Abstract
The design and development of functional self-assembled soft matter structures, particularly liquid crystals that adapt responsively to multiple stimuli, are essential for both fundamental scientific research and advanced technological applications. This work investigates how chiral dopant concentration governs the field-induced unwinding and hysteresis behavior of cholesteric liquid crystals (E7 liquid crystal mixture doped with CB15) confined in homeotropic cells. The study measures discrete pitch jumps and pronounced hysteresis loops as a function of dopant concentration in both voltage- and magnetic-field-driven unwinding, providing experimental insight into composition-controlled phase transitions in thin-layer geometries. A critical dopant concentration was identified below which the cholesteric helix does not form due to surface anchoring effects. The critical fields increase with the increase of dopant concentration, and a linear dependence of the magnetic threshold on concentration is demonstrated. Experimental observations are compared with theoretical models for infinite systems, with an emphasis on discrete switching phenomena and threshold behaviors. These results provide new guidelines for designing responsive cholesteric soft materials and electro- and magneto-optical devices that exhibit controllable, stepwise switching.
Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.
References
Popov, P., Mann, E. K. & Jakli, A. Thermotropic liquid crystal films for biosensors and beyond. J. Mater. Chem. B 5, 5061–5078. https://doi.org/10.1039/C7TB00809K (2017).
Humar, M. & Musevic, I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt. Express 19, 19836–19844. https://doi.org/10.1364/OE.19.019836 (2011).
Popov, N. et al. Thermotropic liquid crystal-assisted chemical and biological sensors. Materials 11, 14–17. https://doi.org/10.3390/ma11010020 (2018).
Ortiz, B. J. et al. Liquid crystal emulsions that intercept and report on bacterial quorum sensing. ACS Appl. Mater. Interfaces. 12, 29056–29065. https://doi.org/10.1021/acsami.0c05792 (2020).
Wang, Z. et al. Applications of liquid crystals in biosensing. Soft Matter 17, 4675–4702. https://doi.org/10.1039/D0SM02088E (2021).
Kizhakidathazhath, R. et al. Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response. Adv. Funct. Mater. 30, 1909537. https://doi.org/10.1002/adfm.201909537 (2020).
Sharma, A. & Lagerwall, J. P. F. Electrospun composite liquid crystal elastomer fibers. Materials 11, 393. https://doi.org/10.3390/ma11030393 (2018).
de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
Blinov, L. M. Structure and Properties of Liquid Crystals (Springer, Netherlands, 2010).
Rudquist, P. & Lagerwall, S. T. Applications of flexoelectricity. In Flexoelectricity in Liquid Crystals, Theory, Experiments and Applications (eds Buka, A. & Eber, N.) Ch. 7 (Imperial College Press, 2012).
Ireland, P. T. & Jones, T. V. The response time of a surface thermometer employing encapsulated thermochromic liquid crystals. J. Phys. E: Sci. Instrum. 20, 1195–1199. https://doi.org/10.1088/0022-3735/20/10/008 (1987).
Schelski, K. et al. Quantitative volatile organic compound sensing with liquid crystal core fibers. Cell Rep. Phys. Sci. 2, 100661. https://doi.org/10.1016/j.xcrp.2021.100661 (2021).
Jang, J.-H. & Park, S.-Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics. Sens. Actuators, B Chem. 241, 636–643. https://doi.org/10.1016/j.snb.2016.10.118 (2017).
Mulder, D. J., Schenning, A. P. H. J. & Bastiaansen, C. W. M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C 2, 6695–6705. https://doi.org/10.1039/C4TC00785A (2014).
Wang, I.-T. et al. Sensitive, color-indicating and labeling-free multi-detection cholesteric liquid crystal biosensing chips for detecting albumin. Polymers 13, 1463. https://doi.org/10.3390/polym13091463 (2021).
Finkelmann, H. et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072. (2001).
Choi, G. J. et al. Infrared shutter using cholesteric liquid crystal. Appl. Opt. 55, 4436–4440. https://doi.org/10.1364/AO.55.004436 (2016).
Stebryte, M. Reflective optical components based on chiral liquid crystal for head-up displays. Liq. Cryst. Today 30, 36–45. https://doi.org/10.1080/1358314X.2021.2036431 (2021).
Chen, Q. et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt. Express 27, 12039–12047. https://doi.org/10.1364/OE.27.012039 (2019).
Li, Y. et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt. Express 29, 6011–6020. https://doi.org/10.1364/OE.419595 (2021).
Oh, S.-W. et al. Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Adv. 7, 19497–19501. https://doi.org/10.1039/C7RA01507K (2017).
Yoon, T.-H., Huh, J.-W. & Yu, B.-H. Long-pitch cholesteric liquid crystals for display applications. In Proc. SPIE 9004, 1. https://doi.org/10.1117/12.2041407 (2014).
Hsiao, Y.-C. et al. Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal. Opt. Lett. 36, 2632–2634. https://doi.org/10.1364/OL.36.002632 (2011).
Pathinti, R. S. et al. ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application. J. Alloys Compd. 963, 171198. https://doi.org/10.1016/j.jallcom.2023.171198 (2023).
Pschyklenk, L. et al. Optical gas sensing with encapsulated chiral-nematic liquid crystals. ACS Appl. Polym. Mater. 2, 1925–1932. https://doi.org/10.1021/acsapm.0c00142 (2020).
Honaker, L. W. et al. Elastic sheath-liquid crystal core fibres achieved by microfluidic wet spinning. J. Mater. Chem. C 7, 11588–11596. https://doi.org/10.1039/C9TC03836A (2019).
Lee, H.-G. et al. Cholesteric liquid crystal droplets for biosensors. ACS Appl. Mater. Interfaces. 8, 26407–26417. https://doi.org/10.1021/acsami.6b09624 (2016).
Paterson, D. A. et al. Chiral nematic liquid crystal droplets as a basis for sensor systems. Mol. Syst. Des. Eng. 7, 607–621. https://doi.org/10.1039/D1ME00189B (2022).
Lavrentovich, M. O. & Tran, L. Undulation instabilities in cholesteric liquid crystals induced by anchoring transitions. Phys. Rev. Res. 2, 1–10. https://doi.org/10.1103/PhysRevResearch.2.023128 (2020).
de Jeu, W. H. Physical properties of liquid crystalline materials (Gordon and Breach, New York, 1980).
de Gennes, P. G. Calcul de la distorsion d’une structure cholesterique par un champ magnetique. Solid State Commun. 6, 163–165. https://doi.org/10.1016/0038-1098(68)90024-0 (1968).
Meyer, R. B. Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl. Phys. Lett. 12, 281–282. https://doi.org/10.1063/1.1651992 (1968).
Wysocki, J. J., Adams, J. & Haas, W. Electric-field-induced phase change in cholesteric liquid crystals. Phys. Rev. Lett. 20, 1024–1026. https://doi.org/10.1103/PhysRevLett.20.1024 (1968).
Meyer, R. B. Distortion of a cholesteric structure by a magnetic field. Appl. Phys. Lett. 14, 208–209. https://doi.org/10.1063/1.1652780 (1969).
Durand, G. et al. Magnetically induced cholesteric to nematic phase transition in liquid crystals. Phys. Rev. Lett. 22, 227–228. https://doi.org/10.1103/PhysRevLett.22.227 (1969).
Goosense, W. J. A. The influence of homeotropic and planar boundary conditions on the field induced cholesteric-nematic transition. J. Phys. (France) 43, 1469–1474. https://doi.org/10.1051/jphys:0198200430100146900 (1982).
Schlangen, L. J. M. et al. The field-induced cholesteric-nematic phase transition and its dependence on layer thickness, boundary conditions, and temperature. J. Appl. Phys. 87, 3723–3729. https://doi.org/10.1063/1.372407 (2000).
Gao, M. et al. Flexoelectric and dielectric effects in uniform lying helix cholesteric liquid crystals under cell boundary conditions. Eur. Phys. J. E 44, 34. https://doi.org/10.1140/epje/s10189-020-00003-8 (2021).
Palto, S. P. et al. Spiral pitch control in cholesteric liquid crystal layers with hybrid boundary conditions. Crystals 13, 10. https://doi.org/10.3390/cryst13010010 (2023).
Rey, A. D. Flow alignment in helix uncoiling of sheared cholesteric liquid crystals. Phys. Rev. E 53, 4198–4201. https://doi.org/10.1103/PhysRevE.53.4198 (1996).
Zakhlevnykh, A. N. & Shavkunov, V. S. Magnetic-field-induced stepwise director reorientation and untwisting of a planar cholesteric structure with finite anchoring energy. Phys. Rev. E 94, 042708. https://doi.org/10.1103/PhysRevE.94.042708 (2016).
Pinkevich, I. P. et al. Influence of light induced molecular conformational transformations and anchoring energy on cholesteric liquid crystal pitch and dielectric properties. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 222, 269–278. https://doi.org/10.1080/15421409208048701 (1992).
Yoon, H. G., Roberts, N. W. & Gleeson, H. F. An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device. Liq. Cryst. 33, 503–510. https://doi.org/10.1080/02678290600633501 (2006).
McKay, G. Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal. Eur. Phys. J. E 35, 74–81. https://doi.org/10.1140/epje/i2012-12074-1 (2012).
Oswald, P. Surface-field-induced heliconical instability in the cholesteric phase of a mixture of a flexible dimer (CB7CB) and a rodlike molecule (8CB). Phys. Rev. E 105, 024704. https://doi.org/10.1103/PhysRevE.105.024704 (2022).
Dreher, R. Remarks on the distortion of a cholesteric structure by a magnetic field. Solid State Commun. 13, 1571–1574. https://doi.org/10.1016/0038-1098(73)90239-1 (1973).
Smalyukh, I. I. et al. Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys. Rev. E 72, 061707. https://doi.org/10.1103/PhysRevE.72.061707 (2005).
Wang, K. et al. Research progress of electrically driven multi-stable cholesteric liquid crystals. Materials 17, 136. https://doi.org/10.3390/ma17010136 (2024).
Oswald, P. et al. TIC Reorientation under electric and magnetic fields in homeotropic samples of cholesteric LC with negative dielectric anisotropy. Crystals 13, 957. https://doi.org/10.3390/cryst13060957 (2023).
Tenishchev, S. S. et al. Hysteresis and Freedericksz thresholds for twisted states in chiral nematic liquid crystals: Minimum-energy path approach. J. Mol. Liq. 325, 115242. https://doi.org/10.1016/j.molliq.2020.115242 (2021).
Dierking, I. Textures of Liquid Crystals. Wiley-VCH (2003).
Shiyanovskii, S. V. et al. Director structures of cholesteric diffraction gratings. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 358, 225–236 https://doi.org/10.1080/10587250108028283 (2001).
Fuh, A.Y.-G. et al. Dynamic pattern formation and beam-steering characteristics of cholesteric gratings. Jpn. J. Appl. Phys. 41, 211–218. https://doi.org/10.1143/JJAP.41.211 (2002).
Wu, J.-J. et al. Phase gratings in pretilted homeotropic cholesteric liquid crystal films. Jpn. J. Appl. Phys. 41, 6108–6109. https://doi.org/10.1143/JJAP.41.6108 (2002).
Kerllenevich, B. & Coche, A. Field-induced cholesteric-nematic transition and optical bistability. Mol. Cryst. Liq. Cryst. 124, 149–161. https://doi.org/10.1080/00268948508079473 (1985).
Ohtsuka, T. et al. Liquid crystal matrix display. Jpn. J. Appl. Phys. 12, 371. https://doi.org/10.1143/JJAP.12.371 (1973).
Lin-Hendel, C. G. Tristability in the electric-field-induced phase transformation of liquid-crystal films. Appl. Phys. Lett. 38, 615–617. https://doi.org/10.1063/1.92453 (1981).
Greubel, W. Bistability behaviour of texture in cholesteric liquid crystals in an electric field. Appl. Phys. Lett. 25, 5–7. https://doi.org/10.1063/1.1655274 (1974).
Kawachi, M. & Kogure, O. Hysteresis behaviour of texture in the field-induced nematic-cholesteric relaxation. Jpn. J. Appl. Phys. 16, 1673. https://doi.org/10.1143/JJAP.16.1673 (1977).
Mochizuki, A. & Kobayashi, S. Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process. Mol. Cryst. Liq. Cryst. 225, 89–98. https://doi.org/10.1080/10587259308036220 (1993).
van Sprang, H. A. & van de Venne, J. L. M. Field-induced cholesteric-nematic transition. J. Appl. Phys. 57, 175 (1985).
Oswald, P. et al. Static and dynamic properties of cholesteric fingers in electric field. Phys. Rep. 337, 67–96. https://doi.org/10.1016/S0370-1573(00)00056-9 (2000).
Brimicombe, P. D. et al. Measurement of the twist elastic constant of nematic liquid crystals using pi-cell devices. J. Appl. Phys. 101, 043108. https://doi.org/10.1063/1.2432311 (2007).
Madhusudana, N. V. & Pratibha, R. Elasticity and orientational order in some cyanobiphenyls: part IV. Reanalysis of the data. Mol. Cryst. Liq. Cryst. 89, 249–257. https://doi.org/10.1080/00268948208074481 (1982).
Brochard, F. & de Gennes, P. G. Theory of magnetic suspensions in liquid crystals. J. Phys. France 31, 691. https://doi.org/10.1051/jphys:01970003107069100 (1970).
Krakhalev, M. N. et al. Untwisting of the helical structure of cholesteric droplets with homeotropic surface anchoring. JETP Lett. 105, 51. https://doi.org/10.1134/S002136401701012X (2017).
Pirkl, S. Cholesteric-nematic phase change in wedge electro-optical cell with homeotropic anchoring. Cryst. Res. Technol. 26, K111–K114. https://doi.org/10.1002/crat.2170260523 (1991).
Ribiere, P. & Oswald, P. Nucleaction and growth of cholesteric fingers under electric field. J. Phys. (France) 51, 1703–1720. https://doi.org/10.1051/jphys:0199000510160170300 (1990).
Abbate, G., Arnone, G. & Lauria, A. Nonlinear effects in nematics doped by dyes and chiral agents. in Novel Optical Materials and Applications (eds. Khoo, I. C., Simoni, F. & Umeton, C.) 133–148 (John Wiley & Sons Inc, 1997).
Juhl, A. T. et al. Ordering of glass rods in nematic and cholesteric liquid crystals. Opt. Mater. Express 8, 1536–1547. https://doi.org/10.1364/OME.1.001536 (2011).
Ye, W. et al. Accurate measurement of the twist elastic constant of liquid crystal by using capacitance method. Liq. Cryst. 46, 349–355. https://doi.org/10.1080/02678292.2018.1501823 (2018).
Eber, N. Undulation instability in compensated cholesterics. Report KFKI 86 (1984).
Buka, A. et al. Electroconvection in nematic liquid crystals with positive dielectric and negative conductivity anisotropy. Phys. Rev. E 66, 051713. https://doi.org/10.1103/PhysRevE.66.051713 (2002).
Belyaev, S. V. & Blinov, L. M. Step unwinding of a spiral in a cholesteric liquid crystal. JETP Lett. 30, 99. http://jetpletters.ru/ps/1362/article_20595.pdf (1979).
Funding
VL thanks EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V04-00298.
Author information
Authors and Affiliations
Contributions
VL: conceptualization, investigation, methodology, funding acquisition, writing original draft. DM: data curation, formal analysis, writing—review and editing. DP: data curation, formal analysis, writing—review and editing. TTK: data curation, writing—review and editing. KK: visualization, formal analysis. PK: resources. NT: data curation, writing—review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Lacková, V., Makarov, D.V., Petrov, D.A. et al. Effect of a chiral dopant on hysteresis phenomena induced by external fields in liquid crystals. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40009-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-40009-4