Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Habitat preferences and genetic diversity of the amphipod Gammarus roeselii across the Eastern Alps and western Pannonian Basin
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Habitat preferences and genetic diversity of the amphipod Gammarus roeselii across the Eastern Alps and western Pannonian Basin

  • Špela Di Batista Borko1,
  • Jacqueline Grimm1,
  • Christoph Hahn1,
  • Péter Takács2,
  • Anna-Maria Greilberger1,
  • Stephan Koblmüller1 &
  • …
  • Kristina M. Sefc1 

Scientific Reports , Article number:  (2026) Cite this article

  • 393 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Evolution
  • Genetics

Abstract

Freshwater amphipods often exhibit cryptic diversity and are undergoing range shifts driven by environmental changes. Gammarus roeselii, a species inhabiting streams, rivers and lakes across Europe, diversified into ancient genetic lineages in the Balkan Peninsula and the Pannonian Basin, with only one lineage colonizing Central and Western Europe after the ice ages. We investigated the distribution and genetic diversity of G. roeselii by sampling over 1,000 sites across the eastern Alpine region and the Western Pannonian Basin. Cytochrome oxidase I barcoding assigned all sequenced G. roeselii (528 individuals from 174 sites) to the Central-Western European lineage. The occurrence of G. roeselii was associated with low elevation, high summer temperature and gentle stream and river slopes and was biased towards downstream reaches and rivers with large drainage sizes. Its distribution partially overlapped with G. fossarum, which predominates in cooler, faster-flowing streams. Species distribution modelling under future climate scenarios predicted a range expansion of G. roeselii into current G. fossarum habitat. Genetic diversity patterns are consistent with longstanding stable populations in the Southwestern Pannonian Basin, a post-glacial range expansion across alpine forelands, and recent colonization of some alpine valleys.

Data availability

Sequences were deposited at GenBank under accession numbers PX314984 - PX315511. All data and code used to produce the paper is available at figshare (https://doi.org/10.6084/m9.figshare.31123501).

References

  1. Little, C. J. & Altermatt, F. Species turnover and invasion of dominant freshwater invertebrates alter biodiversity–ecosystem-function relationship. Ecol. Monogr. 88, 461–480 (2018).

    Google Scholar 

  2. Alther, R., Cerroti, F., Cereghetti, E., Krähenbühl, A. & Altermatt, F. Generalization of a density-dependent ecosystem function in dominant aquatic macroinvertebrates. Oikos 2024, e10774 (2024).

  3. Väinölä, R. et al. Springer Netherlands, Dordrecht,. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. in Freshwater Animal Diversity Assessment 241–255 (2007).

  4. Jażdżewski, K. & Roux, A. L. Biogéographie de Gammarus roeselii Gervais En Europe, En particulier En France et En Pologne. Crustaceana Supplement. 13, 272–277 (1988).

    Google Scholar 

  5. Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536 (2020).

    Google Scholar 

  6. Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016 (2017).

  7. Alther, R., Fišer, C. & Altermatt, F. Description of a widely distributed but overlooked amphipod species in the European alps. Zool. J. Linn. Soc. 179, 751–766 (2016).

    Google Scholar 

  8. Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).

    Google Scholar 

  9. Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 40, 1–13 (2017).

    Google Scholar 

  10. Grabowski, M. Alien Crustacea in Polish waters – Amphipoda. Aquat. Invasions. 2, 25–38 (2007).

    Google Scholar 

  11. Copilaș-Ciocianu, D., Sidorov, D. & Šidagytė-Copilas, E. Global distribution and diversity of alien Ponto-Caspian amphipods. Biol. Invasions. 25, 179–195 (2023).

    Google Scholar 

  12. Pöckl, M. Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biol. Invasions. 11, 2021–2041 (2009).

    Google Scholar 

  13. Meßner, U. & Zettler, M. L. Drastic changes of the amphipod fauna in Northern Germany and the displacement of Gammarus lacustris G.O. Sars, 1864 to relict habitats/status. Knowl. Manag Aquat. Ecosyst. 422, 17 (2021).

    Google Scholar 

  14. Kelly, D. W., Bailey, R. J., MacNeil, C., Dick, J. T. A. & McDonald, R. A. Invasion by the amphipod Gammarus pulex alters community composition of native freshwater macroinvertebrates. Divers. Distrib. 12, 525–534 (2006).

    Google Scholar 

  15. Paganelli, D., Gazzola, A., Marchini, A. & Sconfietti, R. The increasing distribution of Gammarus roeselii Gervais, 1835: first record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino river basin (Lombardy, Italy). Bioinvasions Rec. 4, 37–41 (2015).

    Google Scholar 

  16. Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).

    Google Scholar 

  17. Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: the rule and not the exception? Front. Zool. 9, 22 (2012).

    Google Scholar 

  18. Verovnik, R., Sket, B. & Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 14, 4355–4369 (2005).

    Google Scholar 

  19. Pârvulescu, L. et al. Toward scientific clarity in the evolutionary puzzle of Austropotamobius crayfish. J. Biogeogr. 52, e70059 (2025).

    Google Scholar 

  20. Copilaş-Ciocianu, D., Fišer, C., Borza, P. & Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet Evol. 119, 37–49 (2018).

    Google Scholar 

  21. Jourdan, J., Piro, K., Weigand, A. & Plath, M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front. Zool. 16, 29 (2019).

    Google Scholar 

  22. Pandolfi, A., Sconfietti, R., Marchini, A. & Paganelli, D. Spatial distribution and substrate preferences of the non-indigenous amphipod Gammarus roeselii Gervais, 1835. Mar. Freshw. Res. 71, 723–728 (2019).

    Google Scholar 

  23. Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55 (2020).

    Google Scholar 

  24. Mauchart, P., Bereczki, C., Ortmann-Ajkai, A., Csabai, Z. & Szivák, I. Niche segregation between two closely similar Gammarids (Peracarida, Amphipoda) — native vs. naturalized non-native species. Crustaceana 87, 1296–1314 (2014).

    Google Scholar 

  25. Jourdan, J., Fadil, E. T. A., Oehlmann, S. & Hupało, K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. Environ. Int. 183, 108368 (2024).

    Google Scholar 

  26. Lagrue, C. et al. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeselii and possible implications for the invader’s success. Biol. Invasions. 13, 1409–1421 (2011).

    Google Scholar 

  27. Pöckl, M. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeselii in Austrian streams and rivers. Freshw. Biol. 30, 73–91 (1993).

    Google Scholar 

  28. Verberk, W. C. E. P., Leuven, R. S. E. W., van der Velde, G. & Gabel, F. Thermal limits in native and alien freshwater Peracarid crustacea: the role of habitat use and oxygen limitation. Funct. Ecol. 32, 926–936 (2018).

    Google Scholar 

  29. Mauchart, P. et al. Effects of meso- and microhabitat characteristics on the coexistence of two native Gammarid species (Crustacea, Gammaridae). Int. Rev. Hydrobiol. 102, 38–46 (2017).

    Google Scholar 

  30. Hesselschwerdt, J., Necker, J. & Wantzen, K. Matthias. Gammarids in Lake Constance: habitat segregation between the invasive Dikerogammarus villosus and the indigenous Gammarus roeselii. Fundam Appl. Limnol. 173, 177–186 (2009).

    Google Scholar 

  31. Pöckl, M., Webb, B. W. & Sutcliffe, D. W. Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw. Biol. 48, 53–66 (2003).

  32. Pöckl, M. & Humpesch, U. Intra- and inter‐specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw. Biol. 23, 441–455 (1990).

    Google Scholar 

  33. Pöckl, M. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshw. Biol. 27, 211–225 (1992).

    Google Scholar 

  34. Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda). Part II. Gammarus roeselii-group and related species. Bijdragen Tot De Dierkunde 47, 165–196 (1977).

  35. Vornatscher, J. Amphipoda. Catalogus Faunae Austriae. (1965).

  36. Nesemann, H., Pöckl, M. & Wittmann, K. J. Distribution of Epigean malacostraca in the middle and upper Danube (Hungary, Austria, Germany). Miscellanea Zool. Hungarica 10, 49–68 (1995).

  37. Gratton, P., Konopiński, M. K. & Sbordoni, V. Pleistocene evolutionary history of the clouded Apollo (Parnassius mnemosyne): genetic signatures of climate cycles and a ‘time-dependent’ mitochondrial substitution rate. Mol. Ecol. 17, 4248–4262 (2008).

    Google Scholar 

  38. Hammouti, N., Schmitt, T., Seitz, A., Kosuch, J. & Veith, M. Combining mitochondrial and nuclear evidences: a refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in central Europe based on the COI gene. J. Zoological Syst. Evolutionary Res. 48, 115–125 (2010).

    Google Scholar 

  39. Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: evidence for alpine refugia and rapid colonization after the pleistocene glaciations. Mol. Ecol. 14, 1133–1150 (2005).

    Google Scholar 

  40. Weigand, A. M., Pfenninger, M. & Jochum, A. Klussmann-Kolb, A. Alpine crossroads or origin of genetic diversity? Comparative phylogeography of two sympatric microgastropod species. PLoS One. 7, e37089 (2012).

    Google Scholar 

  41. Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European alps. Mol. Ecol. 14, 3547–3555 (2005).

    Google Scholar 

  42. Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European Beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008).

    Google Scholar 

  43. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    Google Scholar 

  44. Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 1–11 (2016).

    Google Scholar 

  45. Altermatt, F. et al. Diversity and distribution of freshwater amphipod species in Switzerland (Crustacea: Amphipoda). PLoS One. 9, e110328 (2014).

    Google Scholar 

  46. Gabel, F. et al. Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates. Biol. Invasions. 13, 1843–1853 (2011).

    Google Scholar 

  47. Kley, A. et al. Influence of substrate preference and complexity on co-existence of two non-native gammarideans (Crustacea: Amphipoda). Aquat. Ecol. 43, 1047–1059 (2009).

    Google Scholar 

  48. Enns, D., Cunze, S., Baker, N. J., Oehlmann, J. & Jourdan, J. Flushing away the future: the effects of wastewater treatment plants on aquatic invertebrates. Water Res. 243, 120388 (2023).

    Google Scholar 

  49. Pelikan, L., Šidagytė-Copilas, E., Garbaras, A., Jourdan, J. & Copilaș-Ciocianu, D. Competitive interaction in headwaters: slow upstream migration leads to trophic competition between native and non-native amphipods. NeoBiota 90, 193–216 (2024).

    Google Scholar 

  50. Gergs, R., Schlag, L. & Rothhaupt, K. O. Different ammonia tolerances may facilitate spatial coexistence of Gammarus roeselii and the strong invader Dikerogammarus villosus. Biol. Invasions. 15, 1783–1793 (2013).

    Google Scholar 

  51. Kabus, J. et al. Uncovering the Grinnellian niche space of the cryptic species complex Gammarus roeselii. PeerJ 11, e15800 (2023).

    Google Scholar 

  52. Zaidel, P. A. et al. Impacts of small dams on stream temperature. Ecol. Indic. 120, 106878 (2021).

    Google Scholar 

  53. Liew, J. H., Tan, H. H. & Yeo, D. C. J. Dammed rivers: impoundments facilitate fish invasions. Freshw. Biol. 61, 1421–1429 (2016).

    Google Scholar 

  54. Kralj, T., Žganec, K., Ćuk, R. & Valić, D. Contribution of alien Peracarid crustaceans to the biocontamination of benthic macroinvertebrate assemblages in Croatian large rivers. Limnetica 41, 181–199 (2022).

    Google Scholar 

  55. Kirchengast, M. Faunistische Untersuchungen im hyporheischen Interstitial des Flusses Mur (Steiermark, Oesterreich). Int. Rev. Gesamten Hydrobiol. 69, 729–746 (1984).

    Google Scholar 

  56. Weiss, S. J., Kopun, T. & Sušnik Bajec, S. Assessing natural and disturbed population structure in European grayling Thymallus thymallus: melding phylogeographic, population genetic and jurisdictional perspectives for conservation planning. J. Fish. Biol. 82, 505–521 (2013).

    Google Scholar 

  57. Liška, I., Wagner, F. & Slobodník, J. Joint Danube Survey 2, Final Scientific Report. (2008).

  58. Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader – the case of killer shrimp, Dikerogammarus villosus. Aquat. Invasions. 9, 267–288 (2014).

    Google Scholar 

  59. Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. CHELSA-BIOCLIM + A novel set of global climate-related predictors at kilometre-resolution. EnviDat. https://www.doi.org/10.16904/envidat.332 (2022).

  60. Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. N. Global climate-related predictors at Kilometer resolution for the past and future. Earth Syst. Sci. Data. 14, 5573–5603 (2022).

    Google Scholar 

  61. R Core Team. R: A Language and Environment for Statistical Computing. (2025).

  62. Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Google Scholar 

  63. Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. SpThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Google Scholar 

  64. Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. Ssdm: An R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803 (2017).

    Google Scholar 

  65. Richlen, M. L. & Barber, P. H. A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol. Ecol. Notes. 5, 688–691 (2005).

    Google Scholar 

  66. Astrin, J. J. et al. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One. 11, e0162624 (2016).

    Google Scholar 

  67. Gallhammer, F., Grimm, J., Reier, S. & Sefc, K. M. Prevalence and diversity of acanthocephala in stream-dwelling amphipods (Gammarus fossarum) around an urban area in the eastern Alpine foothills. Parasitology 152, 657–667 (2025).

    Google Scholar 

  68. Koblmüller, S. et al. DNA barcoding for species identification of moss-dwelling invertebrates: performance of nanopore sequencing and coverage in reference database. Divers. (Basel). 16, 196 (2024).

    Google Scholar 

  69. Srivathsan, A. et al. ONTbarcoder and minion barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 1–21 (2021).

    Google Scholar 

  70. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  71. Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).

    Google Scholar 

  72. Leigh, J. W. & Bryant, D. Popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Google Scholar 

  73. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    Google Scholar 

  74. Fu, Y. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).

    Google Scholar 

  75. Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    Google Scholar 

  76. Paradis, E. & Barrett, J. Pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank our colleagues and students for assistance in sample collection.

Funding

The project was funded by the Austrian Biodiversity Fund of the Federal Ministry of Agriculture and Forestry, Climate and Environmental Protection, Regions and Water Management of the Republic of Austria (project C321069). Péter Takács was supported by the Sustainable Development and Technologies National Program of the Hungarian Academy of Sciences (FFT NP FTA, NP2022-II3/2022). The authors acknowledge the financial support by the University of Graz for Open Access publishing.

Author information

Authors and Affiliations

  1. Institute of Biology, University of Graz, Graz, Austria

    Špela Di Batista Borko, Jacqueline Grimm, Christoph Hahn, Anna-Maria Greilberger, Stephan Koblmüller & Kristina M. Sefc

  2. HUN-REN Balaton Limnological Research Institute, Tihany, Hungary

    Péter Takács

Authors
  1. Špela Di Batista Borko
    View author publications

    Search author on:PubMed Google Scholar

  2. Jacqueline Grimm
    View author publications

    Search author on:PubMed Google Scholar

  3. Christoph Hahn
    View author publications

    Search author on:PubMed Google Scholar

  4. Péter Takács
    View author publications

    Search author on:PubMed Google Scholar

  5. Anna-Maria Greilberger
    View author publications

    Search author on:PubMed Google Scholar

  6. Stephan Koblmüller
    View author publications

    Search author on:PubMed Google Scholar

  7. Kristina M. Sefc
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Fund acquisition: KMS. Study design: KMS and ŠDBB. Data collection: ŠDBB, JC, CH, PT, AMG, SK, and KMS. Laboratory work: JG and AMG. Analyses: ŠDBB and KMS. First draft: ŠDBB. Writing: ŠDBB, JC, CH, PT, AMG, SK, and KMS.

Corresponding author

Correspondence to Kristina M. Sefc.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Batista Borko, Š., Grimm, J., Hahn, C. et al. Habitat preferences and genetic diversity of the amphipod Gammarus roeselii across the Eastern Alps and western Pannonian Basin. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39958-7

Download citation

  • Received: 22 September 2025

  • Accepted: 09 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39958-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene