Abstract
Freshwater amphipods often exhibit cryptic diversity and are undergoing range shifts driven by environmental changes. Gammarus roeselii, a species inhabiting streams, rivers and lakes across Europe, diversified into ancient genetic lineages in the Balkan Peninsula and the Pannonian Basin, with only one lineage colonizing Central and Western Europe after the ice ages. We investigated the distribution and genetic diversity of G. roeselii by sampling over 1,000 sites across the eastern Alpine region and the Western Pannonian Basin. Cytochrome oxidase I barcoding assigned all sequenced G. roeselii (528 individuals from 174 sites) to the Central-Western European lineage. The occurrence of G. roeselii was associated with low elevation, high summer temperature and gentle stream and river slopes and was biased towards downstream reaches and rivers with large drainage sizes. Its distribution partially overlapped with G. fossarum, which predominates in cooler, faster-flowing streams. Species distribution modelling under future climate scenarios predicted a range expansion of G. roeselii into current G. fossarum habitat. Genetic diversity patterns are consistent with longstanding stable populations in the Southwestern Pannonian Basin, a post-glacial range expansion across alpine forelands, and recent colonization of some alpine valleys.
Data availability
Sequences were deposited at GenBank under accession numbers PX314984 - PX315511. All data and code used to produce the paper is available at figshare (https://doi.org/10.6084/m9.figshare.31123501).
References
Little, C. J. & Altermatt, F. Species turnover and invasion of dominant freshwater invertebrates alter biodiversity–ecosystem-function relationship. Ecol. Monogr. 88, 461–480 (2018).
Alther, R., Cerroti, F., Cereghetti, E., Krähenbühl, A. & Altermatt, F. Generalization of a density-dependent ecosystem function in dominant aquatic macroinvertebrates. Oikos 2024, e10774 (2024).
Väinölä, R. et al. Springer Netherlands, Dordrecht,. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. in Freshwater Animal Diversity Assessment 241–255 (2007).
Jażdżewski, K. & Roux, A. L. Biogéographie de Gammarus roeselii Gervais En Europe, En particulier En France et En Pologne. Crustaceana Supplement. 13, 272–277 (1988).
Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536 (2020).
Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016 (2017).
Alther, R., Fišer, C. & Altermatt, F. Description of a widely distributed but overlooked amphipod species in the European alps. Zool. J. Linn. Soc. 179, 751–766 (2016).
Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).
Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 40, 1–13 (2017).
Grabowski, M. Alien Crustacea in Polish waters – Amphipoda. Aquat. Invasions. 2, 25–38 (2007).
Copilaș-Ciocianu, D., Sidorov, D. & Šidagytė-Copilas, E. Global distribution and diversity of alien Ponto-Caspian amphipods. Biol. Invasions. 25, 179–195 (2023).
Pöckl, M. Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biol. Invasions. 11, 2021–2041 (2009).
Meßner, U. & Zettler, M. L. Drastic changes of the amphipod fauna in Northern Germany and the displacement of Gammarus lacustris G.O. Sars, 1864 to relict habitats/status. Knowl. Manag Aquat. Ecosyst. 422, 17 (2021).
Kelly, D. W., Bailey, R. J., MacNeil, C., Dick, J. T. A. & McDonald, R. A. Invasion by the amphipod Gammarus pulex alters community composition of native freshwater macroinvertebrates. Divers. Distrib. 12, 525–534 (2006).
Paganelli, D., Gazzola, A., Marchini, A. & Sconfietti, R. The increasing distribution of Gammarus roeselii Gervais, 1835: first record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino river basin (Lombardy, Italy). Bioinvasions Rec. 4, 37–41 (2015).
Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).
Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: the rule and not the exception? Front. Zool. 9, 22 (2012).
Verovnik, R., Sket, B. & Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 14, 4355–4369 (2005).
Pârvulescu, L. et al. Toward scientific clarity in the evolutionary puzzle of Austropotamobius crayfish. J. Biogeogr. 52, e70059 (2025).
Copilaş-Ciocianu, D., Fišer, C., Borza, P. & Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet Evol. 119, 37–49 (2018).
Jourdan, J., Piro, K., Weigand, A. & Plath, M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front. Zool. 16, 29 (2019).
Pandolfi, A., Sconfietti, R., Marchini, A. & Paganelli, D. Spatial distribution and substrate preferences of the non-indigenous amphipod Gammarus roeselii Gervais, 1835. Mar. Freshw. Res. 71, 723–728 (2019).
Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55 (2020).
Mauchart, P., Bereczki, C., Ortmann-Ajkai, A., Csabai, Z. & Szivák, I. Niche segregation between two closely similar Gammarids (Peracarida, Amphipoda) — native vs. naturalized non-native species. Crustaceana 87, 1296–1314 (2014).
Jourdan, J., Fadil, E. T. A., Oehlmann, S. & Hupało, K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. Environ. Int. 183, 108368 (2024).
Lagrue, C. et al. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeselii and possible implications for the invader’s success. Biol. Invasions. 13, 1409–1421 (2011).
Pöckl, M. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeselii in Austrian streams and rivers. Freshw. Biol. 30, 73–91 (1993).
Verberk, W. C. E. P., Leuven, R. S. E. W., van der Velde, G. & Gabel, F. Thermal limits in native and alien freshwater Peracarid crustacea: the role of habitat use and oxygen limitation. Funct. Ecol. 32, 926–936 (2018).
Mauchart, P. et al. Effects of meso- and microhabitat characteristics on the coexistence of two native Gammarid species (Crustacea, Gammaridae). Int. Rev. Hydrobiol. 102, 38–46 (2017).
Hesselschwerdt, J., Necker, J. & Wantzen, K. Matthias. Gammarids in Lake Constance: habitat segregation between the invasive Dikerogammarus villosus and the indigenous Gammarus roeselii. Fundam Appl. Limnol. 173, 177–186 (2009).
Pöckl, M., Webb, B. W. & Sutcliffe, D. W. Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw. Biol. 48, 53–66 (2003).
Pöckl, M. & Humpesch, U. Intra- and inter‐specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw. Biol. 23, 441–455 (1990).
Pöckl, M. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshw. Biol. 27, 211–225 (1992).
Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda). Part II. Gammarus roeselii-group and related species. Bijdragen Tot De Dierkunde 47, 165–196 (1977).
Vornatscher, J. Amphipoda. Catalogus Faunae Austriae. (1965).
Nesemann, H., Pöckl, M. & Wittmann, K. J. Distribution of Epigean malacostraca in the middle and upper Danube (Hungary, Austria, Germany). Miscellanea Zool. Hungarica 10, 49–68 (1995).
Gratton, P., Konopiński, M. K. & Sbordoni, V. Pleistocene evolutionary history of the clouded Apollo (Parnassius mnemosyne): genetic signatures of climate cycles and a ‘time-dependent’ mitochondrial substitution rate. Mol. Ecol. 17, 4248–4262 (2008).
Hammouti, N., Schmitt, T., Seitz, A., Kosuch, J. & Veith, M. Combining mitochondrial and nuclear evidences: a refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in central Europe based on the COI gene. J. Zoological Syst. Evolutionary Res. 48, 115–125 (2010).
Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: evidence for alpine refugia and rapid colonization after the pleistocene glaciations. Mol. Ecol. 14, 1133–1150 (2005).
Weigand, A. M., Pfenninger, M. & Jochum, A. Klussmann-Kolb, A. Alpine crossroads or origin of genetic diversity? Comparative phylogeography of two sympatric microgastropod species. PLoS One. 7, e37089 (2012).
Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European alps. Mol. Ecol. 14, 3547–3555 (2005).
Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European Beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 1–11 (2016).
Altermatt, F. et al. Diversity and distribution of freshwater amphipod species in Switzerland (Crustacea: Amphipoda). PLoS One. 9, e110328 (2014).
Gabel, F. et al. Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates. Biol. Invasions. 13, 1843–1853 (2011).
Kley, A. et al. Influence of substrate preference and complexity on co-existence of two non-native gammarideans (Crustacea: Amphipoda). Aquat. Ecol. 43, 1047–1059 (2009).
Enns, D., Cunze, S., Baker, N. J., Oehlmann, J. & Jourdan, J. Flushing away the future: the effects of wastewater treatment plants on aquatic invertebrates. Water Res. 243, 120388 (2023).
Pelikan, L., Šidagytė-Copilas, E., Garbaras, A., Jourdan, J. & Copilaș-Ciocianu, D. Competitive interaction in headwaters: slow upstream migration leads to trophic competition between native and non-native amphipods. NeoBiota 90, 193–216 (2024).
Gergs, R., Schlag, L. & Rothhaupt, K. O. Different ammonia tolerances may facilitate spatial coexistence of Gammarus roeselii and the strong invader Dikerogammarus villosus. Biol. Invasions. 15, 1783–1793 (2013).
Kabus, J. et al. Uncovering the Grinnellian niche space of the cryptic species complex Gammarus roeselii. PeerJ 11, e15800 (2023).
Zaidel, P. A. et al. Impacts of small dams on stream temperature. Ecol. Indic. 120, 106878 (2021).
Liew, J. H., Tan, H. H. & Yeo, D. C. J. Dammed rivers: impoundments facilitate fish invasions. Freshw. Biol. 61, 1421–1429 (2016).
Kralj, T., Žganec, K., Ćuk, R. & Valić, D. Contribution of alien Peracarid crustaceans to the biocontamination of benthic macroinvertebrate assemblages in Croatian large rivers. Limnetica 41, 181–199 (2022).
Kirchengast, M. Faunistische Untersuchungen im hyporheischen Interstitial des Flusses Mur (Steiermark, Oesterreich). Int. Rev. Gesamten Hydrobiol. 69, 729–746 (1984).
Weiss, S. J., Kopun, T. & Sušnik Bajec, S. Assessing natural and disturbed population structure in European grayling Thymallus thymallus: melding phylogeographic, population genetic and jurisdictional perspectives for conservation planning. J. Fish. Biol. 82, 505–521 (2013).
Liška, I., Wagner, F. & Slobodník, J. Joint Danube Survey 2, Final Scientific Report. (2008).
Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader – the case of killer shrimp, Dikerogammarus villosus. Aquat. Invasions. 9, 267–288 (2014).
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. CHELSA-BIOCLIM + A novel set of global climate-related predictors at kilometre-resolution. EnviDat. https://www.doi.org/10.16904/envidat.332 (2022).
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. Global climate-related predictors at Kilometer resolution for the past and future. Earth Syst. Sci. Data. 14, 5573–5603 (2022).
R Core Team. R: A Language and Environment for Statistical Computing. (2025).
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. SpThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. Ssdm: An R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803 (2017).
Richlen, M. L. & Barber, P. H. A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol. Ecol. Notes. 5, 688–691 (2005).
Astrin, J. J. et al. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One. 11, e0162624 (2016).
Gallhammer, F., Grimm, J., Reier, S. & Sefc, K. M. Prevalence and diversity of acanthocephala in stream-dwelling amphipods (Gammarus fossarum) around an urban area in the eastern Alpine foothills. Parasitology 152, 657–667 (2025).
Koblmüller, S. et al. DNA barcoding for species identification of moss-dwelling invertebrates: performance of nanopore sequencing and coverage in reference database. Divers. (Basel). 16, 196 (2024).
Srivathsan, A. et al. ONTbarcoder and minion barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 1–21 (2021).
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).
Leigh, J. W. & Bryant, D. Popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
Fu, Y. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Paradis, E. & Barrett, J. Pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).
Acknowledgements
We thank our colleagues and students for assistance in sample collection.
Funding
The project was funded by the Austrian Biodiversity Fund of the Federal Ministry of Agriculture and Forestry, Climate and Environmental Protection, Regions and Water Management of the Republic of Austria (project C321069). Péter Takács was supported by the Sustainable Development and Technologies National Program of the Hungarian Academy of Sciences (FFT NP FTA, NP2022-II3/2022). The authors acknowledge the financial support by the University of Graz for Open Access publishing.
Author information
Authors and Affiliations
Contributions
Fund acquisition: KMS. Study design: KMS and ŠDBB. Data collection: ŠDBB, JC, CH, PT, AMG, SK, and KMS. Laboratory work: JG and AMG. Analyses: ŠDBB and KMS. First draft: ŠDBB. Writing: ŠDBB, JC, CH, PT, AMG, SK, and KMS.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Di Batista Borko, Š., Grimm, J., Hahn, C. et al. Habitat preferences and genetic diversity of the amphipod Gammarus roeselii across the Eastern Alps and western Pannonian Basin. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39958-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39958-7