Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Thermal, geological and biological processes shape the internal fabric and fluorescence of amber from La Cumbre, Dominican Republic
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Thermal, geological and biological processes shape the internal fabric and fluorescence of amber from La Cumbre, Dominican Republic

  • Lucyna Natkaniec-Nowak1,
  • Carlos George2,
  • Jan Pańczak1,
  • Magdalena Dumańska-Słowik1,
  • Mateusz Przemysław Sęk1 &
  • …
  • Paweł Kosakowski1 

Scientific Reports , Article number:  (2026) Cite this article

  • 524 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biogeochemistry
  • Ecology
  • Environmental sciences
  • Solid Earth sciences

Abstract

Dominican amber from the La Cumbre deposit exhibits a variety of colors, ranging from the more common yellow and red to those showing distinctive blue and bluish-green daylight-induced fluorescence. The study aimed to investigate its internal fabric and geochemical composition using stereoscopic and scanning electron microscopy, CHNS elemental analysis, and gas chromatography-mass spectrometry to discuss the possible factors that might have contributed to the exceptional properties of this amber. The results revealed striking microstructural features such as (i) a more or less regular network of three-dimensional domains, resembling desiccation structures, with interstices filled with clays and carbonates (resembling the desiccation pattern), (ii) a foam-like texture, with embedded mineral inclusions of Fe, Zn, Ti, and Cu. These features suggest that thermal processes, likely linked to the volcanic activity and/or local forest fires, contributed to the resins’ transformation during the fossilization. The fluorescent blue and green hues are typically restricted to the superficial fossilized tree resin layers of variable thickness (from several to several dozen mm) and well correlate with the structural irregularities rather than uniform chemical markers. However, the presence of perylene in one blue specimen and clerodane-type biomarkers may suggest some impact of microbial or fungal activity on the coloration phenomena. The green amber displays unusual chemical signatures, including elevated oxygen content and uncyclized hydrocarbons, hinting at less mature polymerization processes. These findings point to a complex interaction of geological and biological factors shaped by environmental conditions during and after resin exudation in La Cumbre. Possibly volcanism, local fires, and also biogenic degradation by fungi contributed to the present shape, color, internal fabric, and fluorescent properties of Dominican amber from the La Cumbre deposit.

Similar content being viewed by others

The study of Dominican amber-bearing sediments from Siete Cañadas and La Cumbre with a discussion on their origin

Article Open access 17 September 2021

Experimental maturation of pine resin in sediment to investigate the formation of synthetic copal and amber

Article Open access 24 March 2025

Microbial diversity of high-elevated fumarole fields, low-biomass communities on the boundary between ice and fire

Article Open access 13 May 2025

Data availability

Data is provided within the manuscript and supplementary information file.

References

  1. Iturralde-Vinent, M. A. & MacPhee, R. D. E. Age and paleogeographical origin of Dominican amber. Science 273 (5283), 1850–1852. https://doi.org/10.1126/science.273.5283 (1996).

    Google Scholar 

  2. Poinar, G. O. Jr. Hymenaea protera sp.n. (Leguminosae, Caesalpinioideae) from Dominican amber has African affinities. Res. Articles. 47, 1075–1082 (1991).

    Google Scholar 

  3. McCoy, V. E., Boom, A., Kraemer, M. M. S. & Gabbott, S. E. The chemistry of American and African amber, copal, and resin from the genus hymenaea. Org. Geochem. 113, 43–54. https://doi.org/10.1016/j.orggeochem.2017.08.005 (2017).

    Google Scholar 

  4. Pańczak, J., Kosakowski, P., Drzewicz, P. & Zakrzewski, A. Fossil resins–A chemotaxonomical overview. Earth Sci. Rev. 252, 104734. https://doi.org/10.1016/j.earscirev.2024.104734 (2024).

    Google Scholar 

  5. Stach, P. et al. A study on the formation environment of the La cumbre amber deposit from the Santiago Province, the Northwestern Dominican Republic. Minerals 10 (9), 736. https://doi.org/10.3390/min10090736 (2020).

    Google Scholar 

  6. Stach, P. et al. The study on Dominican amber-bearing sediments from Siete Cañadas and La cumbre with a discussion on their origin. Sci. Rep. 11, 18556, 1–20. https://doi.org/10.1038/s41598-021-96520-3 (2021).

    Google Scholar 

  7. George, C. et al. Preliminary analytical studies of Dominican amber (El Valle, Hato Mayor Province, Dominican Pepublic). In 8th International Conference on Fossil Insects, Arthropods and Amber, Santo Domingo, Dominican Republic. 7–12 (2019).

  8. Stach, P. et al. An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location. J. Polym. Eng. 39, 8, 716–728. https://doi.org/10.1515/polyeng-2019-0159 (2019).

    Google Scholar 

  9. Iturralde-Vinent, M. A. Geology of the amber-bearing deposits of the Greater Antilles. Caribb. J. Sci. 37, 141–167 (2001).

    Google Scholar 

  10. Czapla, D., Natkaniec-Nowak, L. & Drzewicz, P. Preliminary examinations of fossil resins from Dominican Republic. In 7th International Geosciences Student Conference. Katowice, Poland, 11th -14th July, book of abstract. 84–86 (2016).

  11. Calder, J., Gibling, M. R. & Mukhopadhyay, P. K. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implication for the maceral-base interpretation or rheotrophic and raised paleomires. Bull. Soc. Géol Fr. 162, 283–298 (1991).

    Google Scholar 

  12. Kalkreuth, W., Kotis, T., Papanicolaou, C. & Kokkinalis, P. The geology and coal petrology of a miocene lignite profile at Meliadi Mine, Katerini, Greece. Int. J. Coal Geol. 17, 51–67. https://doi.org/10.1016/0166-5162(91)90004-3 (1991).

    Google Scholar 

  13. Brouwer, S. B. & Brouwer, P. A. Geologia de la region ambarifera oriental de la Republica Dominicana. In Transactions of the 9th Caribbean Geological Conference, Santo Domingo, Dominican Republic, August 15–26 (1982).

  14. Bachmann, R. The Caribbean Plate and the question of its formation. University of Mining and Technology, Institute of Geology, Department of Tectonophysics: Freiberg, Germany. www.geo.tu-freiberg.de/hydro/oberseminar/pdf/Raik%20Bachmann.pdf (2001).

  15. Viruete, J. E. Formación La Toca. (6). Alternancias rítmicas de Areniscas y arcillas. Oligoceno-Mioceno inferior-medio? P 3-N12. In Mapa geológico de La República Dominicana. Escala 1:50.000. Servicio Geológico National, República Dominicana. San Francisco Arriba. (6074-I). Santo Domingo. R D Abril 2007/Diciembre. Vol. 2.1.2.7, 36 (2010) (in Spanish).

  16. Dolan, J. et al. Sedimentologic, stratigraphy, and tectonic synthesis of Eocene-Miocene sedimentary basins, Hispaniola and Puerto Rico. In Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola (Mann, P., Draper, G., Lewis, J.F. Eds.) Geological Society of America Special Paper: Boulder, CO, USA. Vol. 262. 217–240 (1991).

  17. De Zoeten, R. & Mann, P. Structural geology and Cenozoic tectonic history of the Central Cordillera Septentrional, Dominican Republic. In Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola (Mann, P., Draper, G., Lewis, J.F., Eds.) Geological Society of America Special Paper: Boulder, CO, USA. Vol. 262. 265–279 (1991).

  18. Anderson, K. B., Winans, R. E. & Botto, R. E. The nature and fate of natural resins in the geosphere-II. Identification, classification and nomenclature of resinites. Org. Geochem. 18 (6), 829–841 (1992).

    Google Scholar 

  19. Wang, Y. et al. Identification of 15-nor-cleroda-3, 12-diene in a Dominican amber. Org. Geochem. 113, 90–96. https://doi.org/10.1016/j.orggeochem.2017.08.013 (2017).

    Google Scholar 

  20. Otto, A. & Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review. Bot. Rev. 67, 141–238. https://doi.org/10.1007/BF02858076 (2001).

    Google Scholar 

  21. Eberle, W., Hirdes, W., Muff, R. & Pelaez, M. The geology of the Cordillera Septentrional. In Proceedings of the 9th Caribbean Geological Conference. 619–632 (1980).

  22. Redmond, B. Sedimentary processes and products; An amber-bearing turbidite complex from the northern Dominican. Republic [Ph.D. thesis]: Troy, New York, 1982. In Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola. (Mann, P., Draper, G., Lewis, J.F. Eds.) . https://doi.org/10.1130/SPE262-pvii (Geological Society of America, 1991).

  23. Naglik, B. et al. Evolutionary history of fossil resin from Jambi Province (Sumatra, Indonesia) based on physico-chemical studies. Minerals 8, 95–107. https://doi.org/10.3390/min8030095 (2018).

    Google Scholar 

  24. Natkaniec-Nowak, L., Drzewicz, P., Stach, P., Mroczkowska-Szeszeń, M. & Żukowska, G. The overview of analytical methods for studying of fossil natural resins. Crit. Rev. Anal. Chem. 54(8), 2754–2776. 10.1080/10408347.2023.2200855 (epub Apr 21 2023) (2024) (Taylor & Francis Group, LLC).

  25. Zhang, Z., Jiang, X., Wang, Y., Kong, F. & She, A. H. Fluorescence characteristics of blue amber from the Dominican Republic, Mexico, and Myanmar. J. Gems Gemol. 56 (4), 484–496 (2020).

    Google Scholar 

  26. Bellani, V., Giulotto, E., Linati, L. & Sacchi, D. Origin of the blue fluorescence in Dominican amber. J. Appl. Phys. 97, 016101. https://doi.org/10.1063/1.1829395 (2005).

    Google Scholar 

  27. Chekryzhov, I. Y., Nechaev, V. P. & Kononov, V. V. Blue-fluorescing amber from cenozoic lignite, Eastern Sikhote-Alin, Far East Russia: Preliminary results. Int. J. Coal Geol. 132, 6–12. https://doi.org/10.1016/j.coal.2014.07.013 (2014).

    Google Scholar 

  28. Liu, Y., Shi, G. & Wang, S. Color phenomena of blue amber. Gems Gemol. 50 (2), 134–140. https://doi.org/10.5741/GEMS.50.2.134 (2014).

    Google Scholar 

  29. Bechtel, A., Chekryzhov, I. Y., Nechaev, V. P. & Kononov, V. V. Hydrocarbon composition of Russian amber from the Voznovo lignite deposit and Sakhalin Island. Int. J. Coal Geol. 167, 176–183. doi.org/10.1016%2Fj.coal.2016.10.005 (2016).

    Google Scholar 

  30. Kosmowska-Ceranowicz, B., Sachanbiński, M. & Łydżba-Kopczyńska, B. Analytical characterization of Indonesian amber deposits: evidence of formation from volcanic activity. Baltica 30 (1), 55–60. https://doi.org/10.5200/BALTICA.2017.30.06 (2017).

    Google Scholar 

  31. Jiang, X., Zhang, Z., Wang, Y. & Kong, F. Gemmological and spectroscopic characteristics of different varieties of amber from the Hukawng Valley, Myanmar. J. Gemmol. 37 (2), 144–162. https://doi.org/10.15506/JoG.2020.37.2.144 (2020).

    Google Scholar 

  32. Zhang, Z., Wang, Y. & Shen, A. H. Room-Temperature phosphorescence and lifetime of fossil resins (Amber) from Dominican Republic, Mexico, Baltic Sea, Myanmar, and Fushun, China. J. Gems Gemol. 25 (4), 111–119 (2023).

    Google Scholar 

  33. Kubota, A., Takeda, Y., Yi, K., Sano, S. & Iba, Y. Amber in the cretaceous deep sea deposits reveals large-scale tsunamis. Sci. Rep. 15, 14298. https://doi.org/10.1038/s41598-025-96498-2 (2025).

    Google Scholar 

  34. Brown, S. A., Scott, A. C., Glasspool, I. J. & Collinson, M. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).

    Google Scholar 

  35. Bamforth, E. L., Button, C. L. & Larsson, H. C. Paleoclimate estimates and fire ecology immediately prior to the end-Cretaceous mass extinction in the Frenchman Formation (66 Ma), Saskatchewan, Canada. Palaeogeogr Palaeoclimatol Palaeoecol. 401, 96–110 (2014).

    Google Scholar 

  36. Kelly, P. M. & Sear, C. B. Climatic impact of explosive volcanic eruptions. Nature 311 (5988), 740–743. https://doi.org/10.1038/311740a0 (1984).

    Google Scholar 

  37. Mitchell, A. H. G. Cretaceous–Cenozoic tectonic events in the Western Myanmar (Burma)–Assam region. J. Geol. Soc. 150 (6), 1089–1102. https://doi.org/10.1144/gsjgs.150.6 (1993).

    Google Scholar 

  38. Harmon, A. D., Weisgraber, K. H. & Weiss, U. Preformed azulene pigments of Lactarius indigo (Schw.) Fries (Russulaceae, Basidiomycetes). Experientia 36 (1), 54–56 (1980).

    Google Scholar 

  39. Menor-Salván, C. et al. Terpenoids in extracts of lower cretaceous ambers from the Basque-Cantabrian basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects. Org. Geochem. 41 (10), 1089–1103. https://doi.org/10.1016/j.orggeochem.2010.06.013 (2010).

    Google Scholar 

  40. Drąg, K., Mroczkowska-Szerszeń, M., Dumańska-Słowik, M. & Żukowska, G. Identification of treated Baltic amber by FTIR and FT-Raman – A feasibility study. Spectrochim Acta Mol. Biomol. Spectrosc. 279, 121404 (2022).

    Google Scholar 

  41. Wagner, M. et al. Petrographic and mineralogical studies of fossil charcoal from Sierra de Bahoruco (Barahona Province, Dominican Republic). Int. J. Coal Geol. 173, 142–149 (2017).

    Google Scholar 

  42. Dumańska-Słowik, M., Powolny, T., Milovsky, R., Natkaniec-Nowak, L., George, C., Lora,E. & Surmacki, J. Origin of bluish pectolite aka larimar from the Dominican Republic:Constraints from mineralogy and geochemistry. J. South Am. Earth Sci. 141, 104949 (2024).

  43. Lozano, R. P. et al. Preventive conservation of amber: Some preliminary investigations. Pyrite decay in Amber: Deterioration of collections and conservation guidelines. Geoheritage 17 (4), 168. https://doi.org/10.1007/s12371-025-01219-w (2025).

  44. Yamei, W. A. N. G., Zhongping, X. I. E., Jiarong, L. I., Xingping, L. I. & Yan, L. I. Gemmological identification characteristics of natural ageing and artificial aged beeswax amber. J. Gems Gemmol. 25 (4), 1–10 (2023).

  45. Alonso, J. et al. A new fossil resin with biological inclusions in lower cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). J. Paleontol. 74 (1), 158–178. https://doi.org/10.1666/0022-3360(2000)074%3C0158:ANFRWB%3E2.0.CO;2 (2000).

    Google Scholar 

  46. Ragazzi, E., Roghi, G., Giaretta, A. & Gianolla, P. Classification of amber based on thermal analysis. Thermochim Acta. 404 (1–2), 43–54. https://doi.org/10.1016/S0040-6031(03)00062-5 (2003).

    Google Scholar 

  47. Havelcová, M. et al. Duxite–fossil resin of miocene age. Org. Geochem. 124, 190–204. https://doi.org/10.1016/j.orggeochem.2018.07.014 (2018).

    Google Scholar 

  48. Pańczak, J., Kosakowski, P. & Zakrzewski, A. Biomarkers in fossil resins and their palaeoecological significance. Earth-Sc Rev. 242, 104455. https://doi.org/10.1016/j.earscirev.2023.104455 (2023).

    Google Scholar 

  49. Doménech-Carbó, M. T., de La Cruz-Cañizares, J., Osete-Cortina, L., Doménech-Carbó, A. & David, H. Ageing behaviour and analytical characterization of the Jatobá resin collected from hymenaea Stigonocarpa mart. Int. J. Mass. Spectrom. 284 (1–3), 81–92. https://doi.org/10.1016/j.ijms.2008.12.015 (2009).

    Google Scholar 

  50. Li, R., Morris-Natschke, S. L. & Lee, K. H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 33 (10), 1166–1226. https://doi.org/10.1039/C5NP00137D (2016).

    Google Scholar 

  51. Clifford, D. J. & Hatcher, P. G. Structural transformations of polylabdanoid resinites during maturation. Org. Geochem. 23 (5), 407–418. https://doi.org/10.1016/0146-6380(95)00022-7 (1995).

    Google Scholar 

  52. Bray, E. E. & Evans, E. D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta. 22 (1), 2–15. https://doi.org/10.1016/0016-7037(61)90069-2 (1961).

    Google Scholar 

  53. Peters, K., Walters, C. C. & Moldowan, M. J. The Biomarker Guide. Vol. 2. ISBN 0521 37634. (Mambridge University Press, 2005).

  54. Zhang, Z. Q. Spectral characteristics of amber—Their application in provenance determination, and study on fluorescent components. China Univ. Geosci. 10 (2021).

  55. Zakrzewski, A., Kosakowski, P., Waliczek, M. & Kowalski, A. Polycyclic aromatic hydrocarbons in middle jurassic sediments of the Polish Basin provide evidence for high-temperature palaeo-wildfires. Org. Geochem. 145, 104037. https://doi.org/10.1016/j.orggeochem.2020.104037 (2020).

    Google Scholar 

  56. Matuszewska, A. & Czaja, M. Aromatic compounds in molecular phase of Baltic amber-synchronous luminescence analysis. Talanta 56 (6), 1049–1059. https://doi.org/10.1016/S0039-9140(01)00610-5 (2002).

    Google Scholar 

  57. Louda, J. W. & Baker, E. W. Perylene occurrence, alkylation and possible sources in deep-ocean sediments. Geochim. Cosmochim. Acta. 48 (5), 1043–1058. https://doi.org/10.1016/0016-7037(84)90195-9 (1984).

    Google Scholar 

  58. Jiang, C., Alexander, R., Kagi, R. I. & Murray, A. P. Origin of perylene in ancient sediments and its geological significance. Org. Geochem. 31 (12), 1545–1559. https://doi.org/10.1016/S0146-6380(00)00074-7 (2000).

    Google Scholar 

  59. Marynowski, L. et al. Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Org. Geochem. 59, 143–151. https://doi.org/10.1016/j.orggeochem.2013.04.006 (2013).

    Google Scholar 

  60. Smolarek-Lach, J., Szram, E., Wójcicki, K. J. & Marynowski, L. Wood-degrading fungal origin of perylene in peatlands of southern Poland: A molecular and statistical approach. Int. J. Coal Geol. 299, 104685. https://doi.org/10.1016/j.coal.2025.104685 (2025).

    Google Scholar 

  61. Beimforde, C. et al. Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia. Arthropod-Plant Interact. 11, 495–505. https://doi.org/10.1007/s11829-016-9475-3 (2017).

    Google Scholar 

  62. Seyfullah, L. J. et al. Production and preservation of resins–past and present. Biol. Rev. 93 (3), 1684–1714. https://doi.org/10.1111/brv.12414 (2018).

    Google Scholar 

  63. Schmidt, A. R., Dörfelt, H. & Perrichot, V. Carnivorous fungi from cretaceous amber. Science 318 (5857), 1743–1743. https://doi.org/10.1126/science.1149947 (2007).

    Google Scholar 

  64. Halbwachs, H. Fungi trapped in amber—A fossil legacy frozen in time. Mycological Progress. 18 (7), 879–893. https://doi.org/10.1007/s11557-019-01498-y (2019).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Wiesław Krzemiński, the specialist paleontologist from the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences in Krakow, Poland, for valuable comments and suggestions. The permission to collect samples was obtained from the National Geological Service (SGN) of the Dominican Republic. Edwin Garcia, the director of SGN, is greatly acknowledged for his support during our stay in the Dominican Republic. Two anonymous reviewers and Maria Luisa Saladino are thanked for their friendly and extensive comments and handling of the manuscript, respectively.

Funding

The work was financially supported by the program „Excellence initiative – Research University” for the AGH University of Krakow and AGH grant no. 16.16.140.315.

Author information

Authors and Affiliations

  1. Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30 Mickiewicza Av., 30-059, Krakow, Poland

    Lucyna Natkaniec-Nowak, Jan Pańczak, Magdalena Dumańska-Słowik, Mateusz Przemysław Sęk & Paweł Kosakowski

  2. General Directorate of Mining, Geologist-A, Juan Pablo Duarte Building 10th Floor Ave México Esq. Leopoldo Navarro, Santo Domingo, Dominican Republic

    Carlos George

Authors
  1. Lucyna Natkaniec-Nowak
    View author publications

    Search author on:PubMed Google Scholar

  2. Carlos George
    View author publications

    Search author on:PubMed Google Scholar

  3. Jan Pańczak
    View author publications

    Search author on:PubMed Google Scholar

  4. Magdalena Dumańska-Słowik
    View author publications

    Search author on:PubMed Google Scholar

  5. Mateusz Przemysław Sęk
    View author publications

    Search author on:PubMed Google Scholar

  6. Paweł Kosakowski
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.N-N, J.P, M.D-S, and P.K wrote the main body of the manuscript. C.G. did field work. J.P. did elemental and chromatographic measurements. M.S made SEM-EDS analyses. All authors reviewed the manuscript.

Corresponding author

Correspondence to Magdalena Dumańska-Słowik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natkaniec-Nowak, L., George, C., Pańczak, J. et al. Thermal, geological and biological processes shape the internal fabric and fluorescence of amber from La Cumbre, Dominican Republic. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40461-2

Download citation

  • Received: 28 September 2025

  • Accepted: 12 February 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40461-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dominican amber
  • Fluorescent fossilized tree resin
  • Desiccation features
  • Volcanic activity
  • Fires
  • Perylene
  • Norclerodadiene
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology