Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Evolutionary history and climate-driven dynamics of transposable elements has shaped genome evolution in the Coffea genus
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Evolutionary history and climate-driven dynamics of transposable elements has shaped genome evolution in the Coffea genus

  • Mathilde Dupeyron1,
  • Laura Gonzalez-Garcia1,2,
  • Simon Orozco-Arias3,4,
  • Rickarlos Bezandry5,6,
  • Nathalie Raharimalala7,
  • Luiz Felipe Protasio Pereira8,9,
  • Dominique Crouzillat10,
  • Petra De Block11,
  • Coralie Fournier12 nAff16,
  • Laurence Bellanger13,
  • Patrick Descombes12,
  • Perla Hamon1,
  • Douglas Silva Domingues14 &
  • …
  • Romain Guyot1,15 

Scientific Reports , Article number:  (2026) Cite this article

  • 219 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Evolution
  • Genetics
  • Plant sciences

Abstract

Genome size variation is a fundamental feature of plant genomes and plays an important role in phenotypic diversity, ecological adaptation, and plant evolution across angiosperms. In the Coffea genus (Rubiaceae, 141 species/taxa), significant genome size variations have been observed. There has been nearly a twofold increase between species from East and West Africa and a notable increase from northwest to southeast Madagascar, resulting in geographic gradients. Previous studies suggest a role of Long Terminal Repeat (LTR) retrotransposons in these variations; however, the low resolution of the data to support this hypothesis did not allow for a clear understanding of LTR retrotransposons dynamics within the genus. Here, we present an analysis of the genomes of 22 Coffea species mainly from Africa and Madagascar and their genome size variations within a robust phylogenetic framework. Our results show that genome size and Transposable Elements (TE) landscape are first structured by phylogenetic relationships, reflecting shared evolutionary history and lineage-specific LTR retrotransposon dynamics particularly involving the Tekay/Del, TAT, and SIRE lineages. These lineages contribute to the differentiation of phylogeographic groups, reflecting specific patterns of genomic divergence linked to species adaptation and speciation. We also detected significant association between specific TE families and environmental variables (such as isothermality and annual precipitation). These correlations suggest that environmental factors modulate repeatome evolution and a potential adaptive role of these TEs. These findings highlight the importance of TEs in genome dynamics at the intersection of evolutionary processes and environmental adaptations and open new perspectives on their adaptive role within the Coffea genus.

Data availability

The data used in this study is available with bioproject accession numbers PRJEB100521 at Eu-ropean Nucleotide Archive (ENA, EMBL-EBI) and PRJNA898910, PRJNA242989 at Nation-al Center for Biotechnology Information (NCBI).

References

  1. He, B. et al. Evolution of plant genome size and composition. Genom. Proteom. Bioinform. 22, qzae078 (2024).

    Google Scholar 

  2. Stitzer, M. C., Anderson, S. N., Springer, N. M. & Ross-Ibarra, J. The genomic ecosystem of transposable elements in maize. PLoS Genet. 17, e1009768 (2021).

    Google Scholar 

  3. Ibarra-Laclette, E. et al. Architecture and evolution of a minute plant genome. Nature 498, 94–98 (2013).

    Google Scholar 

  4. Orozco-Arias, S., Isaza, G. & Guyot, R. Retrotransposons in plant genomes: structure, Identification, and classification through bioinformatics and machine learning. IJMS 20, 3837 (2019).

    Google Scholar 

  5. Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16, 1262–1269 (2006).

    Google Scholar 

  6. Phillips, A. L. et al. The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from Northern Australia. Sci. Rep. 12, 10823 (2022).

    Google Scholar 

  7. Vicient, C. M. & Casacuberta, J. M. Impact of transposable elements on polyploid plant genomes. Ann. Botany. 120, 195–207 (2017).

    Google Scholar 

  8. Nadir, S. et al. A novel discovery of a long terminal repeat retrotransposon-induced hybrid weakness in rice. J. Exp. Bot. 70, 1197–1207 (2019).

    Google Scholar 

  9. Serrato-Capuchina, A. & Matute, D. The role of transposable elements in speciation. Genes 9, 254 (2018).

    Google Scholar 

  10. Borredá, C., Pérez-Román, E., Ibanez, V., Terol, J. & Talon, M. Reprogramming of retrotransposon activity during speciation of the genus citrus. Genome Biol. Evol. https://doi.org/10.1093/gbe/evz246 (2019).

  11. Zhang, Q. J. & Gao, L. Z. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 Genes|Genomes|Genetics. 7, 1875–1885 (2017).

  12. Galindo-González, L., Mhiri, C., Deyholos, M. K. & Grandbastien M.-A. LTR-retrotransposons in plants: engines of evolution. Gene 626, 14–25 (2017).

    Google Scholar 

  13. Casacuberta, E. & González, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).

    Google Scholar 

  14. Baduel, P. & Quadrana, L. Jumpstarting evolution: how transposition can facilitate adaptation to rapid environmental changes. Curr. Opin. Plant. Biol. 61, 102043 (2021).

    Google Scholar 

  15. Schrader, L. & Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549 (2019).

    Google Scholar 

  16. Schley, R. J. et al. The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity. http://biorxiv.org/lookup/doi/; https://doi.org/10.1101/2021.11.04.467295 (2021).

  17. Bezandry, R. et al. The evolutionary history of three Baracoffea species from Western Madagascar revealed by Chloroplast and nuclear genomes. PLoS One. 19, e0296362 (2024).

    Google Scholar 

  18. Guyot, R. et al. WCSdb: a database of wild Coffea species. Database. 2020, baaa069 (2020).

  19. Davis, A. P., Tosh, J., Ruch, N. & Fay, M. F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of coffea: Psilanthus subsumed in coffea. Bot. J. Linn. Soc. 167, 357–377 (2011).

    Google Scholar 

  20. Rimlinger, A. et al. Phenotypic diversity assessment within a major ex situ collection of wild endemic coffees in Madagascar. Ann. Botany. 126, 849–863 (2020).

    Google Scholar 

  21. Couturon, E. et al. Caféiers sauvages: un trésor en péril au coeur des forêts tropicales!= Wild coffee-trees: a threatened treasure in the heart of tropical forests! (2016) Montpellier: Association Biodiversité, Ecovalorisation et Caféiers, 117 p. ISBN 978-2-7466-9109-4.

  22. Hamon, P. et al. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content. Mol. Phylog. Evolut. 109, 351–361. https://doi.org/10.1016/j.ympev.2017.02.009. Epub 2017 Feb 16 (2017).

  23. Yu, Q. et al. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea): recent speciation event of coffea Arabica. Plant J. 67, 305–317 (2011).

    Google Scholar 

  24. Salojärvi, J. et al. The genome and population genomics of allopolyploid coffea Arabica reveal the diversification history of modern coffee cultivars. Nat. Genet. 56, 721–731 (2024).

    Google Scholar 

  25. Razafinarivo, N. J. et al. Geographical gradients in the genome size variation of wild coffee trees (Coffea) native to Africa and Indian ocean Islands. Tree. Genet. Genomes. 8, 1345–1358 (2012).

    Google Scholar 

  26. Noirot, M. Genome size variations in diploid African coffea species. Ann. Botany. 92, 709–714 (2003).

    Google Scholar 

  27. Guyot, R. et al. Partial sequencing reveals the transposable element composition of coffea genomes and provides evidence for distinct evolutionary stories. Mol. Genet. Genomics. 291, 1979–1990 (2016).

    Google Scholar 

  28. Jingade, P., Huded, A. K. C. & Mishra, M. K. First report on genome size and ploidy determination of five Indigenous coffee species using flow cytometry and stomatal analysis. Braz J. Bot. https://doi.org/10.1007/s40415-021-00714-y (2021).

    Google Scholar 

  29. Charr, J. C. et al. Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on coffea canephora (Robusta coffee). Mol. Phylogenet. Evol. 151, 106906 (2020).

    Google Scholar 

  30. Denoeud, F. et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014).

    Google Scholar 

  31. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  32. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 5, e9490 (2010).

    Google Scholar 

  33. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  34. Tosh, J. et al. Evolutionary history of the Afro-Madagascan Ixora species (Rubiaceae): species diversification and distribution of key morphological traits inferred from dated molecular phylogenetic trees. Ann. Botany. 112, 1723–1742 (2013).

    Google Scholar 

  35. Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).

    Google Scholar 

  36. Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).

    Google Scholar 

  37. Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA. 10, 1 (2019).

    Google Scholar 

  38. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  39. Raharimalala, N. et al. The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of coffea humblotiana, a wild species from Comoro Archipelago. Sci. Rep. 11, 8119 (2021).

    Google Scholar 

  40. Michael, T. P. Plant genome size variation: bloating and purging DNA. Briefings Funct. Genomics Proteom. 13, 308–317 (2014).

    Google Scholar 

  41. Laten, H. M., Majumdar, A. & Gaucher, E. A. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl. Acad. Sci. USA. 95, 6897–6902 (1998).

    Google Scholar 

  42. Pearce, S. SIRE-1, A putative plant retrovirus is closely related to a legume TY1-copia retrotransposon family. Cell. Mol. Biol. Lett. https://doi.org/10.2478/s11658-006-0053-z (2007).

  43. Nascimento, J., Sader, M., Ribeiro, T. & Pedrosa-Harand, A. Influence of Ty3/gypsy and Ty1/copia LTR-retrotransposons on the large genomes of alstroemeriaceae: genome landscape of Bomarea Edulis (Tussac). Herb. Protoplasma. 262, 881–894. https://doi.org/10.1007/s00709-025-02036-2 (2025).

    Google Scholar 

  44. Gorinšek, B., Gubenšek, F. & Kordiš, D. Evolutionary genomics of chromoviruses in eukaryotes. Mol. Biol. Evol. 21, 781–798 (2004).

    Google Scholar 

  45. Cruz, G. M. Q. et al. Virus-Like attachment sites and plastic CpG islands: landmarks of diversity in plant Del retrotransposons. PLoS ONE. 9, e97099 (2014).

    Google Scholar 

  46. Castro, N. et al. Repeatome evolution across space and time: unravelling repeats dynamics in the plant genus Erythrostemon Klotzsch (Leguminosae Juss). Mol. Ecol. https://doi.org/10.1111/mec.17510 (2024).

  47. Lee, J. et al. Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax. Sci. Rep. 7, 9045 (2017).

    Google Scholar 

  48. Cerca, J. et al. Evolutionary genomics of oceanic Island radiations. Trends Ecol. Evol. 38, 631–642 (2023).

    Google Scholar 

  49. Yang, H. et al. Consistent accumulation of transposable elements in species of the Hawaiian Tetragnatha spiny-leg adaptive radiation across the Archipelago chronosequence. Evolutionary J. Linn. Soc. 3, kzae005 (2024).

    Google Scholar 

  50. Craddock, E. M. Profuse evolutionary diversification and speciation on volcanic islands: transposon instability and amplification bursts explain the genetic paradox. Biol. Direct. 11, 44 (2016).

    Google Scholar 

  51. Wright, D. A. & Voytas, D. F. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis Thaliana Ty3/gypsy retrotransposons that encode Envelope-Like proteins. Genetics 149, 703–715 (1998).

    Google Scholar 

  52. Cintra, L. A. et al. An 82 bp tandem repeat family typical of 3′ non-coding end of Gypsy/TAT LTR retrotransposons is conserved in Coffea spp. Pericentromeres. Genome 65, 137–151 (2022).

    Google Scholar 

  53. Zhang, Q. J. et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Mol. Plant. 13, 935–938 (2020).

    Google Scholar 

  54. Ito, H. Environmental stress and transposons in plants. Genes Genet. Syst. 97, 169–175 (2022).

    Google Scholar 

  55. Cacho, N. I., McIntyre, P. J., Kliebenstein, D. J. & Strauss, S. Y. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Ann. Botany. 127, 887–902 (2021).

    Google Scholar 

  56. Carta, A. & Peruzzi, L. Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in liliaceae. New Phytol. 210, 709–716 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank the French National Research Agency (ANR, Bridges_Coffea project, Grant Number ANR-23-CE20-0047-01) and FAPESP (Grant Number #2023/03353-3) for financial support. We would also like to thank the Rufford Foundation (Small Grant 39692-1) and the following HPC bioinformatics platform for its support: the French Bioinformatics Institute (IFB, funded by ANR, ANR-11-INBS-0013).

Funding

ANR, Bridges_Coffea project, Grant Number ANR-23-CE20-0047-01. Fapesp Grant Number # 2023/03353-3.

Author information

Author notes
  1. Coralie Fournier

    Present address: Hopitaux Universitaires de Genève, Campus Biotech, Geneva, 1202, Switzerland

Authors and Affiliations

  1. Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, Montpellier, France

    Mathilde Dupeyron, Laura Gonzalez-Garcia, Perla Hamon & Romain Guyot

  2. Boyce Thompson Institute, Ithaca, NY, USA

    Laura Gonzalez-Garcia

  3. Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Colombia

    Simon Orozco-Arias

  4. Life Sciences Department, Barcelona Supercomputing Center, Barcelona, 08034, Spain

    Simon Orozco-Arias

  5. Faculté des Sciences, de Technologies et de l’Environnement (FSTE), Université de Mahajanga, Campus Universitaire d’Ambondrona, BP 652, Mahajanga, 401, Madagascar

    Rickarlos Bezandry

  6. Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar

    Rickarlos Bezandry

  7. Centre National de Recherche Appliquée au Développement Rural, BP 1444, Ambatobe, Antananarivo, 101, Madagascar

    Nathalie Raharimalala

  8. Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-EMATER, Londrina, CEP 86047-902, PR, Brazil

    Luiz Felipe Protasio Pereira

  9. Embrapa Café, Brasília, CEP 70770-901, DF, Brazil

    Luiz Felipe Protasio Pereira

  10. 12, chemin de la Gaspière, Cerelles, 37390, France

    Dominique Crouzillat

  11. Meise Botanic Garden, Meise, Belgium

    Petra De Block

  12. Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland

    Coralie Fournier & Patrick Descombes

  13. Société des Produits Nestlé SA, Nestlé Research, Tours, France

    Laurence Bellanger

  14. Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, Brazil

    Douglas Silva Domingues

  15. Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia

    Romain Guyot

Authors
  1. Mathilde Dupeyron
    View author publications

    Search author on:PubMed Google Scholar

  2. Laura Gonzalez-Garcia
    View author publications

    Search author on:PubMed Google Scholar

  3. Simon Orozco-Arias
    View author publications

    Search author on:PubMed Google Scholar

  4. Rickarlos Bezandry
    View author publications

    Search author on:PubMed Google Scholar

  5. Nathalie Raharimalala
    View author publications

    Search author on:PubMed Google Scholar

  6. Luiz Felipe Protasio Pereira
    View author publications

    Search author on:PubMed Google Scholar

  7. Dominique Crouzillat
    View author publications

    Search author on:PubMed Google Scholar

  8. Petra De Block
    View author publications

    Search author on:PubMed Google Scholar

  9. Coralie Fournier
    View author publications

    Search author on:PubMed Google Scholar

  10. Laurence Bellanger
    View author publications

    Search author on:PubMed Google Scholar

  11. Patrick Descombes
    View author publications

    Search author on:PubMed Google Scholar

  12. Perla Hamon
    View author publications

    Search author on:PubMed Google Scholar

  13. Douglas Silva Domingues
    View author publications

    Search author on:PubMed Google Scholar

  14. Romain Guyot
    View author publications

    Search author on:PubMed Google Scholar

Contributions

MD, LGG and SOA conducted the main analyses; RB, NR, LFPP, DC, PDB, CF, LB, PD, PH participated to data acquisition (sample and sequencing); DSD and RG designed and conceived the study and wrote the draft manuscript. All authors participated to revise the manuscript.

Corresponding author

Correspondence to Romain Guyot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

41598_2026_40031_MOESM1_ESM.csv

Sup. Data 1. GPS positions, genome size and bioclimatic data (Worlclim) for the species used in this study. Lat: latitude, long: longitude, group: phylogeographic group, bio1 to bio19 (worldclim data), All to Satellite columns: RepeatExplorer results (number of reads per elements).

Sup. Data 2. Phylogenetic tree of species used in this study with bootstraps.

Supplementary Material 3

Supplementary Material 4

Sup. Data 5. Correlation between genome size (Mb) and all repeated reads.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupeyron, M., Gonzalez-Garcia, L., Orozco-Arias, S. et al. Evolutionary history and climate-driven dynamics of transposable elements has shaped genome evolution in the Coffea genus. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40031-6

Download citation

  • Received: 13 October 2025

  • Accepted: 10 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40031-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene