Abstract
Tetragonisca angustula and Tetragonisca fiebrigi are two stingless bees’ species commonly known as “jataí”. Cytogenetic data indicates the presence of B chromosomes in T. fiebrigi and absence in T. angustula, constituting a cytotaxonomic character. The present study aimed to investigate karyotypic and genome size differences between T. angustula and T. fiebrigi, focusing on the possible correlation between number of B chromosomes and DNA content variation. 10 colonies of T. angustula and 16 colonies of T. fiebrigi were sampled from different geographical locations. Conventional cytogenetic analyses were performed, and 1 C DNA content was measured by flow cytometry. Both species showed 2n = 34 and similar karyotype, with biarmed chromosomes composed of one euchromatic and one heterochromatic arm. B chromosomes were found only in T. fiebrigi individuals, varying from 1B to 7B in females and from 0B to 5B in males. The mean 1 C value from 45 T. angustula individuals was 1 C = 0.95 ± 0.079 pg, and the mean 1 C value from 53 T. fiebrigi individuals was 1 C = 0.93 ± 0.048 pg. The ANOVA indicated no statistical difference in 1 C value between T. angustula and T. fiebrigi. The fact that there is no increase in T. fiebrigi genome size points to the direction of an intraspecific origin of the B chromosomes in this species.
Similar content being viewed by others
Data availability
All data generated or analysed during this study are included in this published article and its supplementary information files.
References
Ferree, P. M. et al. What is a B chromosome? Early definitions revisited. G3: Genomes Genet. 14, jkae068. https://doi.org/10.1093/g3journal/jkae068 (2024).
Silva, D. M. Z. D. A. et al. Long-term persistence of supernumerary B chromosomes in multiple species of Astyanax fish. BMC Biol. 19, 52. https://doi.org/10.1186/s12915-021-00991-9 (2021a).
Camacho, J. P. M., Ruiz-Ruano, F. J., López-León, M. D., & Cabrero, J. Satellite DNA is an inseparable fellow traveler of B chromosomes in Satellite DNAs in Physiology and Evolution (ed. Ugarković, Ð.) 85–102 (Springer, 2021).
Oliveira, J. I. N., Cabral-de-Mello, D. C., Valente, G. T. & Martins, C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 227, iyae026. https://doi.org/10.1093/genetics/iyae026 (2024).
D Benetta, E., S Akbari, O. & M Ferree, P. Sequence expression of supernumerary B chromosomes: function or fluff? Genes 10, 123. https://doi.org/10.3390/genes10020123 (2019).
Pokorná, M. J. & Reifová, R. Evolution of B chromosomes: from dispensable parasitic chromosomes to essential genomic players. Front. Genet. 12, 727570. https://doi.org/10.3389/fgene.2021.727570 (2021).
Houben, A. B chromosomes–a matter of chromosome drive. Front. Plant. Sci. 8, 210. https://doi.org/10.3389/fpls.2017.00210 (2017).
Camacho, J. P. M. Non-Mendelian segregation and transmission drive of B chromosomes. Chromosome Res. 30, 217–228. https://doi.org/10.1007/s10577-022-09692-7 (2022).
Rajpal, V. R. et al. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front. Cell. Dev. Biol. 10, 1072716. https://doi.org/10.3389/fcell.2022.1072716 (2023).
Ahmad, S. F. & Martins, C. The modern view of B chromosomes under the impact of high scale omics analyses. Cells 8, 156. https://doi.org/10.3390/cells8020156 (2019).
Melo, S. et al. B chromosome dynamics in Prochilodus costatus (Teleostei, Characiformes) and comparisons with supernumerary chromosome system in other Prochilodus species. Comp. Cytogenet. 11, 393. https://doi.org/10.3897/CompCytogen.v11i2.12784 (2017).
Novaes, C. M. et al. Chromosome evolution in the genus Partamona (Apidae: Meliponini), with comments on B chromosome origin. Cytogenet. Genome Res. 161, 520–528. https://doi.org/10.1159/000520552 (2021a).
Amorim, I. C., Milani, D., Cabral-de-Mello, D. C., Rocha, M. F. & Moura, R. C. Possible origin of B chromosome in Dichotomius sericeus (Coleoptera). Genome 59, 575–580. https://doi.org/10.1139/gen-2016-0048 (2016).
Serrano, É. A., Utsunomia, R., Scudeller, P. S., Oliveira, C. & Foresti, F. Origin of B chromosomes in Characidium alipioi (Characiformes, Crenuchidae) and its relationship with supernumerary chromosomes in other Characidium species. Comp. Cytogenet. 11, 81. https://doi.org/10.3897/CompCytogen.v11i1.10886 (2017).
Milani, D. et al. Satellite DNAs unveil clues about the ancestry and composition of B chromosomes in three grasshopper species. Genes 9, 523. https://doi.org/10.3390/genes9110523 (2018).
Ruiz-Ruano, F. J. et al. M. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis Plorans and Locusta migratoria. Cytogenet. Genome Res. 134, 120–126. https://doi.org/10.1159/000324690 (2011).
Bernardino, A. C. et al. B chromosome variants of the grasshopper Xyleus discoideus angulatus are potentially derived from pericentromeric DNA. Cytogenet. Genome Res. 152, 213–221. https://doi.org/10.1159/000480036 (2017).
Milani, D., Palacios-Gimenez, O. M. & Cabral-de-Mello, D. C. The U2 SnDNA is a useful marker for B chromosome detection and frequency Estimation in the grasshopper Abracris flavolineata. Cytogenet. Genome Res. 151, 36–40. https://doi.org/10.1159/000458468 (2017).
Silva, A. A., Rocha, M. P., Pompolo, S. G., Campos, L. A. O. & Tavares, M. G. Karyotypic description of the stingless bee Melipona quinquefasciata Lepeletier, 1836 (Hymenoptera, Meliponini) with emphasis on the presence of B chromosomes. Comp. Cytogenet. 12, 471–482. https://doi.org/10.3897/CompCytogen.v12i4.29165 (2018).
Novaes, C. M. et al. Inter- and intra-population B chromosome variability in Partamona helleri (Apidae: Meliponini). Apidologie 52, 1334–1345. https://doi.org/10.1007/s13592-021-00904-3 (2021b).
Smarda, P. & Bures, P. Understanding intraspecific variation in genome size in plants. Preslia 82, 41–61 (2010).
Stelzer, C. P., Pichler, M., Stadler, P., Hatheuer, A. & Riss, S. Within-population genome size variation is mediated by multiple genomic elements that segregate independently during meiosis. Genome Biol. Evol. 11, 3424–3435. https://doi.org/10.1093/gbe/evz253 (2019).
Cunha, M. S., Cardoso, D. C., Cristiano, M. P., de Oliveira Campos, L. A. & Lopes, D. M. The bee chromosome database (hymenoptera: Apidae). Apidologie 52, 493–502. https://doi.org/10.1007/s13592-020-00838-2 (2021a).
Cunha, M. S. et al. Supernumerary B chromosomes of Tetragonisca fiebrigi share repeat content with standard chromosome set of both T. fiebrigi and Tetragonisca angustula (Apidae: Meliponini). Cytogenet. Genome Res. 163, 52–58. https://doi.org/10.1159/000533431 (2023).
Cunha, M. S., Garcia, M. V. B., Campos, L. A. O. & Lopes, D. M. Cytotaxonomy and karyotype evolution in Neotropical meliponini (Hymenoptera: Apidae) inferred by chromosomal mapping of 18S rDNA and five microsatellites. J. Apic. Res. 63, 208–218. https://doi.org/10.1080/00218839.2023.2179228 (2024a).
Martins, C. C. C., Waldschmidt, A. M. & Costa, M. A. Unprecedented record of ten novel B chromosomes in the stingless bee Partamona helleri (Apidae, Meliponini). Apidologie 45, 431–439. https://doi.org/10.1007/s13592-013-0257-y (2014).
Barth, A., Fernandes, A., Pompolo, S. G. & Costa, M. A. Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): a new contribution to the cytotaxonomy of the genus. Genet. Mol. Biol. 34, 77–79. https://doi.org/10.1590/S1415-47572010005000100 (2011).
Schwarz, H. F. The stingless bees (Meliponidae) of British Guiana and some related forms. Bull. Am. Mus. Nat. Hist. 74, 437–508 (1938).
Cunha, M. S., Ronnau, M., Campos, L. A. O., Lopes, D. M. & Lino-Neto, J. Morphological differences between Tetragonisca angustula and Tetragonisca fiebrigi (Apidae: Meliponini). Apidologie 55, 20. https://doi.org/10.1007/s13592-024-01062-y (2024b).
Camargo, J. M. F., Pedro, S. R. M. & Melo, G. A. R. Meliponini Lepeletier, 1836. In Moure, J. S., Urban, D., & Melo, G. A. R. (Orgs). Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version (2023). Available at https://www.moure.cria.org.br/catalogue. Accessed Aug/12/2025.
Carvalho, A. F. Illegalities in the online trade of stingless bees in Brazil. Insect Conserv. Divers. 15, 673–681. https://doi.org/10.1111/icad.12590 (2022).
Lorite, P. & Palomeque, T. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol News. 13, 89–102 (2010).
Tavares, M. G., Carvalho, C. R. & Soares, F. A. F. Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41, 636–642. https://doi.org/10.1051/apido/20010023 (2010).
Gokhman, V. E., Kuhn, K. L., Woolley, J. B. & Hopper, K. R. Variation in genome size and karyotype among closely related aphid parasitoids (Hymenoptera, Aphelinidae). Comp. Cytogenet. 11, 97–117. https://doi.org/10.3897/CompCytogen.v11i1.10872 (2017).
Cunha, M. S., Soares, F. A. F., Clarindo, W. R., Campos, L. A. O. & Lopes, D. M. Robertsonian rearrangements in Neotropical meliponini karyotype evolution (Hymenoptera: apidae: meliponini). Insect Mol. Biol. 30, 379–389. https://doi.org/10.1111/imb.12702 (2021b).
Cardoso, D. C., Moura, M. N. & Cristiano, M. P. Dynamic development of AT-rich heterochromatin has followed diversification and genome expansion of psammophilous Mycetophylax (Formicidae: attini: Attina). Insect Mol. Biol. 31, 297–307. https://doi.org/10.1111/imb.12759 (2022).
Plačková, K., Bureš, P., Lysak, M. A. & Zedek, F. Centromere drive May propel the evolution of chromosome and genome size in plants. Ann. Bot. 134, 1067–1076. https://doi.org/10.1093/aob/mcae149 (2024).
Travenzoli, N. M. et al. Cytogenetic analysis and chromosomal mapping of repetitive DNA in Melipona species (Hymenoptera, Meliponini). Cytogenet. Genome Res. 158, 213–224. https://doi.org/10.1159/000501754 (2019).
Lopes, D. M., Pompolo, S. D. G., Campos, L. A. O. & Tavares, M. G. Cytogenetic characterization of Melipona rufiventris Lepeletier, 1836 and Melipona Mondury Smith, 1863 (Hymenoptera, Apidae) by C banding and fluorochromes staining. Genet. Mol. Biol. 31, 49–52. https://doi.org/10.1590/S1415-47572008000100010 (2008).
Campos, C. L. et al. New patterns of polymorphism in the karyotypic analysis of the genus Plebeia (Hymenoptera, Apidae). Apidologie 55, 45. https://doi.org/10.1007/s13592-024-01090-8 (2024).
Marthe, J. D. B., Pompolo, S. G., Campos, L. A. O., Salomão, T. M. F. & Tavares, M. G. Cytogenetic characterization of Partamona Cupira (Hymenoptera, Apidae) by fluorochromes. Genet. Mol. Biol. 33, 253–255. https://doi.org/10.1590/S1415-47572010005000029 (2010).
Andrade, B. L., Lopes, A. L. G., Teixeira, G. A. & Tavares, M. G. Karyotypes and chromosomal mapping of some repetitive DNAs in two stingless bee species (Apidae: Meliponini), with the description of a B chromosome in Plebeia genus. Cytogenet. Genome Res. 164, 267–275. https://doi.org/10.1159/000542295 (2024).
Santos, J. L. et al. B chromosome transcriptional inactivation in the spermatogenesis of the grasshopper Eyprepocnemis plorans. Genes 15, 1512. https://doi.org/10.3390/genes15121512 (2024).
Chen, Q., Jahier, J. & Cauderon, Y. The B chromosome system of inner Mongolian Agropyron Gaertn. 3. Cytogenetical evidence for B-A pairing at metaphase I. Hereditas 119, 53–58. https://doi.org/10.1111/j.1601-5223.1993.00053.x (1993).
Birchler, J. A. & Yang, H. The supernumerary B chromosome of maize: drive and genomic conflict. Open. Biol. 11, 210197. https://doi.org/10.1098/rsob.210197 (2021).
Silva, D. M. Z. D. A. et al. Meiotic self-pairing of the Psalidodon (Characiformes, Characidae) iso-B chromosome: A successful perpetuation mechanism. Genet. Mol. Biol. 44, e20210084. https://doi.org/10.1590/1678-4685-GMB-2021-0084 (2021b).
Camacho, J. P. M., Perfectti, F., Teruel, M., López-León, M. D. & Cabrero, J. The odd-even effect in mitotically unstable B chromosomes in grasshoppers. Cytogenet. Genome Res. 106, 325–331. https://doi.org/10.1159/000079307 (2004).
Blavet, N. et al. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. PNAS 118, e2104254118. https://doi.org/10.1073/pnas.2104254118 (2021).
Tavares, M. G., Carvalho, C. R., Soares, F. A. F. & Campos, L. A. O. Genome size diversity in stingless bees (Hymenoptera: Apidae, Meliponini). Apidologie 43, 731–736. https://doi.org/10.1007/s13592-012-0145-x (2012).
Imai, H. T., Taylor, R. W., Crosland, M. W. & Crozier, R. H. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J. Genet. 63, 159–185. https://doi.org/10.1266/jjg.63.159 (1988).
Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell. Res. 75, 304–306. https://doi.org/10.1016/0014-4827(72)90558-7 (1972).
Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x (1964).
Lopes, D. M., Carvalho, C. R., Clarindo, W. R., Praça, M. M. & Tavares, M. G. Genome size Estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40, 517–523. https://doi.org/10.1051/apido/2009030 (2009).
Doležel, J. & Bartoš, J. A. N. Plant DNA flow cytometry and Estimation of nuclear genome size. Ann. Bot. 95, 99–110. https://doi.org/10.1093/aob/mci005 (2005).
Praça-Fontes, M. M., Carvalho, C. R., Clarindo, W. R. & Cruz, C. D. Revisiting the DNA C-values of the genome size standards used in plant flow cytometry to choose the best primary standards. Plant. Cell. Rep. 30, 1183–1191. https://doi.org/10.1007/s00299-011-1026-x (2011).
Acknowledgements
The authors wish to thank all the beekeepers that kindly opened their jataí colonies for our sampling, especially Cristian, Edirley, Willian, Milton, Márcio, Hélio, Ivânia.
Funding
“Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”, and “Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG - APQ-01369-22 to DML)”.
Author information
Authors and Affiliations
Contributions
Study conception and design: MSC, LAOC, and JLN. Data collection and analysis: MSC, MR, FAFS, WRC, and JLN. Supervision: LAOC, DML. Literature review and first draft of the manuscript: MSC. All authors commented on previous versions and approved the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Consent for publication
Not applicable.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Cunha, M.S., Lino-Neto, J., Soares, F.A.F. et al. An intraspecific origin of B chromosomes in Tetragonisca fiebrigi (Apidae: Meliponini) inferred from cytogenetic and nuclear genome size data. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39709-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39709-8


