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Abstract

Glioblastoma (GBIM) is a highly aggressive and lethal brain tumor, and
despite conventichal treatments, patient prognosis remains poor.
Understanding the molecular mechanisms driving GBM and identifying
potential therapeutic targets is critical. MOV10, an RNA helicase, is
overexpressed in multiple cancers and is considered an oncogene. Our
analysis of datasets from TCGA, GEO, and CGGA showed that MOV1O0
expression is elevated in GBM and strongly negatively correlated with overall
survival (0S). Cox regression confirmed MOV10 as an independent prognostic
risk factor for GBM.Functional enrichment analysis revealed that MOV10 is
involved in immune regulation and tumor progression pathways. We found
that MOV10 expression is closely linked to immune infiltration, immune
checkpoint expression, and responses to immunotherapy.

Immunofluorescence and Transwell assays confirmed that MOV10 knockdown
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reduced M2 macrophage migration and invasion in GBM cells. Clinical analysis
further validated MOV10 overexpression in GBM tissues.In vitro, MOV10
silencing suppressed GBM cell proliferation, inhibited EMT-like processes, and
promoted apoptosis through autophagy modulation. Our findings suggest that
MOV10 plays a crucial role in GBM progression and could be a promising
molecular target for therapy.

Keywords: glioma, MOV10, immune infiltration, epithelial-mesenchymal

transformation, autophagy, apoptosis

Introduction

Gliomas are the most common type of primary malignant tumor in the
central nervous system, known for their high recurrence, disability, and
mortality rates, as well as a low cure rate [1]. According to WHO, more than 11
million people are diagnosed with gliomas annually [2I. Gliomas are
categorized into WHO grades | to IV, hased on malignancy level [3], with
glioblastoma (GBM) being the most aggressive. GBM patients have a median
survival time of just 8 months, with only 3% to 5% of them surviving more
than 3 years [4l. The primary reasons for poor prognosis include treatment
resistance and tumor recurrence after surgery. The exact mechanisms behind
the aggressive growth of gliomas remain unclear [5], making treatment
particularly challenging. As a result, there is a pressing need to investigate
the biological origins of gliomas, identify potential diagnostic and therapeutic
targets, and develop new treatment strategies .

Moloneyleukemiavirus10 (MOV10) protein is a newly discovered factor
with broad-spectrum antiretroviral potential. MOV10 proteins belong to RNA
helicase superfamily 1 (SF-1) [6. 71, MOV10 can interact with AGO2
(Argonaute 2) and participate in the metabolism and translation of mRNA [8],
It is a component of the RNA-induced silencing complex (RISC) 91, MOV10 is
a new type of RNA binding protein (RBP) that is highly expressed in cancer

cells and is considered to be an oncogene [0, The expression of MOV10



protein is significantly increased in pancreatic cancer, and as an RBP protein,
it improves the proliferation and invasive ability of pancreatic cancer cells
[11], Recent studies have shown that MOV10 can mediate the expression of
miRNA-103a-3p (miRNA-382-5p) by binding to circ-DICER1 and then affect
the angiogenesis of glioma cells by regulating the PI3K/AKT signalling
pathway [121, The above studies suggest that MOV10 is related to the
occurrence and development of gliomas, but the exact role of MOV10 in
glioma cells and its effect on prognosis are still unclear.

Gliomas possess a highly immunosuppressive tumor microenvironment
(TME), which contributes to immune evasion and promotes the survival of
malignant gliomas [131. Immunotherapy can regulate immune function,
reshape the tumor immune microenvironment, activate the immune system
[14] and destroy cancer cells. Forms of tumor immunotherapy include cancer
vaccines, oncolytic viruses, cell therapy, and immurie checkpoint inhibitors [15],
With the rise of immunotherapy, more and more research is focusing on
glioma immunotherapy [16l. Studies have shown that MOV10 may act as an
innate immune factor against viruses [17. 18] and as an inhibitor of LINE-1 (L1),
playing a role in turncr immunity 191, However, no research has yet directly
explored the reiationship between MOV10 and glioma immunity. Given the
importance of immunotherapy in gliomas and the connection between MOV10
and immune function, understanding the role of MOV10 in glioma immunity is
crucial for developing new therapeutic strategies .

In this study, we leveraged three public databases to examine the
differences in MOV10 expression between normal and glioma tissues. We
generated overall survival (OS) curves based on factors such as MOV10
expression, tumor grade, age, IDH mutations, and 1p/19q co-deletion, and
built a Cox regression model incorporating multiple clinical factors.
Furthermore, we explored the relationship between MOV10 and immune cell
infiltration, as well as its role in immunotherapy. Experimental validation

demonstrated the influence of MOV10 on M2 macrophages in gliomas. We



then analyzed the functional enrichment of MOV10 and examined its
underlying molecular mechanisms in regulating the proliferation, migration,
invasion, autophagy, and apoptosis of T98G and U251 cells. This study aims
to provide a theoretical foundation for the early prevention, treatment, and

clinical diagnosis of gliomas.

Materials and Methods
Information Collection

We obtained glioma transcriptome data including LGG (low-grade glioma)
and GBM (glioblastoma) from the UCSC database. The LGG dataset contains
529 tumor patient samples, and the GBM dataset contains 5 normal samples
and 168 tumor patient samples. The data are provided in FPKM format and
have been log2(x+1) transformed. In addition, we downioaded clinical data
and MOV10 gene expression data of 693 glioma patients from CGGA (Chinese
Glioma Genome Atlas). We also retrieved another set of glioma transcriptome
data from the CGGA database, which contains 325 glioma samples. This
dataset is in raw count format, and we standardized and log2-transformed it,
removing all missing datea points. The samples in all datasets represent
patients of different ages and genders. All data use was approved by the
patients with written informed consent and complied with relevant ethical
standards and laws and regulations.

Differential expression of MOV10 in cancer

The GEPIA database (http://gepia2.cancer-pku.cn) is an online platform
that provides RNA transcriptome data of 33 cancer types from the TCGA
database. This tool can analyze mRNA expression levels in tumor and normal
tissue samples and provide visualization results. We used GEPIA to explore

the expression of the MOV10 gene in 33 cancers in the TCGA database.

Clinical model analysis

We used the R package "survminer" to analyze the survival data of glioma



patients in the TCGA and CGGA databases. We performed Cox regression
analysis and used the receiver operating characteristic (ROC) curve to
evaluate the prognostic significance of MOV10 expression in glioma patients.
In addition, we applied multivariate logistic regression to classify the risk level
of patients in the CGGA data and provide a risk score for each patient. With
the help of the "regplot" and "rms" R packages, we created a nomogram for
predicting the prognosis of glioma patients. The nomogram included clinical
factors such as MOV10 expression, age, sex, PFS type, tumor grade, IDH
mutation, and 1p/19qg co-deletion, and was calibrated using 1l-year, 3-year,
and 5-year scores to evaluate its predictive accuracy. According to the
median expression level of the MOV10 gene, the patients were divided into
high-expression group and low-expression group, and their overall survival
rate and the difference in MOV10 expression compared with other clinical
subgroups were further analyzed. The “ggplot2” package in RStudio was used
for data visualization to clearly and intuitively present the survival curves and

gene expression differences.

GO, KEGG and GSEA analysis

The cBioPortal provides comprehensive genomic data from various cancer
research projects, including datasets from TCGA, the International Cancer
Genome Consortium (ICGC), and others. We leveraged the TCGA Cell 2013
dataset, consisting of 577 glioblastoma (GBM) transcriptomes, to identify
genes associated with MOV10. Using R packages "clusterProfiler" and
"enrichplot,"” we conducted GO and KEGG functional enrichment analyses on
these associated genes, and visualized the results with "ggplot2." We also
extracted TCGA-Glioma data from the TCGA database using the "dplyr" and
"tibble" R packages. After merging the datasets, we divided samples into
high- and low-expression groups based on MOV10 expression and performed
differential expression analysis (DEGs) with the criteria of |log2(FC)| > 1.0 and

p-value < 0.05. From MSigDB, we downloaded the "h.all.v2024.1.Hs.symbols"



gene set in GMT format and carried out GSEA analysis using "fgsea,"
"GSEABase," and "GSVA" R packages. Clusters with a p-value < 0.05 and FDR
< 0.25 were considered statistically significant, and select clusters ranked
high according to normalized enrichment score (NES) to further investigate
the biological functions of the top six pathways in high and low MOV10

expression groups.

Immunity Analysis

We used the "estimate" package to assign scores to glioma patient
samples and explored the relationship between MOV10 expression and
stromal and immune cell scores through correlation analysis. Survival
outcomes were also analyzed across different score groups. Additionally, we
applied the CIBERSORT algorithm to assess the correlation between MOV10
expression and immune cells in gliomas, followed by validation with the xCell
immune algorithm. We further used the TIDE (Tumor Immune Dysfunction and
Exclusion) algorithm to evaluate MOV10's role in immune

evasion(http://tide.dfci.harvard.edu), which can partially predict whether

patients will respond to immune checkpoint inhibitors, such as PD-1 or CTLA-4
inhibitors. This data was normalized for consistency. Finally, we analyzed the
correlation and differences between MOV10 and immune checkpoints, as well
as immune-related genes, using glioma data from the TCGA database. This
was accomplished through the R packages "corrplot” and
"PerformanceAnalytics." The immune checkpoints studied were primarily
sourced from literature and prominent immune checkpoints listed on

GeneCards (https://www.genecards.org).Using the TCGA-GBM RNA-seq

dataset, samples were divided into MOV10-high and MOV10-low groups by the
median MOV10 expression. Two T-cell exhaustion subtype signatures
(Progenitor Tex and Terminal Tex) were collected from published studies.
ssGSEA scores for each signature were calculated with the GSVA R package,

and the Terminal Tex and Progenitor Tex scores were compared within the
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MOV10-high group using a paired Wilcoxon test.

Clinical samples and study approval

For expression analysis, all fresh glioma tumour samples were obtained
from patients who had histologically confirmed glioma, and normal
specimens were collected from patients who underwent brain tissue
resection for craniocerebral injury at the Jiangxi Subcentre of the National
Clinical Research Center for Cancer (Jiangxi Cancer Hospital Biospecimen
Repository). After surgical resection, these samples were rinsed with PBS
and preserved in liquid nitrogen for subsequent analysis. None of these
patients received preoperative chemotherapy or radiotherapy prior to the
study. All experimental protocols were approved by the Ethics Committee of
Jiangxi Cancer Hospital (No. 2020ky008), and each enrolled patient provided

written informed consent.

Cell lines and cell culture

Glioma cell lines used in the experiments, including the glioma cell lines
U87, U251, and T98G and normal cells (HEB), were purchased from the
AoYin Cell Cenier. The cells were cultivated in high-glucose Dulbecco’s
modified Eagle’s medium (DMEM, HyClone, United States) supplemented
with 10% FBS (FBS, GIBCO, Carlsbad, California, United States) and 1%
penicillin-streptomycin and maintained in a humidified incubator with 5%
CO2 at 37 °C. These cell lines tested negative for mycoplasma

contamination.

Macrophage generation and differentiation

THP-1 cells (ATCC, catalog number: TIB-202) were cultured in RPMI-1640
medium (Gibco, 11875-093) containing 10% fetal bovine serum-FBS (Gibco,
10099-141) and 1% penicillin-streptomycin mixture (Gibco, 15140-122) and

maintained at 37 °C in a 5% CO:2 incubator. The medium was changed and



cells were passaged every 2-3 days, ensuring they were in logarithmic growth
phase before the experiment. To obtain MO macrophages, THP-1 cells were
seeded in culture plates and treated with 100 ng/mL PMA (Sigma-Aldrich,
P8139) for 24 h, followed by replacement with fresh intact medium and a 24 h

recovery period.

Cell transfection

Small interfering RNAs (siRNAs) targeting MOV10 and scramble siRNA
were purchased from RiboBio (Guangzhou, China). Glioma cells were plated
at 40%-50% confluency in 6-well plates. After 12 h for cell adhesion,
transfection was carried out using Lipofectamine® RNAiIMAX Transfection
Reagent (Invitrogen, Carlsbad, California, United States) at a final
concentration of 100 nM in accordance with the instructions. In addition, the
growth medium was without antibiotics. The sequences of the siRNAs are as
follows: siMOV10 001: AGACTCCGGTCAGGTTCTT; siMOV10 002:
GTGGATCGAGAACGCTTCT

RNA isolation and reverse transcription (RT)-PCR assay

TRIzol reagent (Takara, Dalian, China) was utilized to extract total RNA
from glioma cells and tissues. The collected RNA was subsequently dissolved
in 10 pl of DEPC-treated water, and the RNA concentration and purity were
detected at the 260/280 nm ratio. Then, reverse transcription was performed
using the PrimeScript™ RT reagent Kit with gDNA Eraser (Takara, Dalian,
China) to produce complementary DNA (cDNA). Quantitative real-time
polymerase chain reaction (QRT-PCR) was performed using TB Green®
Premix Ex Taq™ II (Takara, Dalian, China) on a Bio-Rad CFX96 Touch
sequence detection system (Bio-Rad Laboratories Inc.) according to the
manufacturer’s instructions. GAPDH was used as an endogenous control, and
the target gene expression level was calculated by means of the 2 -AACT

method. Each experiment was performed in triplicate, and each sample was



analysed in two parallel wells. The primers for MOV10 were F:
5’-GGGGACTGGACATGGAGACA-3’; and R:
5’-GGGTCCCAAAGCTGATCTTGA-3’. The primers for GAPDH were F:
5’-CCCATCACCATCTTCCAGGAG-3’ and R: 5'-
GTTGTCATGGATGACCTTGGC-3'.

Western blot assays

Cells were transfected with siRNAs to transiently knockdown target
genes, and 72 h after transfection, cells were harvested and lysed in RIPA
buffer (Beyotime, Shanghai, China) containing 1% protease inhibitor
cocktails (Beyotime, Shanghai, China). The lysate was centrifuged at 13000
rcf 4 °C for 15 min to obtain the supernatants, and the protein concentration
of the supernatant extract was determined by a BCA protein assay kit
(TIANGEN, Beijing, China). The supernatants were denatured with 6Xx
loading buffer (TransGen Biotech, Beijing, China) and heated at 100 °C for
10 min. Next, the samples were separated by SDS-PAGE and transferred
onto polyvinylidene fluoride membranes. The membranes were then blocked
with 5% skimmed milk for 2 h and incubated with primary antibodies at 4 °C
overnight. Then, the membranes were subsequently reprobed with
species-matched secondary antibodies for 2 h. Antibodies were purchased
from CST Biotechnology (Boston, Massachusetts, United States). Bands on
immunoblots were detected with an ECL kit (YaMei, Shanghai, China) and
visualized on a ChemiDoc Touch Imaging System (ChemiDoc XRS+). B-Actin

was used as an internal control.

Transwell assay and wound healing assays

Cell invasion ability was evaluated using Transwell chambers (Corning,
Tewksbury, Massachusetts, United States) with a membrane pore size of 8
pm. First, Matrigel was diluted in serum-free medium at 1:9 with 70 pl of

Matrigel dilution supplemented into the upper layer of the transwell



membrane and incubated for 2-3 h to polymerize the Matrigel. Then, the
cells were dissociated with pancreatin and resuspended in serum-free
medium until the final cell density reached 1.5x 10° cells/ml. Next, the
remaining liquid was removed from the top side of the chamber, and 200 pl
of cell suspension was seeded in the upper chambers, whereas 700 ul
medium containing 10% FBS was subsequently added to the lower chamber
as an attractant. After 48 h of cultivation, cells on the upper side of the
membrane were wiped off with cotton swabs. Cells that invaded to the lower
side of the membrane were then subjected to fixation with paraformaldehyde
for 30 min followed by staining with 0.1% crystal violet overnight. Thereafter,
each transwell chamber was gently washed with PBS, air dried and
photographed under an inverted microscope. For wound-healing assays, cells
were transfected in a six-well plate for 48 h with a cell density of 80%-90%.
Next, the cell monolayer was scratched with a 200 pl pipette tip and
subsequently washed with PBS solution and replaced with high glucose
DMEM containing 2% serum medium to continue culturing the cells. Finally,
images were captured under a light microscope at 0 h and 24 h after

scratching.

Cell proliferation and colony formation assays

The effects of gene manipulation were evaluated using MTS and colony
formation assays to explore the proliferation potential of GBM cells after
transfection with MOV10 siRNA for 48 h. Briefly, cells were seeded in
96-well plates at a density of 2000 cells per well and measured every 24 h for
5 continuous days at indicated times. According to the manufacturer’s
protocol, MTS solution (Cell Titer 96 aqueous one solution reagent, Promega,
Madison, Wisconsin, United States) and serum-free medium were mixed at a
ratio of 1:9. Subsequently, the mixture was added to a plate at 100 pl per
well and incubated at 37 °C for 30 min. The optical density was measured at

490 nm with a microplate reader (SpectraMAX ID3). For the colony



formation assay, cells were seeded into 6-well plates at a density of 2000
cells/well and cultured in medium composed of high-glucose DMEM with 10%
FBS. The cells were allowed to grow for 2 weeks, and the medium was
replaced every three days. After 14 days of cultivation, the cells were fixed
with 4% polyoxymethylene and then stained with 0.1% crystal violet, imaged
and counted. All experiments were repeated in triplicate, and each group had

three duplicate wells.

Immunofluorescence

The cells were first seeded on chamber slides, followed by fixation using 4%
paraformaldehyde and permeabilization with 0.1% Triton X-100. After that,
the samples were blocked with 5% BSA at 25°C for 1 hour. The cells were
then incubated overnight at 4°C with the primary antibody. After three PBS
washes, the slides were incubated with the secondary antibody for 30 minutes
at 25°C. Finally, the nuclei were stained with DAPI for easy visualization under

a microscope.

Multicolor immunofluorescence(mIHC)

For Multicolor irmmunofluorescence(mIHC), cells were seeded on sterilized
coverslips and cultured overnight to allow adherence. Cells were fixed with 4%
paraformaldehyde at RT for 20 minutes, followed by permeabilization with 0.1%
Triton X-100 in PBS on ice for 5 minutes. Blocking was carried out in PBS
containing 2% bovine serum albumin (BSA) for 1 hour at RT. Primary
antibodies against MOV10, CD163, and CD206 were incubated at 4°C
overnight. The cells were then incubated with fluorescence-conjugated
secondary antibodies at RT for 1 hour. Multiplexed fluorescence staining was
performed using the multiplex immunohistochemical staining kit (abs50013,
Absin, Shanghai, China). Finally, nuclei were stained with DAPI, and coverslips
were mounted using an anti-fade mounting medium. Fluorescence images

were acquired using a confocal microscope. All primary antibodies (MOV10,



CD163, and CD206) were purchased from RiboBio (Guangzhou, China).

Screening of autophagy-related differentially expressed genes and analysis of
correlation with MOV10 expression

To explore the relationship between MOV10 and autophagy, we obtained
a list of all autophagy-related genes from Human Autophagy Database
0 HADD [], screened differentially expressed autophagy genes from TCGA
glioma expression matrix data, and then analysed the association between

MOV10 and autophagy-related genes by Pearson’s test.

Autophagic flux measurement

After initial treatment with siRNA for 48 h, the cells were digested and
then reseeded in laser confocal dishes at a concentration of 5 x 104 cells/well.
Next, OSTER Biological Technology, Wuhan, China) and placed in the dark
until detection. Autophagic flux was quantified using a STELLARIS 5 Laser
confocal microscope (Leica, Cermany). Yellow dots indicated

autophagosomes, and red dots represented autolysosomes.

Flow cytometry assay

The proportion of apoptotic cells was quantified by an Annexin V-FITC
apoptosis detection kit (Beyotime, Shanghai, China). After 48 h of
transfection, the cell supernatant was collected, and the cells were digested
with EDTA-free trypsin and then centrifuged together to remove the
supernatant. Next, the cell precipitate was washed in PBS and subjected to
another round of centrifugation, and the supernatant was discarded again.
Then, the cells were resuspended in Annexin V-FITC Binding Buffer.
Immediately before flow cytometry, the cells were treated with Annexin
V-FITC and PI dye solution according to the manufacturer’s instructions.
Finally, the cells were incubated at ambient temperature without light

exposure for 10-15 min and detected by FC 500 flow cytometry (Beckman



Coulter, Bethesda, Massachusetts, United States).

Statistical analysis

Differences between the groups were analyzed using the log-rank test,
and the "ggplot2" package was used for data visualization. To compare
differences between groups, unpaired t-tests were applied. Univariate and
multivariate Cox regression analyses were performed to create a Cox
proportional hazards model. Pearson's non-parametric test was used for
correlation analysis, while survival analysis was carried out using the
"survminer" package in R. A threshold of P < 0.05 was set for statistical
significance. All statistical analyses were conducted using R (version 4.3.1)

and Perl (version 5.32.1.1).

Results
Upregulated expression of MOV10 in glioma is associated with poor
prognosis of glioma patients

Overexpression of MOV10 in glioma is associated with poor patient
prognosis. By examining the mRNA expression of MOV10 in various cancers
using the GEPIAZ database, we found that MOV10 was significantly
upregulated in a variety of cancers (relative to normal tissues) ((Figure 1A),
especially in GBM. This result was further supported by the analysis of the
TCGA database (p < 0.05) (Figure 1B). Kaplan-Meier survival analysis showed
that patients with high MOV10 expression had a significantly worse survival
rate than those with low expression (Figure 1C-D). To investigate the
correlation between MOV10 expression and clinical characteristics, we
downloaded the expression data and clinical information of 693 glioma
patients from the CGGA database. Our analysis showed that there were
significant differences in the expression of MOV10 in different clinical
subgroups, and that the expression of MOV10 was closely associated with

tumor recurrence, malignancy, IDH mutation status, and 1p/19q co-deletion



status (Figure 1E-H). Therefore, MOV10 may be an important molecular

marker for evaluating the biological behavior and prognosis of glioma.

Generation of a prognostic model incorporating MOV10 expression in glioma
based on CGGA and TCGA data.

To further study how MOV10 affects patient prognosis, we used the CGGA
database, retained valid sample data, and grouped patients according to
clinical characteristics. The groups included disease grade (lll, 1V, and Il), age
group (Age) (<40 years and =40 years), gender group (Gender) (male and
female), IDH mutation status (IDH.mutation.status) (wild type and mutant),
and 1p/19q co-deletion status (codel and non-codel). Cox regression analysis
showed that MOV10 expression (p < 0.001, HR=1.680, 95%Cl: 1.350-2.090),
tumor grade (p < 0.001, HR=4.370, 95%CI: 3.140-6.0890), PRS type (Primary[]
Recurrent or Secondary) (p < 0.001, HR=2.160, 95%CI: 1.730-2.680), IDH
mutation status (p < 0.001, HR=3.060, 95%Cl: 2.460-3.820), 1p/19q
co-deletion status (p < 0.001, HR=3.706, 95%CI: 2.550-5.020), and age (p <
0.001, HR=1.630, 95%CI: 2. 95%CI: 2.95%CI: 1.300-2.040) is an important
risk factor for glioma prognosis. In addition, Cox multivariate analysis of tumor
patient samples from CGGA and TCGA-GBM revealed that MOV10 could also
serve as an independent risk factor for patient prognosis (Figure 2A, Figure
S1A). Using the CGGA and TCGA databases, we generated ROC curves for 1-,
3-, and 5-year overall survival rates, with AUC values of 0.71, 0.76, 0.74,
0.718, 0.747, and 0.738, respectively, all higher than 0.6, suggesting that
MOV10 expression is a reliable predictor of patient survival (Figure 2B, Figure
S1B). The nomogram and calibration plot further validated the predictive
accuracy of the model. The nomogram showed that the higher the score, the
worse the prognosis, and the calibration plot showed that the predicted
survival curve had good consistency with the ideal survival curve (Figure 2C,
Figure S1C-E). In addition, survival curve analysis showed that higher tumor

grade, and recurrence were associated with poor survival outcomes (Figure



2D-G).

Co-Expression Analysis and Enriched Pathways Associated with MOV10

To further investigate the functional role of MOV10 in glioma, we extracted
the top 1000 genes co-expressed by MOV10 from the cBioPortal database and
performed GO and KEGG enrichment analysis. GO enrichment analysis
showed that these genes were mainly associated with the regulation of RNA
splicing and mRNA metabolic processes (Figure 3A), while KEGG analysis
highlighted their involvement in nuclear transport, mRNA surveillance
pathways, and ATP-dependent chromatin remodeling[551 (Figure 3B). We
integrated glioma expression data using the TCGA-R software package and
analyzed the expression profile of MOV10. The samples were divided into
high-expression and low-expression groups according to the median
expression level of MOV10 mRNA, and differential expression analysis
identified 1599 upregulated DEGs and 1051 downregulated DEGs (Figure 3C).
GSEA enrichment analysis showed that the high-expression MOV10 group was
enriched in pathways such as interferon-y response, allograft rejection, and
epithelial-mesenchymal transition compared with the low-expression group
(Figure 3D-E). These results provide important insights for further exploring

the role of MOV10 in glioma and other related diseases.

MOV10 is highly expressed in glioma tissues and cell lines

Based on the bioinformatics analysis of TCGA and CGGA databases, it
was found that compared with that in normal brain tissues from trauma
patients, MOV10 expression was significantly higher in glioma tissues. To
further verify the bioinformatics analysis results, 81 glioma tissues and 29
normal brain injury tissues were collected in Jiangxi Cancer Hospital. The
expression level of MOV10 was verified by RT-qPCR. MOV10 was
significantly increased in glioma tissues (Figure. 4A), and the results were

consistent with bioinformatics analysis. Similarly, three glioma cell lines



(U87 U251 T98G) exhibited significantly higher MOV10 expression than
human astroglial normal cells (HEB) (Figure. 4B). T98G and U251 cell lines

were used in the follow-up experiment.

MOV10 Knockdown Inhibits Proliferation, Migration, and Invasion of Glioma
Cells

To study the biological function of MOV10 in glioblastoma (GBM), we
performed gene silencing experiments using two siRNAs targeting MOV10.
RT-qPCR (Figure 4C-D) and Western blotting (WB) (Figure 4E-F) confirmed
efficient MOV10 knockdown in U251 and T98G cells. EDU and MTS assays
showed that siMOV10 slowed the proliferation rate of glioma cells (Figure
4G-H[JFigure S2A-B), and clonogenic assays revealed fewer colony-forming
cells in the MOV10 knockdown group (Figure 4I). Additionally, the
expression of proliferation-related proteins CDK6 and cyclin D1 was
significantly decreased (Figure 4C), indicating that MOV10 knockdown
inhibits glioma cell proliferation. Furthermore, transwell and wound-healing
assays demonstrated that MOV10 knockdown significantly reduced the
migration and invasion abilities of U251 and T98G cells (Figures 5A-B).
Western blot enalysis of EMT-related proteins, including N-cadherin and
MMP2, revealed significantly decreased expression compared with the NC
group (Figure 5C). These findings suggest that MOV10 promotes glioma cell

migration and invasion through EMT-related phenotypic changes.

MOV10 expression is associated with TME characteristics, immune
checkpoint expression, immune cell infiltration, and immunotherapy
response

To investigate the connection between MOV10 and the tumor immune
microenvironment, we performed ESTIMATE analysis on the integrated
TCGA-glioma dataset. According to the expression of MOV10, the median was

divided into high and low groups. The findings showed that glioma samples



with high MOV10 expression had significantly higher stromal, ESTIMATE, and
immune scores compared to the low-expression group, suggesting that
MOV10 overexpression is linked to a more complex tumor microenvironment
and greater immune cell infiltration (Fig. 6A). Correlation and Kaplan-Meier
(KM) analysis demonstrated that high MOV10 expression was positively
correlated with higher ESTIMATE, immune, and stromal scores, and patients
with higher scores had poorer prognoses (Fig. 6B-C). This indicates that
MOV10 may play a critical role in modulating the glioma microenvironment.
To verify these results, we applied the xCell algorithm, which revealed
consistent differences in immune, stromal, and microenvironment scores
between the high and low MOV10 expression groups (Fig. 6D-E), and showed
that high MOV10 expression was associated with higher levels of
macrophages and epithelial cells. These discoveries offer significant insights
into MOV10's function and its potential as a therapeutic target. CiberSort
immune infiltration analysis identified differences in macrophages, NK cells
resting, and monocytes related to MOV10 expression, with a positive
correlation with macrophages and a negative correlation with memory B cells
and naive CD4+ T ceils (Fig. 6F-G). TIDE analysis showed significantly higher
TIDE scores in the MOV10 high-expression group, indicating a stronger
immune-evasion signature and suggesting that MOV10 may contribute to
tumor immune escape (Fig. S3F). Moreover, ssGSEA/GSVA-based exhaustion
subtype analysis revealed that, within the MOV10-high group, the
Terminal_Tex score was significantly higher than the Progenitor Tex score
(paired comparison, P = 4.5e-07; Fig. S4A). This pattern suggests that
MOV10-high tumors are dominated by a deep/terminal, largely
non-reinvigoratable exhaustion state rather than a progenitor-like reversible
phenotype, consistent with the elevated TIDE-predicted poor response to
anti-PD-1/anti-CTLA-4 therapy..Additionally, correlation and differential
analysis showed that most immune checkpoints and immune-related genes

were significantly associated with high MOV10 expression (Fig. 6H-1).



To further investigate the relationship between immunity and MOV10, we
integrated WGCNA and CIBERSORT analyses. By combining
MOV10-upregulated differentially expressed genes (DEGs) in TCGA samples
with the MOV10-CIBERSORT results, we found that the expression of
MOV10-upregulated DEGs was predominantly enriched in MO macrophages
and M2 macrophages (Fig. S3A). This suggests a potential functional
association between MOV10 and these immune cell subtypes.To refine the
module identification, we set the soft-thresholding power to 0.85, resulting in
more accurate enrichment of relevant modules (Fig. S3B). Using a gene
clustering dendrogram (Cluster Dendrogram) coupled with dynamic tree
cutting (Dynamic Tree Cut) and merged dynamic modules, we identified two
gene modules: the brown module (MEbrown) and turquoise module
(MEturquoise) (Fig. S3C).Correlation analysis revealed that these two modules
were highly associated with MO macrophages and M2 macrophages, with the
turquoise module (enriched with MOV10-related genes) showing a significant
positive correlation with M2 macrophages (Fig. S3D-E). This highlights a

potential role of MOV10 in regulating M2 macrophage-related functions.

Silencing MOV 0 inhibits the invasion of M2 macrophages in glioma

To further investigate the biological significance of MOV10 and
macrophages, we performed cell experiments and immunofluorescence
analysis. We first established the M2 model of macrophage THP-1 (Figure
7A-B). To confirm that THP-1 cells were successfully polarized into M2
macrophages, we used M2 markers CD163 and CD206 and analyzed protein
expression in MO and M2 macrophages by Western blotting. The results
showed that the expression of these proteins was significantly increased in M2
cells. Immunofluorescence analysis showed that CD163 and CD206 were
mainly localized in M2 macrophages (Figure 7C-E). Multicolor
immunofluorescence analysis showed that MOV10 co-localized with CD206

and CD163 in human glioma tissue, indicating that MOV10 is associated with



M2 macrophages and may affect their functional properties in the tumor
microenvironment (Figure 7F, Figure S4B-C). In addition, To clarify the glioma-
macrophage interaction, we performed a transwell co-culture assay in which
THP-1-derived M2 macrophages were seeded in the upper chamber and
glioma cells (T98G or U251) transfected with siMOV10 were placed in the
lower chamber. MOV10 silencing in glioma cells significantly reduced the
number of invading M2 macrophages compared with controls, indicating that
glioma-cell-derived MOV10 promotes M2 macrophage invasiveness via

paracrine signaling. (Figure 7G-H).

MOV10 knockdown enhances autophagy and apoptosis in glioma cells

To investigate the role of MOV10 in glioma, we first analyzed the
correlation between MOV10 and autophagy. Among the 1599 upregulated
genes obtained from TCGA glioma data, 16 were related to autophagy (Fig.
8A). Pearson correlation analysis further revealed that several differentially
expressed genes associated with autophagy, including CASP1, CASP4,
CASP§, ITGB4, NAMPT, and SERPINA1, were positively correlated with
MOV10 expression (I'ig. 8B). To further explore whether MOV10 affects
glioma cell development through autophagy, we used the mRFP-GFP
reporter adenovirus labeled with LC3 to assess autophagic flux. The results
showed an increase in yellow and red spots after silencing MOV10 (Fig. 9A),
indicating enhanced autophagy. Additionally, the downregulation of p62
protein and the increased LC3II/LC3I ratio also indicated increased
autophagy levels (Fig. 9C), suggesting that MOV10 can regulate autophagy
in U251 and T98G cells.Further investigation into the mechanism of MOV10
in glioma revealed that 48 hours after transfection of siMOV10, apoptosis
levels were significantly higher in the siMOV10 group compared to the NC
group, as determined by Annexin V-FITC flow cytometry (Fig. 9B). Western
blot assays also showed increased expression of Bax and decreased

expression of Bcl-2 (Fig. 9C), indicating that MOV10 knockdown promotes



apoptosis in U251 and T98G cells.

Discussion

Gene therapy, which involves introducing or modifying genes in target
cells, is widely used in cancer treatment [20], |n this study, we used TCGA data
to assess MOV10 expression across 33 tumor types and found that MOV10 is
overexpressed in gliomas and is linked to poor prognosis. Validation using
glioma samples and normal brain samples confirmed that MOV10 could
potentially serve as a diagnostic marker for gliomas. Studies have shown that
MOV10 downregulates the tumor suppressor INK4a through interaction with
the PRC1 complex [221, Additionally, MOV10 has been found to interact with
breast cancer anti-estrogen resistance protein 1 in lung adenocarcinoma,
suggesting a possible role in tumor progression [23:24] Further analysis of
TCGA and CGGA data reinforced that high MOV10 expression is associated
with worse outcomes, higher cancer grade, older age, and PRS type in gliomas.
Univariate Cox regression analysis identified MOV10 as a risk factor for
gliomas. The nomogram we developed, which integrates MOV10 expression
and clinical data, accurately predicted 1-year, 3-year, and 5-year overall
survival (OS), providing valuable insights for patient stratification and
treatment planning.

Uncontrolled cell proliferation is a hallmark of malignant tumor
development and progression, often driven by aberrant proliferation signals
[25, 261 Functional enrichment analysis revealed that MOV10 is primarily
involved in pathways such as interferon-y response, allograft rejection, and
EMT. Interferon-y response contributes to antiviral defense, macrophage
activation, and enhanced antigen presentation. GO and KEGG analyses also
showed that MOV10 is enriched in pathways regulating mRNA metabolism and
RNA splicing. Clonogenic and MTS analyses showed that knockout of MOV10
significantly reduced cell colony formation and proliferation, while

downregulating the expression of CDK6 and CyclinD1, indicating that MOV10



regulates cell proliferation by affecting the cell cycle. EMT-like processes are
crucial in tumorigenesis, invasion, metastasis, and drug resistance [27. 28],
Although true EMT involves a transition from an epithelial to a mesenchymal
state, a similar process can be observed in gliomas, where cells exhibit
EMT-like characteristics, such as enhanced migration and invasion.
Overexpression of MOV10 has been shown to promote the proliferation and
invasion of pancreatic cancer cells but inhibit the invasion and migration of
melanoma cells [11.29], Qur studies further support this notion, as transwell
and wound wound assays confirmed that MOV10 knockdown significantly
inhibited the invasion and migration of T98G and U251 cells, and reduced the
expression of MMP2 and N-cadherin. These findings suggest that MOV10
drives the malignant behavior of gliomas by promoting EMT-like processes
(characterized by increased cell proliferation and invasion), rather than true
EMT. The role of MOV10 in regulating these processes highlights its potential
as a key regulator of glioma progression.

Immunotherapy holds great promise in cancer treatment. We examined
the correlation between MOV10 expression and immune cell infiltration in
tumors. CD8+ T celis are key drivers of anti-tumor immunity, and low
infiltration of these cells is linked to immune suppression and poorer survival
outcomes [30. 311, Our analysis revealed that MOV10 is negatively associated
with CD8+ T cell infiltration in glioma, suggesting that MOV10 might
contribute to immune evasion in gliomas. CD4+ T cells help regulate tumor
immune responses [32], while M2 macrophages, through their interactions with
tumor-inhibiting cells, have tumor-promoting and anti-inflammatory effects [33.
341, Our results showed a positive correlation between high MOV10 expression
and macrophage infiltration, particularly M2 macrophages, in glioma patients.
Furthermore, MOV10 expression was positively associated with dendritic cells,
NK cell resting, and CD4+ memory T cells. These findings indicate that MOV10
overexpression plays a crucial role in immune evasion in gliomas, promoting

tumor growth and progression.



Immune checkpoints play a key role in regulating immune activity, and
their over- or underexpression can result in immune dysfunction [351, T cell
exhaustion is a major contributor to tumor-induced immune dysfunction [361, In
this study, MOV10 expression was positively associated with multiple T-cell
exhaustion and immunosuppressive checkpoint markers, including PDCD1,
CTLA4, HAVCR2, and CD274 (PD-L1), all of which are closely linked to
responses to immune checkpoint blockade therapies [371. The high expression
of T cell exhaustion and immune checkpoint markers is associated with poor
prognosis and may explain MOV10's tumor-promoting role. Tumor mutation
burden (TMB) is a predictor of immunotherapy efficacy, reflecting the tumor's
ability to generate neoantigens [38l, Furthermore, TIDE analysis showed a
significantly higher TIDE score in the MOV10 high-expression group, indicating
that this type of model is more likely to exhibit immune escape and therefore
has a poorer predictive response to anti-PD-1/anti-CTLA-4 combined
immunotherapy. This result is consistent with the immunosuppressive
characteristics we observed!39 401 By studying macrophages in glioma cell
lines, it was found that silencing MOV10 significantly inhibited the invasive
ability of M2 macrophages, highlighting its role in immunosuppression. The
accumulation of M2 macrophages and their proximity to blood vessels create
an environment conducive to tumor growth and invasion [41, MOV10
expression was significantly positively correlated with stromal and immune
cell scores, and higher scores were associated with lower OS, suggesting that
MOV10 may regulate tumor immunity through both stromal and immune cells
in the TME. Further studies are needed to elucidate the exact mechanisms
involved.

Autophagy plays a dual role in cancer development. On one side, it acts
as a defense mechanism by degrading abnormal proteins and organelles to
suppress cancer cell expansion [42; on the other side, it can protect cancer
cells, thereby promoting cancer progression [43. 44l Deciding whether to

enhance or inhibit autophagy in cancer treatment remains a critical question.



In our analysis of TCGA glioma data, we found that MOV10 is positively
correlated with several autophagy-related molecules, including CASP1, CASP4,
CASP8, ITGB4, NAMPT, and SERPINAL, which have been reported to regulate
autophagy in cancer [45-50], We hypothesized that MOV10 plays a role in
autophagy regulation, and our in vitro experiments supported this.
Knockdown of MOV10 increased the number of autophagosomes and
autolysosomes, decreased p62 expression, and raised the LC3II/LC3I ratio,
indicating heightened autophagy. Previous studies have shown that
enhancing autophagy can suppress breast cancer metastasis and have
anti-glioma effects [51-533], These findings suggest that MOV10 knockdown may
inhibit glioma cell survival by promoting autophagy.

Evasion of apoptosis is a key factor in tumor progression [54. 561 and
inducing apoptosis is a major target in cancer treatment. In this study,
knocking out MOV10 significantly enhanced apoptosis in U251 and T98G cells,
a result further validated at the protein level. Previous research has similarly
shown that MOV10 affects apoptosis sensitivity in pancreatic and lung
adenocarcinoma cells [11. 231 aligning with our findings. MOV10's inhibition of
apoptosis in glioma cells could be a novel therapeutic approach.

Although our results suggest that silencing MOV10 expression can inhibit
tumor malignant proliferation and accelerate the cell cycle by promoting EMT,
apoptosis, and autophagy, these findings require further in vivo validation and
investigation of the underlying mechanisms. Bioinformatics analysis revealed
that MOV10 is closely associated with immune cell infiltration in gliomas, and
its high expression is associated with poor immunotherapy efficacy. Further
investigation of MOV10 as a potential anti-glioma therapeutic target is

warranted.

Conclusion
Based on analysis of the TCGA and CGGA databases and clinical tissue

samples, we proved for the first time that MOV10 is highly expressed in



gliomas and is highly correlated with immune cell infiltration.Immunological
experiments such as mIHC confirmed that MOV10 is expressed in M2
macrophages. In addition, MOV10 knockdown inhibits cell proliferation,
invasion and migration, regulates autophagy and promotes apoptosis. In
short, MOV10 is an important molecule in the regulation of gliomas, and our
findings provide a promising target for the treatment of gliomas.
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Figure 1: MOV10 is overexpressed in glioma and correlates with poor patient

prognosis. A: GEPIA2 database shows the expression of MOV10 mRNA in



different cancer types. B: Differential expression of MOV10 in TCGA-GBM

dataset. *p<0.05GBM vs normal. C-D: Overall survival curves of clinical

feature groups in CGGA-TCGA glioma dataset. E-H: Expression and clinical

differences of MOV10 in CGGA glioma dataset. *p<0.05. (***p<0.001,

**p<0.01,*p<0.05).
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Figure 2: Creation of a prognostic model combining MOV10 expression

in



glioma using CGGA and TCGA data. A: CGGA COX regression analysis
evaluating the prognostic significance of MOV10 and other clinical factors in
glioma. B: CGGA ROC curve showing the accuracy of the nomogram in
predicting 1-, 3-, and 5-year OS. [AUC]: 0.71, 0.76, 0.74. C: Nomogram
combining MOV10 expression with clinical characteristics of glioma patients
based on CGGA data. The OS curves of clinical features group of
glioma ,such as IDH status (D) ,grade (E), age( F ), and 1p/19g codeletion
status (G) .(**p<0.001, **p<0.01, *p<0.05).
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Figure 3: Functional enrichment of MOV10-associated genes in glioma. A:



Gene Ontology (GO) analysis of the top 1,000 MOV10 co-expressed genes in
glioma. B: Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the
top 1,000 MOV10 co-expressed genes in glioma. C: Volcano plot depicting
the differentially expressed genes (DEGs) related to MOV10. p<0.05 and
|log2FC| > 1.0. high vs low. D: Gene set enrichment analysis (GSEA) ridge
plot comparing high and low MOV10 expression groups in the TCGA-Glioma
database. E: GSEA showing six enriched pathways in the high MOV10
expression group vs. the low MOV10 expression group in the TCGA-Glioma

data base; criteria: NES>1, FDR<0.25.
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Figure 4: MOV10 was upregulated in glioma tissues and cell lines, and
siMOV10 inhibited the proliferation of glioma cells. A: Comparison of MOV10
expression levels between 81 GBM tissues and 29 normal brain tissues by
RT—-qPCR. B: RT-qPCR analysis of the relative expression of MOV10 in the
U87, U251, T98G and HEB cell lines. C-D: The expression level of MOV10 in
T98G and U251 cells treated with two independent siRNAs was examined by
RT-gPCR. E-F: The protein expression level of MOV10 in T98G and U251
cells treated with siMOV10. G-H: Knockdown by siMOV10 transfection



suppressed the proliferation of T98G and U251 cells, as shown by MTS assay.
I: Knockdown of MOV10 impaired the clone formation ability of glioma cells

(***p<0.001, **p<0.01, *p<0.05n=3).
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siRNAs (¥**p<0.001, *¥p<0.01, *p<0.05[n=3).
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Figure 6: Immunological significance of MOV10 in glioma. A: ESTIMATE

algorithm, tumor microenvironment (TME) scores comparing high MOV10

expression samples vs low expression samples. *p<0.05 vs low. B: Correlation

analysis between MOV10 expression and TME scores using the ESTIMATE



algorithm. C: Overall survival (OS) curve comparing high and low stromal
score groups (immune score) via the ESTIMATE algorithm. D: xCell algorithm,
heatmap comparing cell expression between high and low MOV10 expression
groups. E: xCell algorithm, TME scores for high vs low MOV10 expression
samples. *p<0.05 vs low. F: Bar chart showing differences in various immune
cell types between high and low MOV10 expression groups. G: Bubble chart
demonstrating the correlation between MOV10 expression and 22 immune
cell types in glioma. *p<0.05 vs low. H-I: Visualization of the differences and
correlations between MOV10 expression and immune checkpoints in the

TCGA-glioma dataset. *p<0.05 vs low. (***p<0.001, **p<0.01, *p<0.05).
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Fig. 7 Changes in macrophage migration after MOV10 deficiency.

Polarization of THP-1 cells into M2 cells. B: M0-M2 model of THP-1 cells. C



Western blot detection of the expression of M2 markers CD163 and CD206.
D-E: Fluorescence analysis to detect the expression of CD163 and CD206 in
M2 and MO macrophages. F: The expression and co-localization of CD163,
CD206 and MOV10 were detected in human glioma tissue using multiplex
immunofluorescence analysis. G-H: Transwell analysis to examine the effect
of MOV10 knockdown on the migration of U251 and T98G cells after
co-culture with THP-1 cells and M2 macrophages for 48 hours (***p<0.001,

#4p<0.01, ¥p<0.05).
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Figure 8: Association of MOV10 with autophagy in gliomas. A: Heatmap of
the correlation of MOV10 with differentially expressed autophagy genes in
the glioma expression matrix. B: Strong correlation of MOV10 with several
differentially expressed autophagy genes, such as CASP1, CASP4, CASPS,
ITGB4, NAMPT, and SERPINA1.
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Figure 9: Knockdown of MOV10 promoted autophagy and apoptosis. A: The
number of red and yellow puncta was elevated in glioma cells treated with
MOV10 siRNAs. B: Apoptosis in T98G and U251 cells transfected with
siMOV10 was detected by Annexin V and PI staining, respectively. C: The
protein expression levels of autophagy- and apoptosis-related proteins in
T98G and U251 cells treated with MOV10 siRNAs (***p<0.001, **p<0.01,

*p<0.05[n=3).
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