Abstract
Dominican amber from the La Cumbre deposit exhibits a variety of colors, ranging from the more common yellow and red to those showing distinctive blue and bluish-green daylight-induced fluorescence. The study aimed to investigate its internal fabric and geochemical composition using stereoscopic and scanning electron microscopy, CHNS elemental analysis, and gas chromatography-mass spectrometry to discuss the possible factors that might have contributed to the exceptional properties of this amber. The results revealed striking microstructural features such as (i) a more or less regular network of three-dimensional domains, resembling desiccation structures, with interstices filled with clays and carbonates (resembling the desiccation pattern), (ii) a foam-like texture, with embedded mineral inclusions of Fe, Zn, Ti, and Cu. These features suggest that thermal processes, likely linked to the volcanic activity and/or local forest fires, contributed to the resins’ transformation during the fossilization. The fluorescent blue and green hues are typically restricted to the superficial fossilized tree resin layers of variable thickness (from several to several dozen mm) and well correlate with the structural irregularities rather than uniform chemical markers. However, the presence of perylene in one blue specimen and clerodane-type biomarkers may suggest some impact of microbial or fungal activity on the coloration phenomena. The green amber displays unusual chemical signatures, including elevated oxygen content and uncyclized hydrocarbons, hinting at less mature polymerization processes. These findings point to a complex interaction of geological and biological factors shaped by environmental conditions during and after resin exudation in La Cumbre. Possibly volcanism, local fires, and also biogenic degradation by fungi contributed to the present shape, color, internal fabric, and fluorescent properties of Dominican amber from the La Cumbre deposit.
Similar content being viewed by others
Data availability
Data is provided within the manuscript and supplementary information file.
References
Iturralde-Vinent, M. A. & MacPhee, R. D. E. Age and paleogeographical origin of Dominican amber. Science 273 (5283), 1850–1852. https://doi.org/10.1126/science.273.5283 (1996).
Poinar, G. O. Jr. Hymenaea protera sp.n. (Leguminosae, Caesalpinioideae) from Dominican amber has African affinities. Res. Articles. 47, 1075–1082 (1991).
McCoy, V. E., Boom, A., Kraemer, M. M. S. & Gabbott, S. E. The chemistry of American and African amber, copal, and resin from the genus hymenaea. Org. Geochem. 113, 43–54. https://doi.org/10.1016/j.orggeochem.2017.08.005 (2017).
Pańczak, J., Kosakowski, P., Drzewicz, P. & Zakrzewski, A. Fossil resins–A chemotaxonomical overview. Earth Sci. Rev. 252, 104734. https://doi.org/10.1016/j.earscirev.2024.104734 (2024).
Stach, P. et al. A study on the formation environment of the La cumbre amber deposit from the Santiago Province, the Northwestern Dominican Republic. Minerals 10 (9), 736. https://doi.org/10.3390/min10090736 (2020).
Stach, P. et al. The study on Dominican amber-bearing sediments from Siete Cañadas and La cumbre with a discussion on their origin. Sci. Rep. 11, 18556, 1–20. https://doi.org/10.1038/s41598-021-96520-3 (2021).
George, C. et al. Preliminary analytical studies of Dominican amber (El Valle, Hato Mayor Province, Dominican Pepublic). In 8th International Conference on Fossil Insects, Arthropods and Amber, Santo Domingo, Dominican Republic. 7–12 (2019).
Stach, P. et al. An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location. J. Polym. Eng. 39, 8, 716–728. https://doi.org/10.1515/polyeng-2019-0159 (2019).
Iturralde-Vinent, M. A. Geology of the amber-bearing deposits of the Greater Antilles. Caribb. J. Sci. 37, 141–167 (2001).
Czapla, D., Natkaniec-Nowak, L. & Drzewicz, P. Preliminary examinations of fossil resins from Dominican Republic. In 7th International Geosciences Student Conference. Katowice, Poland, 11th -14th July, book of abstract. 84–86 (2016).
Calder, J., Gibling, M. R. & Mukhopadhyay, P. K. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implication for the maceral-base interpretation or rheotrophic and raised paleomires. Bull. Soc. Géol Fr. 162, 283–298 (1991).
Kalkreuth, W., Kotis, T., Papanicolaou, C. & Kokkinalis, P. The geology and coal petrology of a miocene lignite profile at Meliadi Mine, Katerini, Greece. Int. J. Coal Geol. 17, 51–67. https://doi.org/10.1016/0166-5162(91)90004-3 (1991).
Brouwer, S. B. & Brouwer, P. A. Geologia de la region ambarifera oriental de la Republica Dominicana. In Transactions of the 9th Caribbean Geological Conference, Santo Domingo, Dominican Republic, August 15–26 (1982).
Bachmann, R. The Caribbean Plate and the question of its formation. University of Mining and Technology, Institute of Geology, Department of Tectonophysics: Freiberg, Germany. www.geo.tu-freiberg.de/hydro/oberseminar/pdf/Raik%20Bachmann.pdf (2001).
Viruete, J. E. Formación La Toca. (6). Alternancias rítmicas de Areniscas y arcillas. Oligoceno-Mioceno inferior-medio? P 3-N12. In Mapa geológico de La República Dominicana. Escala 1:50.000. Servicio Geológico National, República Dominicana. San Francisco Arriba. (6074-I). Santo Domingo. R D Abril 2007/Diciembre. Vol. 2.1.2.7, 36 (2010) (in Spanish).
Dolan, J. et al. Sedimentologic, stratigraphy, and tectonic synthesis of Eocene-Miocene sedimentary basins, Hispaniola and Puerto Rico. In Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola (Mann, P., Draper, G., Lewis, J.F. Eds.) Geological Society of America Special Paper: Boulder, CO, USA. Vol. 262. 217–240 (1991).
De Zoeten, R. & Mann, P. Structural geology and Cenozoic tectonic history of the Central Cordillera Septentrional, Dominican Republic. In Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola (Mann, P., Draper, G., Lewis, J.F., Eds.) Geological Society of America Special Paper: Boulder, CO, USA. Vol. 262. 265–279 (1991).
Anderson, K. B., Winans, R. E. & Botto, R. E. The nature and fate of natural resins in the geosphere-II. Identification, classification and nomenclature of resinites. Org. Geochem. 18 (6), 829–841 (1992).
Wang, Y. et al. Identification of 15-nor-cleroda-3, 12-diene in a Dominican amber. Org. Geochem. 113, 90–96. https://doi.org/10.1016/j.orggeochem.2017.08.013 (2017).
Otto, A. & Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review. Bot. Rev. 67, 141–238. https://doi.org/10.1007/BF02858076 (2001).
Eberle, W., Hirdes, W., Muff, R. & Pelaez, M. The geology of the Cordillera Septentrional. In Proceedings of the 9th Caribbean Geological Conference. 619–632 (1980).
Redmond, B. Sedimentary processes and products; An amber-bearing turbidite complex from the northern Dominican. Republic [Ph.D. thesis]: Troy, New York, 1982. In Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola. (Mann, P., Draper, G., Lewis, J.F. Eds.) . https://doi.org/10.1130/SPE262-pvii (Geological Society of America, 1991).
Naglik, B. et al. Evolutionary history of fossil resin from Jambi Province (Sumatra, Indonesia) based on physico-chemical studies. Minerals 8, 95–107. https://doi.org/10.3390/min8030095 (2018).
Natkaniec-Nowak, L., Drzewicz, P., Stach, P., Mroczkowska-Szeszeń, M. & Żukowska, G. The overview of analytical methods for studying of fossil natural resins. Crit. Rev. Anal. Chem. 54(8), 2754–2776. 10.1080/10408347.2023.2200855 (epub Apr 21 2023) (2024) (Taylor & Francis Group, LLC).
Zhang, Z., Jiang, X., Wang, Y., Kong, F. & She, A. H. Fluorescence characteristics of blue amber from the Dominican Republic, Mexico, and Myanmar. J. Gems Gemol. 56 (4), 484–496 (2020).
Bellani, V., Giulotto, E., Linati, L. & Sacchi, D. Origin of the blue fluorescence in Dominican amber. J. Appl. Phys. 97, 016101. https://doi.org/10.1063/1.1829395 (2005).
Chekryzhov, I. Y., Nechaev, V. P. & Kononov, V. V. Blue-fluorescing amber from cenozoic lignite, Eastern Sikhote-Alin, Far East Russia: Preliminary results. Int. J. Coal Geol. 132, 6–12. https://doi.org/10.1016/j.coal.2014.07.013 (2014).
Liu, Y., Shi, G. & Wang, S. Color phenomena of blue amber. Gems Gemol. 50 (2), 134–140. https://doi.org/10.5741/GEMS.50.2.134 (2014).
Bechtel, A., Chekryzhov, I. Y., Nechaev, V. P. & Kononov, V. V. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. Int. J. Coal Geol. 167, 176–183. doi.org/10.1016%2Fj.coal.2016.10.005 (2016).
Kosmowska-Ceranowicz, B., Sachanbiński, M. & Łydżba-Kopczyńska, B. Analytical characterization of Indonesian amber deposits: evidence of formation from volcanic activity. Baltica 30 (1), 55–60. https://doi.org/10.5200/BALTICA.2017.30.06 (2017).
Jiang, X., Zhang, Z., Wang, Y. & Kong, F. Gemmological and spectroscopic characteristics of different varieties of amber from the Hukawng Valley, Myanmar. J. Gemmol. 37 (2), 144–162. https://doi.org/10.15506/JoG.2020.37.2.144 (2020).
Zhang, Z., Wang, Y. & Shen, A. H. Room-Temperature phosphorescence and lifetime of fossil resins (Amber) from Dominican Republic, Mexico, Baltic Sea, Myanmar, and Fushun, China. J. Gems Gemol. 25 (4), 111–119 (2023).
Kubota, A., Takeda, Y., Yi, K., Sano, S. & Iba, Y. Amber in the cretaceous deep sea deposits reveals large-scale tsunamis. Sci. Rep. 15, 14298. https://doi.org/10.1038/s41598-025-96498-2 (2025).
Brown, S. A., Scott, A. C., Glasspool, I. J. & Collinson, M. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).
Bamforth, E. L., Button, C. L. & Larsson, H. C. Paleoclimate estimates and fire ecology immediately prior to the end-Cretaceous mass extinction in the Frenchman Formation (66 Ma), Saskatchewan, Canada. Palaeogeogr Palaeoclimatol Palaeoecol. 401, 96–110 (2014).
Kelly, P. M. & Sear, C. B. Climatic impact of explosive volcanic eruptions. Nature 311 (5988), 740–743. https://doi.org/10.1038/311740a0 (1984).
Mitchell, A. H. G. Cretaceous–Cenozoic tectonic events in the Western Myanmar (Burma)–Assam region. J. Geol. Soc. 150 (6), 1089–1102. https://doi.org/10.1144/gsjgs.150.6 (1993).
Harmon, A. D., Weisgraber, K. H. & Weiss, U. Preformed azulene pigments of Lactarius indigo (Schw.) Fries (Russulaceae, Basidiomycetes). Experientia 36 (1), 54–56 (1980).
Menor-Salván, C. et al. Terpenoids in extracts of lower cretaceous ambers from the Basque-Cantabrian basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects. Org. Geochem. 41 (10), 1089–1103. https://doi.org/10.1016/j.orggeochem.2010.06.013 (2010).
Drąg, K., Mroczkowska-Szerszeń, M., Dumańska-Słowik, M. & Żukowska, G. Identification of treated Baltic amber by FTIR and FT-Raman – A feasibility study. Spectrochim Acta Mol. Biomol. Spectrosc. 279, 121404 (2022).
Wagner, M. et al. Petrographic and mineralogical studies of fossil charcoal from Sierra de Bahoruco (Barahona Province, Dominican Republic). Int. J. Coal Geol. 173, 142–149 (2017).
Dumańska-Słowik, M., Powolny, T., Milovsky, R., Natkaniec-Nowak, L., George, C., Lora,E. & Surmacki, J. Origin of bluish pectolite aka larimar from the Dominican Republic:Constraints from mineralogy and geochemistry. J. South Am. Earth Sci. 141, 104949 (2024).
Lozano, R. P. et al. Preventive conservation of amber: Some preliminary investigations. Pyrite decay in Amber: Deterioration of collections and conservation guidelines. Geoheritage 17 (4), 168. https://doi.org/10.1007/s12371-025-01219-w (2025).
Yamei, W. A. N. G., Zhongping, X. I. E., Jiarong, L. I., Xingping, L. I. & Yan, L. I. Gemmological identification characteristics of natural ageing and artificial aged beeswax amber. J. Gems Gemmol. 25 (4), 1–10 (2023).
Alonso, J. et al. A new fossil resin with biological inclusions in lower cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). J. Paleontol. 74 (1), 158–178. https://doi.org/10.1666/0022-3360(2000)074%3C0158:ANFRWB%3E2.0.CO;2 (2000).
Ragazzi, E., Roghi, G., Giaretta, A. & Gianolla, P. Classification of amber based on thermal analysis. Thermochim Acta. 404 (1–2), 43–54. https://doi.org/10.1016/S0040-6031(03)00062-5 (2003).
Havelcová, M. et al. Duxite–fossil resin of miocene age. Org. Geochem. 124, 190–204. https://doi.org/10.1016/j.orggeochem.2018.07.014 (2018).
Pańczak, J., Kosakowski, P. & Zakrzewski, A. Biomarkers in fossil resins and their palaeoecological significance. Earth-Sc Rev. 242, 104455. https://doi.org/10.1016/j.earscirev.2023.104455 (2023).
Doménech-Carbó, M. T., de La Cruz-Cañizares, J., Osete-Cortina, L., Doménech-Carbó, A. & David, H. Ageing behaviour and analytical characterization of the Jatobá resin collected from hymenaea Stigonocarpa mart. Int. J. Mass. Spectrom. 284 (1–3), 81–92. https://doi.org/10.1016/j.ijms.2008.12.015 (2009).
Li, R., Morris-Natschke, S. L. & Lee, K. H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 33 (10), 1166–1226. https://doi.org/10.1039/C5NP00137D (2016).
Clifford, D. J. & Hatcher, P. G. Structural transformations of polylabdanoid resinites during maturation. Org. Geochem. 23 (5), 407–418. https://doi.org/10.1016/0146-6380(95)00022-7 (1995).
Bray, E. E. & Evans, E. D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta. 22 (1), 2–15. https://doi.org/10.1016/0016-7037(61)90069-2 (1961).
Peters, K., Walters, C. C. & Moldowan, M. J. The Biomarker Guide. Vol. 2. ISBN 0521 37634. (Mambridge University Press, 2005).
Zhang, Z. Q. Spectral characteristics of amber—Their application in provenance determination, and study on fluorescent components. China Univ. Geosci. 10 (2021).
Zakrzewski, A., Kosakowski, P., Waliczek, M. & Kowalski, A. Polycyclic aromatic hydrocarbons in middle jurassic sediments of the Polish Basin provide evidence for high-temperature palaeo-wildfires. Org. Geochem. 145, 104037. https://doi.org/10.1016/j.orggeochem.2020.104037 (2020).
Matuszewska, A. & Czaja, M. Aromatic compounds in molecular phase of Baltic amber-synchronous luminescence analysis. Talanta 56 (6), 1049–1059. https://doi.org/10.1016/S0039-9140(01)00610-5 (2002).
Louda, J. W. & Baker, E. W. Perylene occurrence, alkylation and possible sources in deep-ocean sediments. Geochim. Cosmochim. Acta. 48 (5), 1043–1058. https://doi.org/10.1016/0016-7037(84)90195-9 (1984).
Jiang, C., Alexander, R., Kagi, R. I. & Murray, A. P. Origin of perylene in ancient sediments and its geological significance. Org. Geochem. 31 (12), 1545–1559. https://doi.org/10.1016/S0146-6380(00)00074-7 (2000).
Marynowski, L. et al. Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Org. Geochem. 59, 143–151. https://doi.org/10.1016/j.orggeochem.2013.04.006 (2013).
Smolarek-Lach, J., Szram, E., Wójcicki, K. J. & Marynowski, L. Wood-degrading fungal origin of perylene in peatlands of southern Poland: A molecular and statistical approach. Int. J. Coal Geol. 299, 104685. https://doi.org/10.1016/j.coal.2025.104685 (2025).
Beimforde, C. et al. Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia. Arthropod-Plant Interact. 11, 495–505. https://doi.org/10.1007/s11829-016-9475-3 (2017).
Seyfullah, L. J. et al. Production and preservation of resins–past and present. Biol. Rev. 93 (3), 1684–1714. https://doi.org/10.1111/brv.12414 (2018).
Schmidt, A. R., Dörfelt, H. & Perrichot, V. Carnivorous fungi from cretaceous amber. Science 318 (5857), 1743–1743. https://doi.org/10.1126/science.1149947 (2007).
Halbwachs, H. Fungi trapped in amber—A fossil legacy frozen in time. Mycological Progress. 18 (7), 879–893. https://doi.org/10.1007/s11557-019-01498-y (2019).
Acknowledgements
The authors would like to thank Prof. Wiesław Krzemiński, the specialist paleontologist from the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences in Krakow, Poland, for valuable comments and suggestions. The permission to collect samples was obtained from the National Geological Service (SGN) of the Dominican Republic. Edwin Garcia, the director of SGN, is greatly acknowledged for his support during our stay in the Dominican Republic. Two anonymous reviewers and Maria Luisa Saladino are thanked for their friendly and extensive comments and handling of the manuscript, respectively.
Funding
The work was financially supported by the program „Excellence initiative – Research University” for the AGH University of Krakow and AGH grant no. 16.16.140.315.
Author information
Authors and Affiliations
Contributions
L.N-N, J.P, M.D-S, and P.K wrote the main body of the manuscript. C.G. did field work. J.P. did elemental and chromatographic measurements. M.S made SEM-EDS analyses. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Natkaniec-Nowak, L., George, C., Pańczak, J. et al. Thermal, geological and biological processes shape the internal fabric and fluorescence of amber from La Cumbre, Dominican Republic. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40461-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-40461-2


