Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Robust place recognition under illumination changes using pseudo-LiDAR from omnidirectional images
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Robust place recognition under illumination changes using pseudo-LiDAR from omnidirectional images

  • Juan José Cabrera1,
  • Marcos Alfaro1,
  • Arturo Gil1,
  • Oscar Reinoso1,2 &
  • …
  • Luis Payá1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 333 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing
  • Optics and photonics

Abstract

Visual Place Recognition (VPR) systems typically exhibit reduced robustness when subjected to changes in scene appearance produced by illumination dynamics or heterogeneity across different types of visual sensors. This paper proposes a novel framework that exploits depth estimation techniques to overcome these challenges. Our approach transforms omnidirectional images into depth maps using Distill Any Depth, a state-of-the-art depth estimator based on Depth Anything V2. These depth maps are then converted into pseudo-LiDAR point clouds, which serve as input to the MinkUNeXt architecture, which generates global-appearance descriptors. A key innovation lies in our novel data augmentation technique that exploits different distilled variants of depth estimation models to enhance robustness across varying conditions. Despite training with a limited set of images captured only under cloudy conditions, our system demonstrates robust performance when evaluated across diverse lighting scenarios, and further tests with different datasets and camera types confirm its generalization to geometrically dissimilar inputs. Extensive comparisons with state-of-the-art methods prove that our approach performs competitively across diverse lighting conditions, particularly excelling in scenarios with significant illumination changes. Furthermore, the generation of pseudo-LiDAR information from standard cameras provides a cost-effective alternative to 3D sensors. In summary, this work presents a fundamentally different approach to scene representation for VPR, with promising implications for robot localization in challenging environments. The implementation is publicly available at https://juanjo-cabrera.github.io/projects-pL-MinkUNeXt/.

Similar content being viewed by others

Metasurface-enhanced light detection and ranging technology

Article Open access 29 September 2022

DINO-Mix enhancing visual place recognition with foundational vision model and feature mixing

Article Open access 27 September 2024

Robust real-time 3D imaging of moving scenes through atmospheric obscurant using single-photon LiDAR

Article Open access 27 May 2021

Data availability

Data is publicly available on the project website: https://juanjo-cabrera.github.io/projects-pL-MinkUNeXt/.

References

  1. Chen, X. et al. OverlapNet: A siamese network for computing LiDAR scan similarity with applications to loop closing and localization. Auton. Robots 46, 1–21. https://doi.org/10.1007/s10514-021-09999-0 (2022).

    Google Scholar 

  2. Jin, X., Junping, Y., Juan, Z. & Tianyan, G. Enhancing cross view geo localization through global local quadrant interaction network. Sci. Rep. 15, 33431. https://doi.org/10.1038/s41598-025-18935-6 (2025).

    Google Scholar 

  3. Flores, M., Valiente, D., Gil, A., Reinoso, O. & Payá, L. Efficient probability-oriented feature matching using wide field-of-view imaging. Eng. Appl. Artif. Intell. 107, 104539. https://doi.org/10.1016/j.engappai.2021.104539 (2022).

    Google Scholar 

  4. Zhou, Z., Xu, J., Xiong, G. & Ma, J. LCPR: A multi-scale attention-based LiDAR-Camera fusion network for place recognition. IEEE Robot. Autom. Lett. 8, 2025–2032. https://doi.org/10.1109/LRA.2023.3346753 (2023).

    Google Scholar 

  5. Gallagher, J. E. & Oughton, E. J. Assessing thermal imagery integration into object detection methods on air-based collection platforms. Sci. Rep. 13, 8491. https://doi.org/10.1038/s41598-023-34791-8 (2023).

    Google Scholar 

  6. Wang, Y. et al. Pseudo-LiDAR from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8445–8453 (2019).

  7. He, X. et al. Distill any depth: Distillation creates a stronger monocular depth estimator. arXiv preprint arXiv:2502.19204 (2025).

  8. Zaffar, M. et al. VPR-bench: An open-source visual place recognition evaluation framework with quantifiable viewpoint and appearance change. Int. J. Comput. Vis. 129, 2136–2174. https://doi.org/10.1007/s11263-021-01469-5 (2021).

    Google Scholar 

  9. Humenberger, M. et al. Investigating the role of image retrieval for visual localization: An exhaustive benchmark. Int. J. Comput. Vis. 130, 1811–1836. https://doi.org/10.1007/s11263-022-01615-7 (2022).

    Google Scholar 

  10. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

  11. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016).

  12. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T. & Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5297–5307 (2016).

  13. Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

  14. Liu, Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012–10022 (2021).

  15. Liu, Z. et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12009–12019 (2022).

  16. Caron, M. et al. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 9650–9660 (2021).

  17. Oquab, M. et al. DINOv2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023).

  18. Berton, G., Masone, C. & Caputo, B. Rethinking visual geo-localization for large-scale applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4878–4888 (2022).

  19. Berton, G., Trivigno, G., Caputo, B. & Masone, C. Eigenplaces: Training viewpoint robust models for visual place recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 11080–11090 (2023).

  20. Keetha, N. et al. AnyLoc: towards universal visual place recognition. IEEE Robot. Autom. Lett. 8, 1265–1272. https://doi.org/10.1109/LRA.2023.3343602 (2023).

    Google Scholar 

  21. Ali-Bey, A., Chaib-Draa, B. & Giguere, P. MixVPR: Feature mixing for visual place recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2998–3007 (2023).

  22. Izquierdo, S. & Civera, J. Optimal transport aggregation for visual place recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 17658–17668 (2024).

  23. Rostkowska, M. & Skrzypczyński, P. Optimizing appearance-based localization with catadioptric cameras: Small-footprint models for real-time inference on edge devices. Sensors 23, 6485. https://doi.org/10.3390/s23146485 (2023).

    Google Scholar 

  24. Alfaro, M., Cabrera, J. J., Jiménez, L. M., Reinoso, Ó. & Payá, L. Triplet Neural Networks for the Visual Localization of Mobile Robots. In Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO), 125–132, 2024, https://doi.org/10.5220/0012927400003822.

  25. Yin, H. et al. A survey on global LiDAR localization: Challenges, advances and open problems. Int. J. Comput. Vis. 132, 3139–3171. https://doi.org/10.1007/s11263-024-02019-5 (2024).

    Google Scholar 

  26. Uy, M. A. & Lee, G. H. PointNetVLAD: Deep point cloud based retrieval for large-scale place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4470–4479 (2018).

  27. Komorowski, J. Improving point cloud based place recognition with ranking-based loss and large batch training. In 2022 26th International Conference on Pattern Recognition (ICPR), 3699–3705, https://doi.org/10.1109/ICPR56361.2022.9956458 (IEEE, 2022).

  28. Cabrera, J. J., Santo, A., Gil, A., Viegas, C. & Payá, L. MinkUNeXt: Point cloud-based large-scale place recognition using 3D sparse convolutions. Array 28, 100569. https://doi.org/10.1016/j.array.2025.100569 (2025).

    Google Scholar 

  29. Zhao, H., Jiang, L., Jia, J., Torr, P. H. & Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 16259–16268 (2021).

  30. Ma, J. et al. OverlapTransformer: An efficient and yaw-angle-invariant transformer network for LiDAR-based place recognition. IEEE Robot. Autom. Lett. 7, 6958–6965. https://doi.org/10.1109/LRA.2022.3178797 (2022).

    Google Scholar 

  31. Komorowski, J., Wysoczańska, M. & Trzcinski, T. Minkloc++: lidar and monocular image fusion for place recognition. In 2021 International Joint Conference on Neural Networks (IJCNN), 1–8 (IEEE, 2021).

  32. Zhao, Z., Yu, H., Lyu, C., Yang, W. & Scherer, S. Attention-enhanced cross-modal localization between spherical images and point clouds. IEEE Sens. J. 23, 23836–23845. https://doi.org/10.1109/JSEN.2023.3306377 (2023).

    Google Scholar 

  33. Karypidis, E., Kakogeorgiou, I., Gidaris, S. & Komodakis, N. DINO-Foresight: Looking into the future with DINO. arXiv preprint arXiv:2412.11673 (2024).

  34. Xian, K., Cao, Z., Shen, C. & Lin, G. Towards robust monocular depth estimation: A new baseline and benchmark. Int. J. Comput. Vis. 132, 2401–2419. https://doi.org/10.1007/s11263-023-01979-4 (2024).

    Google Scholar 

  35. Gui, M. et al. DepthFM: Fast monocular depth estimation with flow matching. arXiv preprint arXiv:2403.13788 (2024).

  36. Ke, B. et al. Repurposing diffusion-based image generators for monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9492–9502 (2024).

  37. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K. & Koltun, V. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 44, 1623–1637. https://doi.org/10.1109/TPAMI.2020.3019967 (2020).

    Google Scholar 

  38. Bhat, S. F., Birkl, R., Wofk, D., Wonka, P. & Müller, M. ZoeDepth: Zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288 (2023).

  39. Yang, L. et al. Depth Anything: Unleashing the power of large-scale unlabeled data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10371–10381 (2024).

  40. Yang, L. et al. Depth Anything v2. Advances in Neural Information Processing Systems 37, 21875–21911 (2025).

    Google Scholar 

  41. Hu, W. et al. Depthcrafter: Generating consistent long depth sequences for open-world videos. arXiv preprint arXiv:2409.02095 (2024).

  42. Chen, S. et al. Video Depth Anything: Consistent depth estimation for super-long videos. arXiv preprint arXiv:2501.12375 (2025).

  43. Guo, Y., Garg, S., Miangoleh, S. M. H., Huang, X. & Ren, L. Depth Any Camera: Zero-shot metric depth estimation from any camera. arXiv preprint arXiv:2501.02464 (2025).

  44. Xu, G. et al. What matters when repurposing diffusion models for general dense perception tasks? arXiv preprint arXiv:2403.06090 (2024).

  45. Yan, L., Yan, P., Xiong, S., Xiang, X. & Tan, Y. Monocd: Monocular 3d object detection with complementary depths. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10248–10257 (2024).

  46. Ganj, A., Zhao, Y., Su, H. & Guo, T. Mobile AR depth estimation: Challenges & prospects. In Proceedings of the 25th International Workshop on Mobile Computing Systems and Applications, 21–26, https://doi.org/10.1145/3638550.3641122 (2024).

  47. Han, J. J., Acar, A., Henry, C. & Wu, J. Y. Depth anything in medical images: A comparative study. arXiv preprint arXiv:2401.16600 (2024).

  48. Hettiarachchi, D., Tian, Y., Yu, H. & Kamijo, S. Depth as attention to learn image representations for visual localization, using monocular images. J. Vis. Commun. Image Represent. 98, 104012. https://doi.org/10.1016/j.jvcir.2023.104012 (2024).

    Google Scholar 

  49. Suvorov, R. et al. Resolution-robust large mask inpainting with fourier convolutions. arXiv preprint arXiv:2109.07161 (2021).

  50. Radenović, F., Tolias, G. & Chum, O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1655–1668. https://doi.org/10.1109/TPAMI.2018.2846566 (2018).

    Google Scholar 

  51. Choy, C., Gwak, J. & Savarese, S. 4D spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3075–3084 (2019).

  52. Pronobis, A. & Caputo, B. COLD: The COsy localization database. Int. J. Robot. Res. 28, 588–594. https://doi.org/10.1177/0278364909103912 (2009).

    Google Scholar 

  53. Bochkovskii, A. et al. Depth Pro: Sharp monocular metric depth in less than a second. arXiv preprint arXiv:2410.02073 (2024).

  54. Xia, Y. et al. Casspr: Cross attention single scan place recognition. In Proceedings of the IEEE/CVF international conference on computer vision, 8461–8472 (2023).

  55. Cabrera, J. J., Román, V., Gil, A., Reinoso, O. & Payá, L. An experimental evaluation of siamese neural networks for robot localization using omnidirectional imaging in indoor environments. Artif. Intell. Rev. 57, 198. https://doi.org/10.1007/s10462-024-10840-0 (2024).

    Google Scholar 

  56. Lu, F. et al. Cricavpr: Cross-image correlation-aware representation learning for visual place recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16772–16782 (2024).

  57. Bonarini, A. et al. Rawseeds: Robotics advancement through web-publishing of sensorial and elaborated extensive data sets. In proceedings of IROS 6, 93 (2006).

    Google Scholar 

Download references

Funding

The Ministry of Science, Innovation and Universities (Spain) has supported this work through FPU21/04969 (J.J. Cabrera) and FPU23/00587 (M. Alfaro). This research is part of the project CIPROM/2024/8, funded by Generalitat Valenciana, Conselleria de Educación, Cultura, Universidades y Empleo (program PROMETEO 2025). It is also part of the project PID2023-149575OB-I00 funded by MICIU/AEI/10.13039/501100011033 and by FEDER, UE.

Author information

Authors and Affiliations

  1. Institute for Engineering Research (I3E), Miguel Hernández University, Av. Universidad s/n, 03202, Elche, Comunidad Valenciana, Spain

    Juan José Cabrera, Marcos Alfaro, Arturo Gil, Oscar Reinoso & Luis Payá

  2. Valencian Graduate School and Research Network for Artificial Intelligence (valgrAI), Valencia, Comunidad Valenciana, Spain

    Oscar Reinoso & Luis Payá

Authors
  1. Juan José Cabrera
    View author publications

    Search author on:PubMed Google Scholar

  2. Marcos Alfaro
    View author publications

    Search author on:PubMed Google Scholar

  3. Arturo Gil
    View author publications

    Search author on:PubMed Google Scholar

  4. Oscar Reinoso
    View author publications

    Search author on:PubMed Google Scholar

  5. Luis Payá
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: A.G., O.R.; Methodology: A.G.,L.P.; Software: J.J.C., M.A.; Validation: J.J.C., M.A.; Formal Analysis: O.R.; Investigation: J.J.C., M.A.; Resources: O.R.; Data Curation: J.J.C., M.A.; Writing - original draft: J.J.C., M.A.; Writing - review & editing: A.G., L.P.; Visualization: O.R.; Supervision: A.G., L.P.; Project administration: A.G., L.P.; Funding acquisition: A.G., L.P.

Corresponding author

Correspondence to Juan José Cabrera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, J.J., Alfaro, M., Gil, A. et al. Robust place recognition under illumination changes using pseudo-LiDAR from omnidirectional images. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39848-y

Download citation

  • Received: 21 October 2025

  • Accepted: 09 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39848-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Place recognition
  • Point clouds
  • Data augmentation
  • Depth estimation
  • Omnidirectional vision
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics