Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Effect of a chiral dopant on hysteresis phenomena induced by external fields in liquid crystals
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Effect of a chiral dopant on hysteresis phenomena induced by external fields in liquid crystals

  • Veronika Lacková1,
  • Dmitriy V. Makarov2,
  • Danil A. Petrov2,
  • Tibor Tóth-Katona3,
  • Katarína Kónyová1,
  • Peter Kopčanský1 &
  • …
  • Natália Tomašovičová1 

Scientific Reports , Article number:  (2026) Cite this article

  • 355 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Physics

Abstract

The design and development of functional self-assembled soft matter structures, particularly liquid crystals that adapt responsively to multiple stimuli, are essential for both fundamental scientific research and advanced technological applications. This work investigates how chiral dopant concentration governs the field-induced unwinding and hysteresis behavior of cholesteric liquid crystals (E7 liquid crystal mixture doped with CB15) confined in homeotropic cells. The study measures discrete pitch jumps and pronounced hysteresis loops as a function of dopant concentration in both voltage- and magnetic-field-driven unwinding, providing experimental insight into composition-controlled phase transitions in thin-layer geometries. A critical dopant concentration was identified below which the cholesteric helix does not form due to surface anchoring effects. The critical fields increase with the increase of dopant concentration, and a linear dependence of the magnetic threshold on concentration is demonstrated. Experimental observations are compared with theoretical models for infinite systems, with an emphasis on discrete switching phenomena and threshold behaviors. These results provide new guidelines for designing responsive cholesteric soft materials and electro- and magneto-optical devices that exhibit controllable, stepwise switching.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Popov, P., Mann, E. K. & Jakli, A. Thermotropic liquid crystal films for biosensors and beyond. J. Mater. Chem. B 5, 5061–5078. https://doi.org/10.1039/C7TB00809K (2017).

    Google Scholar 

  2. Humar, M. & Musevic, I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt. Express 19, 19836–19844. https://doi.org/10.1364/OE.19.019836 (2011).

    Google Scholar 

  3. Popov, N. et al. Thermotropic liquid crystal-assisted chemical and biological sensors. Materials 11, 14–17. https://doi.org/10.3390/ma11010020 (2018).

    Google Scholar 

  4. Ortiz, B. J. et al. Liquid crystal emulsions that intercept and report on bacterial quorum sensing. ACS Appl. Mater. Interfaces. 12, 29056–29065. https://doi.org/10.1021/acsami.0c05792 (2020).

    Google Scholar 

  5. Wang, Z. et al. Applications of liquid crystals in biosensing. Soft Matter 17, 4675–4702. https://doi.org/10.1039/D0SM02088E (2021).

    Google Scholar 

  6. Kizhakidathazhath, R. et al. Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response. Adv. Funct. Mater. 30, 1909537. https://doi.org/10.1002/adfm.201909537 (2020).

    Google Scholar 

  7. Sharma, A. & Lagerwall, J. P. F. Electrospun composite liquid crystal elastomer fibers. Materials 11, 393. https://doi.org/10.3390/ma11030393 (2018).

    Google Scholar 

  8. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).

    Google Scholar 

  9. Blinov, L. M. Structure and Properties of Liquid Crystals (Springer, Netherlands, 2010).

    Google Scholar 

  10. Rudquist, P. & Lagerwall, S. T. Applications of flexoelectricity. In Flexoelectricity in Liquid Crystals, Theory, Experiments and Applications (eds Buka, A. & Eber, N.) Ch. 7 (Imperial College Press, 2012).

  11. Ireland, P. T. & Jones, T. V. The response time of a surface thermometer employing encapsulated thermochromic liquid crystals. J. Phys. E: Sci. Instrum. 20, 1195–1199. https://doi.org/10.1088/0022-3735/20/10/008 (1987).

    Google Scholar 

  12. Schelski, K. et al. Quantitative volatile organic compound sensing with liquid crystal core fibers. Cell Rep. Phys. Sci. 2, 100661. https://doi.org/10.1016/j.xcrp.2021.100661 (2021).

    Google Scholar 

  13. Jang, J.-H. & Park, S.-Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics. Sens. Actuators, B Chem. 241, 636–643. https://doi.org/10.1016/j.snb.2016.10.118 (2017).

    Google Scholar 

  14. Mulder, D. J., Schenning, A. P. H. J. & Bastiaansen, C. W. M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C 2, 6695–6705. https://doi.org/10.1039/C4TC00785A (2014).

    Google Scholar 

  15. Wang, I.-T. et al. Sensitive, color-indicating and labeling-free multi-detection cholesteric liquid crystal biosensing chips for detecting albumin. Polymers 13, 1463. https://doi.org/10.3390/polym13091463 (2021).

    Google Scholar 

  16. Finkelmann, H. et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072. (2001).

    Google Scholar 

  17. Choi, G. J. et al. Infrared shutter using cholesteric liquid crystal. Appl. Opt. 55, 4436–4440. https://doi.org/10.1364/AO.55.004436 (2016).

    Google Scholar 

  18. Stebryte, M. Reflective optical components based on chiral liquid crystal for head-up displays. Liq. Cryst. Today 30, 36–45. https://doi.org/10.1080/1358314X.2021.2036431 (2021).

    Google Scholar 

  19. Chen, Q. et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt. Express 27, 12039–12047. https://doi.org/10.1364/OE.27.012039 (2019).

    Google Scholar 

  20. Li, Y. et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt. Express 29, 6011–6020. https://doi.org/10.1364/OE.419595 (2021).

    Google Scholar 

  21. Oh, S.-W. et al. Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Adv. 7, 19497–19501. https://doi.org/10.1039/C7RA01507K (2017).

    Google Scholar 

  22. Yoon, T.-H., Huh, J.-W. & Yu, B.-H. Long-pitch cholesteric liquid crystals for display applications. In Proc. SPIE 9004, 1. https://doi.org/10.1117/12.2041407 (2014).

    Google Scholar 

  23. Hsiao, Y.-C. et al. Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal. Opt. Lett. 36, 2632–2634. https://doi.org/10.1364/OL.36.002632 (2011).

    Google Scholar 

  24. Pathinti, R. S. et al. ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application. J. Alloys Compd. 963, 171198. https://doi.org/10.1016/j.jallcom.2023.171198 (2023).

    Google Scholar 

  25. Pschyklenk, L. et al. Optical gas sensing with encapsulated chiral-nematic liquid crystals. ACS Appl. Polym. Mater. 2, 1925–1932. https://doi.org/10.1021/acsapm.0c00142 (2020).

    Google Scholar 

  26. Honaker, L. W. et al. Elastic sheath-liquid crystal core fibres achieved by microfluidic wet spinning. J. Mater. Chem. C 7, 11588–11596. https://doi.org/10.1039/C9TC03836A (2019).

    Google Scholar 

  27. Lee, H.-G. et al. Cholesteric liquid crystal droplets for biosensors. ACS Appl. Mater. Interfaces. 8, 26407–26417. https://doi.org/10.1021/acsami.6b09624 (2016).

    Google Scholar 

  28. Paterson, D. A. et al. Chiral nematic liquid crystal droplets as a basis for sensor systems. Mol. Syst. Des. Eng. 7, 607–621. https://doi.org/10.1039/D1ME00189B (2022).

    Google Scholar 

  29. Lavrentovich, M. O. & Tran, L. Undulation instabilities in cholesteric liquid crystals induced by anchoring transitions. Phys. Rev. Res. 2, 1–10. https://doi.org/10.1103/PhysRevResearch.2.023128 (2020).

    Google Scholar 

  30. de Jeu, W. H. Physical properties of liquid crystalline materials (Gordon and Breach, New York, 1980).

    Google Scholar 

  31. de Gennes, P. G. Calcul de la distorsion d’une structure cholesterique par un champ magnetique. Solid State Commun. 6, 163–165. https://doi.org/10.1016/0038-1098(68)90024-0 (1968).

    Google Scholar 

  32. Meyer, R. B. Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl. Phys. Lett. 12, 281–282. https://doi.org/10.1063/1.1651992 (1968).

    Google Scholar 

  33. Wysocki, J. J., Adams, J. & Haas, W. Electric-field-induced phase change in cholesteric liquid crystals. Phys. Rev. Lett. 20, 1024–1026. https://doi.org/10.1103/PhysRevLett.20.1024 (1968).

    Google Scholar 

  34. Meyer, R. B. Distortion of a cholesteric structure by a magnetic field. Appl. Phys. Lett. 14, 208–209. https://doi.org/10.1063/1.1652780 (1969).

    Google Scholar 

  35. Durand, G. et al. Magnetically induced cholesteric to nematic phase transition in liquid crystals. Phys. Rev. Lett. 22, 227–228. https://doi.org/10.1103/PhysRevLett.22.227 (1969).

    Google Scholar 

  36. Goosense, W. J. A. The influence of homeotropic and planar boundary conditions on the field induced cholesteric-nematic transition. J. Phys. (France) 43, 1469–1474. https://doi.org/10.1051/jphys:0198200430100146900 (1982).

    Google Scholar 

  37. Schlangen, L. J. M. et al. The field-induced cholesteric-nematic phase transition and its dependence on layer thickness, boundary conditions, and temperature. J. Appl. Phys. 87, 3723–3729. https://doi.org/10.1063/1.372407 (2000).

    Google Scholar 

  38. Gao, M. et al. Flexoelectric and dielectric effects in uniform lying helix cholesteric liquid crystals under cell boundary conditions. Eur. Phys. J. E 44, 34. https://doi.org/10.1140/epje/s10189-020-00003-8 (2021).

    Google Scholar 

  39. Palto, S. P. et al. Spiral pitch control in cholesteric liquid crystal layers with hybrid boundary conditions. Crystals 13, 10. https://doi.org/10.3390/cryst13010010 (2023).

    Google Scholar 

  40. Rey, A. D. Flow alignment in helix uncoiling of sheared cholesteric liquid crystals. Phys. Rev. E 53, 4198–4201. https://doi.org/10.1103/PhysRevE.53.4198 (1996).

    Google Scholar 

  41. Zakhlevnykh, A. N. & Shavkunov, V. S. Magnetic-field-induced stepwise director reorientation and untwisting of a planar cholesteric structure with finite anchoring energy. Phys. Rev. E 94, 042708. https://doi.org/10.1103/PhysRevE.94.042708 (2016).

    Google Scholar 

  42. Pinkevich, I. P. et al. Influence of light induced molecular conformational transformations and anchoring energy on cholesteric liquid crystal pitch and dielectric properties. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 222, 269–278. https://doi.org/10.1080/15421409208048701 (1992).

  43. Yoon, H. G., Roberts, N. W. & Gleeson, H. F. An experimental investigation of discrete changes in pitch in a thin, planar chiral nematic device. Liq. Cryst. 33, 503–510. https://doi.org/10.1080/02678290600633501 (2006).

    Google Scholar 

  44. McKay, G. Bistable surface anchoring and hysteresis of pitch jumps in a planar cholesteric liquid crystal. Eur. Phys. J. E 35, 74–81. https://doi.org/10.1140/epje/i2012-12074-1 (2012).

    Google Scholar 

  45. Oswald, P. Surface-field-induced heliconical instability in the cholesteric phase of a mixture of a flexible dimer (CB7CB) and a rodlike molecule (8CB). Phys. Rev. E 105, 024704. https://doi.org/10.1103/PhysRevE.105.024704 (2022).

    Google Scholar 

  46. Dreher, R. Remarks on the distortion of a cholesteric structure by a magnetic field. Solid State Commun. 13, 1571–1574. https://doi.org/10.1016/0038-1098(73)90239-1 (1973).

    Google Scholar 

  47. Smalyukh, I. I. et al. Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys. Rev. E 72, 061707. https://doi.org/10.1103/PhysRevE.72.061707 (2005).

    Google Scholar 

  48. Wang, K. et al. Research progress of electrically driven multi-stable cholesteric liquid crystals. Materials 17, 136. https://doi.org/10.3390/ma17010136 (2024).

    Google Scholar 

  49. Oswald, P. et al. TIC Reorientation under electric and magnetic fields in homeotropic samples of cholesteric LC with negative dielectric anisotropy. Crystals 13, 957. https://doi.org/10.3390/cryst13060957 (2023).

    Google Scholar 

  50. Tenishchev, S. S. et al. Hysteresis and Freedericksz thresholds for twisted states in chiral nematic liquid crystals: Minimum-energy path approach. J. Mol. Liq. 325, 115242. https://doi.org/10.1016/j.molliq.2020.115242 (2021).

    Google Scholar 

  51. Dierking, I. Textures of Liquid Crystals. Wiley-VCH (2003).

  52. Shiyanovskii, S. V. et al. Director structures of cholesteric diffraction gratings. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 358, 225–236 https://doi.org/10.1080/10587250108028283 (2001).

  53. Fuh, A.Y.-G. et al. Dynamic pattern formation and beam-steering characteristics of cholesteric gratings. Jpn. J. Appl. Phys. 41, 211–218. https://doi.org/10.1143/JJAP.41.211 (2002).

    Google Scholar 

  54. Wu, J.-J. et al. Phase gratings in pretilted homeotropic cholesteric liquid crystal films. Jpn. J. Appl. Phys. 41, 6108–6109. https://doi.org/10.1143/JJAP.41.6108 (2002).

    Google Scholar 

  55. Kerllenevich, B. & Coche, A. Field-induced cholesteric-nematic transition and optical bistability. Mol. Cryst. Liq. Cryst. 124, 149–161. https://doi.org/10.1080/00268948508079473 (1985).

    Google Scholar 

  56. Ohtsuka, T. et al. Liquid crystal matrix display. Jpn. J. Appl. Phys. 12, 371. https://doi.org/10.1143/JJAP.12.371 (1973).

    Google Scholar 

  57. Lin-Hendel, C. G. Tristability in the electric-field-induced phase transformation of liquid-crystal films. Appl. Phys. Lett. 38, 615–617. https://doi.org/10.1063/1.92453 (1981).

    Google Scholar 

  58. Greubel, W. Bistability behaviour of texture in cholesteric liquid crystals in an electric field. Appl. Phys. Lett. 25, 5–7. https://doi.org/10.1063/1.1655274 (1974).

    Google Scholar 

  59. Kawachi, M. & Kogure, O. Hysteresis behaviour of texture in the field-induced nematic-cholesteric relaxation. Jpn. J. Appl. Phys. 16, 1673. https://doi.org/10.1143/JJAP.16.1673 (1977).

    Google Scholar 

  60. Mochizuki, A. & Kobayashi, S. Surface effect on the threshold electric fields of cholesteric-nematic phase transition and its reverse process. Mol. Cryst. Liq. Cryst. 225, 89–98. https://doi.org/10.1080/10587259308036220 (1993).

    Google Scholar 

  61. van Sprang, H. A. & van de Venne, J. L. M. Field-induced cholesteric-nematic transition. J. Appl. Phys. 57, 175 (1985).

    Google Scholar 

  62. Oswald, P. et al. Static and dynamic properties of cholesteric fingers in electric field. Phys. Rep. 337, 67–96. https://doi.org/10.1016/S0370-1573(00)00056-9 (2000).

    Google Scholar 

  63. Brimicombe, P. D. et al. Measurement of the twist elastic constant of nematic liquid crystals using pi-cell devices. J. Appl. Phys. 101, 043108. https://doi.org/10.1063/1.2432311 (2007).

    Google Scholar 

  64. Madhusudana, N. V. & Pratibha, R. Elasticity and orientational order in some cyanobiphenyls: part IV. Reanalysis of the data. Mol. Cryst. Liq. Cryst. 89, 249–257. https://doi.org/10.1080/00268948208074481 (1982).

  65. Brochard, F. & de Gennes, P. G. Theory of magnetic suspensions in liquid crystals. J. Phys. France 31, 691. https://doi.org/10.1051/jphys:01970003107069100 (1970).

    Google Scholar 

  66. Krakhalev, M. N. et al. Untwisting of the helical structure of cholesteric droplets with homeotropic surface anchoring. JETP Lett. 105, 51. https://doi.org/10.1134/S002136401701012X (2017).

    Google Scholar 

  67. Pirkl, S. Cholesteric-nematic phase change in wedge electro-optical cell with homeotropic anchoring. Cryst. Res. Technol. 26, K111–K114. https://doi.org/10.1002/crat.2170260523 (1991).

    Google Scholar 

  68. Ribiere, P. & Oswald, P. Nucleaction and growth of cholesteric fingers under electric field. J. Phys. (France) 51, 1703–1720. https://doi.org/10.1051/jphys:0199000510160170300 (1990).

    Google Scholar 

  69. Abbate, G., Arnone, G. & Lauria, A. Nonlinear effects in nematics doped by dyes and chiral agents. in Novel Optical Materials and Applications (eds. Khoo, I. C., Simoni, F. & Umeton, C.) 133–148 (John Wiley & Sons Inc, 1997).

  70. Juhl, A. T. et al. Ordering of glass rods in nematic and cholesteric liquid crystals. Opt. Mater. Express 8, 1536–1547. https://doi.org/10.1364/OME.1.001536 (2011).

    Google Scholar 

  71. Ye, W. et al. Accurate measurement of the twist elastic constant of liquid crystal by using capacitance method. Liq. Cryst. 46, 349–355. https://doi.org/10.1080/02678292.2018.1501823 (2018).

    Google Scholar 

  72. Eber, N. Undulation instability in compensated cholesterics. Report KFKI 86 (1984).

  73. Buka, A. et al. Electroconvection in nematic liquid crystals with positive dielectric and negative conductivity anisotropy. Phys. Rev. E 66, 051713. https://doi.org/10.1103/PhysRevE.66.051713 (2002).

    Google Scholar 

  74. Belyaev, S. V. & Blinov, L. M. Step unwinding of a spiral in a cholesteric liquid crystal. JETP Lett. 30, 99. http://jetpletters.ru/ps/1362/article_20595.pdf (1979).

Download references

Funding

VL thanks EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V04-00298.

Author information

Authors and Affiliations

  1. Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice, Slovakia

    Veronika Lacková, Katarína Kónyová, Peter Kopčanský & Natália Tomašovičová

  2. Center for Applied Mathematics and Physics, Perm State University, Bukirev street 15, Perm, Russia

    Dmitriy V. Makarov & Danil A. Petrov

  3. Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, P.O.Box 49, Budapest, Hungary

    Tibor Tóth-Katona

Authors
  1. Veronika Lacková
    View author publications

    Search author on:PubMed Google Scholar

  2. Dmitriy V. Makarov
    View author publications

    Search author on:PubMed Google Scholar

  3. Danil A. Petrov
    View author publications

    Search author on:PubMed Google Scholar

  4. Tibor Tóth-Katona
    View author publications

    Search author on:PubMed Google Scholar

  5. Katarína Kónyová
    View author publications

    Search author on:PubMed Google Scholar

  6. Peter Kopčanský
    View author publications

    Search author on:PubMed Google Scholar

  7. Natália Tomašovičová
    View author publications

    Search author on:PubMed Google Scholar

Contributions

VL: conceptualization, investigation, methodology, funding acquisition, writing original draft. DM: data curation, formal analysis, writing—review and editing. DP: data curation, formal analysis, writing—review and editing. TTK: data curation, writing—review and editing. KK: visualization, formal analysis. PK: resources. NT: data curation, writing—review and editing.

Corresponding author

Correspondence to Veronika Lacková.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacková, V., Makarov, D.V., Petrov, D.A. et al. Effect of a chiral dopant on hysteresis phenomena induced by external fields in liquid crystals. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40009-4

Download citation

  • Received: 19 September 2025

  • Accepted: 10 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40009-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cholesteric liquid crystals
  • Helix unwinding
  • Hysteresis
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing