teruel, M., López-León, M. D. & Cabrero, J. The odd-even effect in mitotically unstable B chromosomes in grasshoppers. Cytogenet. Genome Res. 106, 325–331. https://doi.org/10.1159/000079307 (2004).

    Google Scholar 

  48. Blavet, N. et al. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. PNAS 118, e2104254118. https://doi.org/10.1073/pnas.2104254118 (2021).

    Google Scholar 

  49. Tavares, M. G., Carvalho, C. R., Soares, F. A. F. & Campos, L. A. O. Genome size diversity in stingless bees (Hymenoptera: Apidae, Meliponini). Apidologie 43, 731–736. https://doi.org/10.1007/s13592-012-0145-x (2012).

    Google Scholar 

  50. Imai, H. T., Taylor, R. W., Crosland, M. W. & Crozier, R. H. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J. Genet. 63, 159–185. https://doi.org/10.1266/jjg.63.159 (1988).

    Google Scholar 

  51. Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell. Res. 75, 304–306. https://doi.org/10.1016/0014-4827(72)90558-7 (1972).

    Google Scholar 

  52. Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x (1964).

    Google Scholar 

  53. Lopes, D. M., Carvalho, C. R., Clarindo, W. R., Praça, M. M. & Tavares, M. G. Genome size Estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40, 517–523. https://doi.org/10.1051/apido/2009030 (2009).

    Google Scholar 

  54. Doležel, J. & Bartoš, J. A. N. Plant DNA flow cytometry and Estimation of nuclear genome size. Ann. Bot. 95, 99–110. https://doi.org/10.1093/aob/mci005 (2005).

    Google Scholar 

  55. Praça-Fontes, M. M., Carvalho, C. R., Clarindo, W. R. & Cruz, C. D. Revisiting the DNA C-values of the genome size standards used in plant flow cytometry to choose the best primary standards. Plant. Cell. Rep. 30, 1183–1191. https://doi.org/10.1007/s00299-011-1026-x (2011).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the beekeepers that kindly opened their jataí colonies for our sampling, especially Cristian, Edirley, Willian, Milton, Márcio, Hélio, Ivânia.

Funding

“Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”, and “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG - APQ-01369-22 to DML)”.

Author information

Authors and Affiliations

  1. Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil

    Marina Souza Cunha, José Lino-Neto, Lucio Antonio Oliveira Campos & Denilce Meneses Lopes

  2. Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, Universidade Federal Rural do Rio de Janeiro, Campus Seropédica, Rio de Janeiro, CEP 23891-970, Brazil

    Marina Souza Cunha

  3. Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Viçosa, Av. P.H. Rolfs s/n, Viçosa, CEP 36570-900, Minas Gerais, Brazil

    Fernanda Aparecida Ferrari Soares & Wellington Ronildo Clarindo

  4. Departamento de Biociências, Universidade Federal do Paraná, Setor Palotina, Curitiba, Paraná, CEP 85950-000, Brazil

    Milton Rönnau

Authors
  1. Marina Souza Cunha
    View author publications

    Search author on:PubMed Google Scholar

  2. José Lino-Neto
    View author publications

    Search author on:PubMed Google Scholar

  3. Fernanda Aparecida Ferrari Soares
    View author publications

    Search author on:PubMed Google Scholar

  4. Wellington Ronildo Clarindo
    View author publications

    Search author on:PubMed Google Scholar

  5. Milton Rönnau
    View author publications

    Search author on:PubMed Google Scholar

  6. Lucio Antonio Oliveira Campos
    View author publications

    Search author on:PubMed Google Scholar

  7. Denilce Meneses Lopes
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Study conception and design: MSC, LAOC, and JLN. Data collection and analysis: MSC, MR, FAFS, WRC, and JLN. Supervision: LAOC, DML. Literature review and first draft of the manuscript: MSC. All authors commented on previous versions and approved the final manuscript.

Corresponding authors

Correspondence to Marina Souza Cunha or Denilce Meneses Lopes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, M.S., Lino-Neto, J., Soares, F.A.F. et al. An intraspecific origin of B chromosomes in Tetragonisca fiebrigi (Apidae: Meliponini) inferred from cytogenetic and nuclear genome size data. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39709-8

Download citation

  • Received: 11 April 2025

  • Accepted: 06 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39709-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chromosome evolution
  • Flow cytometry
  • Hymenoptera
  • Jataí
  • Stingless bees
  • Supernumerary chromosomes
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing