Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Global-best-guided electric eel foraging optimizer for robust parameter identification of Lorenz and memristive chaotic systems
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Global-best-guided electric eel foraging optimizer for robust parameter identification of Lorenz and memristive chaotic systems

  • Davut Izci  ORCID: orcid.org/0000-0001-8359-08751,2,
  • Serdar Ekinci  ORCID: orcid.org/0000-0002-7673-25533,
  • İrfan Ökten  ORCID: orcid.org/0000-0001-9898-78593,
  • Vedat Tümen  ORCID: orcid.org/0000-0003-0271-216X3,
  • Burcu Bektaş Güneş  ORCID: orcid.org/0000-0002-9046-15424,
  • Mostafa Rashdan  ORCID: orcid.org/0000-0003-1250-89635 &
  • …
  • Mohammad Salman  ORCID: orcid.org/0000-0002-1769-66525 

Scientific Reports , Article number:  (2026) Cite this article

  • 388 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing

Abstract

Accurate parameter identification in chaotic dynamical systems constitutes a challenging inverse problem due to extreme sensitivity to initial conditions, pronounced nonlinearity, and highly multimodal error landscapes. To address these challenges, this study proposes a global-best-guided electric eel foraging optimization algorithm (g-EEFO), which enhances the original EEFO framework by embedding a behavior-aware and phase-dependent global learning mechanism. Unlike existing EEFO variants that rely solely on stochastic foraging dynamics, g-EEFO integrates global-best information as a soft cooperative signal that modulates the interacting, resting, hunting, and migrating behaviors without overriding them. In this way, global guidance acts as a directional bias rather than a dominant attractor, preserving ecological diversity while strengthening convergence coherence. For the first time, EEFO and its improved variant are applied to chaotic system parameter estimation. The proposed method is evaluated on two representative models: the classical Lorenz system and a structurally richer memristive chaotic system. Extensive numerical experiments, including statistical analysis, convergence profiling, boxplot distributions, and parameter-evolution trajectories, demonstrate the clear superiority of g-EEFO over several state-of-the-art metaheuristics. For the Lorenz system, g-EEFO achieves a best mean squared error of \(\:7.02\times\:{10}^{-26}\), which is six to twenty orders of magnitude lower than competing methods, while maintaining an exceptionally small standard deviation (\(\:4.58\times\:{10}^{-20}\)). For the memristive system, g-EEFO attains a best error of \(\:8.19\times\:{10}^{-19}\), again outperforming all benchmarks by several orders of magnitude and exhibiting the highest run-to-run stability. In both cases, the estimated parameters match the true system values with near-perfect precision. These results confirm that the proposed behavior-aware global guidance fundamentally reshapes the search dynamics of EEFO, yielding substantial gains in convergence stability, numerical accuracy, and robustness. The g-EEFO therefore provides a powerful and reliable alternative for chaotic parameter identification and nonlinear system reconstruction across diverse dynamical regimes.

Similar content being viewed by others

An enhanced parrot optimizer with multiple strategies for wireless sensor network node deployment

Article Open access 02 January 2026

Electric Eel foraging optimization based control design of islanded microgrid

Article Open access 09 March 2025

A novel pressure control method for nonlinear shell-and-tube steam condenser system via electric eel foraging optimizer

Article Open access 04 March 2025

Data availability

All related data are presented within the manuscript.

References

  1. Modares, H., Alfi, A. & Fateh, M. M. Parameter identification of chaotic dynamic systems through an improved particle swarm optimization. Expert Syst. Appl. 37, 3714 (2010).

    Google Scholar 

  2. Wang, L., Xu, Y. & Li, L. Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm. Expert Syst. Appl. 38, 3238–3245 (2011).

    Google Scholar 

  3. Deng, L. & Liu, S. A sine cosine algorithm guided by elite pool strategy for global optimization. Appl. Soft Comput. 164, 111946 (2024).

    Google Scholar 

  4. Deng, L. & Liu, S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design. Expert Syst. Appl. 225, 120069 (2023).

    Google Scholar 

  5. Deng, L. & Liu, S. A multi-strategy improved slime mould algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 404, 115764 (2023).

    Google Scholar 

  6. Deng, L. & Liu, S. An enhanced slime mould algorithm based on adaptive grouping technique for global optimization. Expert Syst. Appl. 222, 119877 (2023).

    Google Scholar 

  7. Deng, L. & Liu, S. Incorporating Q-learning and gradient search scheme into JAYA algorithm for global optimization. Artif. Intell. Rev. 56, 3705–3748 (2023).

    Google Scholar 

  8. Deng, L., Liu, S. A. & Novel Hybrid Grasshopper optimization algorithm for numerical and engineering optimization problems. Neural Process. Lett. 55, 9851–9905 (2023).

    Google Scholar 

  9. Deng, L. & Liu, S. Advancing photovoltaic system design: an enhanced social learning swarm optimizer with guaranteed stability. Comput. Ind. 164, 104209 (2025).

    Google Scholar 

  10. Ahmadi, M. & Mojallali, H. Chaotic invasive weed optimization algorithm with application to parameter Estimation of chaotic systems. Chaos Solitons Fractals. 45, 1108–1120 (2012).

    Google Scholar 

  11. Li, C., Zhou, J., Xiao, J. & Xiao, H. Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos Solitons Fractals. 45, 539–547 (2012).

    Google Scholar 

  12. Lin, J. & Chen, C. Parameter Estimation of chaotic systems by an oppositional seeker optimization algorithm. Nonlinear Dyn. 76, 509–517 (2014).

    Google Scholar 

  13. Lazzús, J. A., Rivera, M. & López-Caraballo, C. H. Parameter Estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Phys. Lett. Sect. A: Gen. At. Solid State Phys. 380, 1164–1171 (2016).

    Google Scholar 

  14. Zhang, H. et al. Parameter Estimation of nonlinear chaotic system by improved TLBO strategy. Soft comput. 20, 4965–4980 (2016).

    Google Scholar 

  15. Mousavi, Y. & Alfi, A. Fractional calculus-based firefly algorithm applied to parameter Estimation of chaotic systems. Chaos Solitons Fractals. 114, 202–215 (2018).

    Google Scholar 

  16. Anh, H. P. H., Son, N. N. & Van Kien, C. Ho-Huu, V. Parameter identification using adaptive differential evolution algorithm applied to robust control of uncertain nonlinear systems. Appl. Soft Comput. J. 71, 672–684 (2018).

    Google Scholar 

  17. Ding, Z. H., Lu, Z. R. & Liu, J. K. Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy. Sci. China Technol. Sci. 61, 417–426 (2017).

  18. Turgut, M. S., Sağban, H. M., Turgut, O. E. & Özmen, Ö. T. Whale optimization and sine–cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models. Soft comput. 25, 1365–1409 (2021).

    Google Scholar 

  19. Nuñez-Perez, J. C. et al. Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms. Math. 2021. 9, 1194 (2021).

    Google Scholar 

  20. Zainel, Q. M., Darwish, S. M. & Khorsheed, M. B. Employing quantum fruit fly optimization algorithm for solving Three-Dimensional chaotic equations. Math. 2022. 10, Page 4147 (10), 4147 (2022).

    Google Scholar 

  21. Rizk-Allah, R. M., Farag, M. A., Barghout, M. H. & Hassanien, A. E. A Memory-Based particle swarm optimization for parameter identification of Lorenz chaotic system. Lecture Notes Networks Syst. 394, 571–587 (2022).

    Google Scholar 

  22. Sattar, D. & Shehadeh Braik, M. Metaheuristic methods to identify parameters and orders of fractional-order chaotic systems. Expert Syst. Appl 228 (2023).

  23. Kumar, K. Data-driven modeling and parameter estimation of nonlinear systems. Eur. Phys. J. B 96, 1–13 (2023).

  24. Nathasarma, R. & Roy, B. K. Physics-Informed Long-Short-Term memory neural network for parameters Estimation of nonlinear systems. IEEE Trans. Ind. Appl. 59, 5376–5384 (2023).

    Google Scholar 

  25. Cavlak, Y., Ateş, A., Abualigah, L. & Elaziz, M. A. Fractional-order chaotic oscillator-based Aquila optimization algorithm for maximization of the chaotic with Lorentz oscillator. Neural Comput. Appl. 35, 21645–21662 (2023).

    Google Scholar 

  26. Farjami, A. A. & Yaghoobi, M. Kardehi Moghaddam, R. Extended cascade chaotic systems and Estimation parameters with new chaotic grey Wolf algorithm. J. Experimental Theoretical Artif. Intell. 36, 1187–1211 (2024).

    Google Scholar 

  27. Ahmadi, A. et al. A novel megastable chaotic system with hidden attractors and its parameter Estimation using the sparrow search algorithm. Comput. 2024. 12, 245 (2024).

    Google Scholar 

  28. Wu, G. C., Wu, Z. Q. & Zhu, W. Data-driven discrete fractional chaotic systems, new numerical schemes and deep learning. Chaos 34 (2024).

  29. Lin, K., Han, X., Xu, X., Zong, T. & Zhou, X. Parameter estimation of fractional-order chaotic system based on adaptive artificial evolutionary fish swarm algorithm. Proceedings of IEEE 14th Data Driven Control and Learning Systems Conference, DDCLS 2025 739–744 (2025). https://doi.org/10.1109/DDCLS66240.2025.11066043

  30. Kumar, K. & Kostina, E. Machine learning in parameter Estimation of nonlinear systems. Eur. Phys. J. B 2025. 98:4 98, 1–18 (2025).

    Google Scholar 

  31. Zhao, W. et al. Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications. Expert Syst. Appl 238 (2024).

  32. Mehta, P., Yildiz, B. S., Sait, S. M. & Ylldlz, A. R. Optimization of electric vehicle design problems using improved electric eel foraging optimization algorithm. Materialpruefung/Materials Test. 66, 1230–1240 (2024).

    Google Scholar 

  33. Abdelwahab, S. A. M. et al. Optimal control and optimization of Grid-Connected PV and wind turbine hybrid systems using electric eel foraging optimization algorithms. Sens. 2024. 24, 2354 (2024).

    Google Scholar 

  34. Al-qaness, M. A. A. et al. Optimized quantum LSTM using modified electric eel foraging optimization for real-world intelligence engineering systems. Ain Shams Eng. J. 15, 102982 (2024).

    Google Scholar 

  35. Ebrahim, M. A., Ragab, A. S., Aziz, B. A. & AbdelHadi, H. A. Electric Eel foraging optimization based control design of islanded microgrid. Sci. Rep. 15, 1–22 (2025).

  36. Rezk, H., Ghasemi, M., Al Saadi, A. & Sayed, E. T. Experimental validation of single and multi-objective optimization of microbial fuel cell based on recent electric eel foraging algorithm. Energy 339, 138989 (2025).

    Google Scholar 

  37. Ekinci, S. Nonlinear controller design for automotive engine speed regulation utilizing electric eel foraging optimization. Int J. Dyn. Control 13 (2025).

  38. Abdel-salam, M., Houssein, E. H., Emam, M. M., Abdel Samee, N. & Azam, M. T. A novel dynamic Nelder-based electric eel foraging algorithm for global optimization and pathological colorectal cancer image segmentation. Comput. Biol. Med. 197 (2025).

  39. Mehmood, K. et al. Design of chaos induced Aquila optimizer for parameter estimation of electro-hydraulic control system. Comput. Model. Eng. Sci. 143, 1809–1841 (2025).

    Google Scholar 

  40. Mehmood, K. et al. Design of chaotic young’s double Slit experiment optimization heuristics for identification of nonlinear muscle model with key term separation. Chaos Solitons Fractals. 189, 115636 (2024).

    Google Scholar 

  41. Wang, X. Gyro fireworks algorithm: A new metaheuristic algorithm. AIP Adv. 14 (2024).

  42. Wang, X. Bighorn sheep optimization algorithm: a novel and efficient approach for wireless sensor network coverage optimization. Phys. Scr. 100, 075230 (2025).

    Google Scholar 

  43. Wang, X. & Yao, L. Cape Lynx optimizer: A novel metaheuristic algorithm for enhancing wireless sensor network coverage. Measurement 256, 118361 (2025).

    Google Scholar 

  44. Wang, R. et al. The animated oat optimization algorithm: A nature-inspired metaheuristic for engineering optimization and a case study on wireless sensor networks. Knowl. Based Syst. 318 (2025).

  45. Lang, Y. & Gao, Y. Dream optimization algorithm (DOA): A novel metaheuristic optimization algorithm inspired by human Dreams and its applications to real-world engineering problems. Comput Methods Appl. Mech. Eng 436 (2025).

  46. Yuan, Y. et al. Musk ox optimizer (MO): A novel optimization algorithm and its application. Clust. Comput. 28 (2025).

  47. Han, M. et al. Walrus optimizer: A novel nature-inspired metaheuristic algorithm. Expert Syst. Appl. 239 (2024).

  48. Xiong, Q., Shen, J., Tong, B. & Xiong, Y. Parameter identification for memristive chaotic system using modified sparrow search algorithm. Front. Phys. 10, 912606 (2022).

    Google Scholar 

  49. Abualigah, L. et al. Optimized image segmentation using an improved reptile search algorithm with Gbest operator for multi-level thresholding. Sci. Rep. 15, 1–45 (2025).

  50. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Google Scholar 

  51. McKnight, P. E., Najab, J., Mann-Whitney, U. & Test Corsini Encycl. Psychol. 1–1 https://doi.org/10.1002/9780470479216.CORPSY0524. (2010).

  52. Chang, J. F., Yang, Y. S., Liao, T. L. & Yan, J. J. Parameter identification of chaotic systems using evolutionary programming approach. Expert Syst. Appl. 35, 2074–2079 (2008).

    Google Scholar 

  53. Li, X. T. & Yin, M. H. Parameter Estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chin. Phys. B 21 (2012).

  54. Ekinci, S., Turkeri, C., Izci, D., Kiselychnyk, O. & Gunes, B. B. Opposition-based starfish optimization algorithm for function optimization. 9th International Artificial Intelligence and Data Processing Symposium (IDAP) 1–4 (2025).https://doi.org/10.1109/IDAP68205.2025.11222186

  55. Xiong, Q., She, J. & Xiong, J. A. New pelican optimization algorithm for the parameter identification of memristive chaotic system. Symmetry 2023. 15, 1279 (2023).

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

  1. Department of Electrical and Electronic Engineering, Bursa Uludag University, Bursa, 16059, Turkey

    Davut Izci

  2. Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan

    Davut Izci

  3. Department of Computer Engineering, Bitlis Eren University, Bitlis, 13100, Turkey

    Serdar Ekinci, İrfan Ökten & Vedat Tümen

  4. Department of Computer Engineering, Istanbul Gedik University, İstanbul, Turkey

    Burcu Bektaş Güneş

  5. College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait

    Mostafa Rashdan & Mohammad Salman

Authors
  1. Davut Izci
    View author publications

    Search author on:PubMed Google Scholar

  2. Serdar Ekinci
    View author publications

    Search author on:PubMed Google Scholar

  3. İrfan Ökten
    View author publications

    Search author on:PubMed Google Scholar

  4. Vedat Tümen
    View author publications

    Search author on:PubMed Google Scholar

  5. Burcu Bektaş Güneş
    View author publications

    Search author on:PubMed Google Scholar

  6. Mostafa Rashdan
    View author publications

    Search author on:PubMed Google Scholar

  7. Mohammad Salman
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Davut Izci, Serdar Ekinci: Conceptualization, Methodology, Software, Visualization, Investigation, Writing- Original draft preparation, İrfan Ökten, Vedat Tümen, Burcu Bektaş Güneş, Mostafa Rashdan, Mohammad Salman: Data curation, Validation, Supervision, Resources, Writing - Review & Editing, Writing - Review & Editing.

Corresponding author

Correspondence to Davut Izci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izci, D., Ekinci, S., Ökten, İ. et al. Global-best-guided electric eel foraging optimizer for robust parameter identification of Lorenz and memristive chaotic systems. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39729-4

Download citation

  • Received: 29 November 2025

  • Accepted: 06 February 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39729-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chaotic systems
  • Parameter identification
  • Global-best-guided electric eel foraging optimization algorithm
  • Parameter identification
  • Metaheuristics
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics