Abstract
Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecium (female, containing ovules). These organs synchronously develop within protective flower buds. Investigating ovules and pollen is crucial for understanding aspects of fertility and sterility in plants. Research on their development and embryogenesis plays a significant role in determining the taxonomic relationships of various species. Paraffin-embedding associated to examination with light microscope showed the development of ovules and pollen grains in Camelina sativa, a key oilseed crop. The findings indicated that the anthers exhibit tetrasporangiate characteristics, with the anther wall consisting of the epidermis, mechanical layer, transitional layer, and tapetum. The microsporogenesis type is simultaneous and microspore tetrads arrange in tetrahedral tetrads. Scanning electron microscope observations showed that mature pollen grains have a tricolporate aperture and are medium-sized, with microreticulate exine ornamentation on the pollen wall. The gynoecium is characterized as bicarpellate, and the ovule in its mature state is classified as amphitropous and bitegmic. The meiosis division of megasporocytes yields a linear tetrad formation. The eight-nucleate embryo sac following the Polygonum type pattern. With a broader systematic perspective, these embryological and palynological features demonstrate evolutionary conservatism within the Brassicaceae, with minor distinctions potentially representing adaptive changes.
Similar content being viewed by others
Data availability
The data generated or analyzed in this study are included in this article. Other materials that support the findings of this study are available from the corresponding author upon reasonable request.
References
Harvey, R. & Smith, B. Megasporogenesis and Megagametogenesis of Cardamine Parviflora L. (Brassicaceae). J. Pa. Acad. Sci. 87, 120–124 (2013).
Sreekala, A. K. Importance of plant reproductive biology in conservation. in GRI-DU, Gandhigram, Tamil Nadu: national conference on bioresources: conservation, utilization and future prospects. (2017).
Sundaresan, V. Control of seed size in plants. Proc. Natl. Acad. Sci. 102, 17887–17888 (2005).
Chaudhury, A. M. et al. Control of Early Seed Development. Annu. Rev. Cell. Dev. Biol. 17, 677–699 (2001).
Moreno-Sanz, P., D’Amato, E., Nebish, A., Costantini, L. & Grando, M. S. An optimized histological proceeding to study the female gametophyte development in grapevine. Plant Methods 16, 61 (2020).
Mohammadi, M. et al. Histological study on the stages of pollination and fertilization in the cultivars of red seedless and ghezel-ozum grapes. in Biosci Biotechnol. Res. Commun 306–317 (2017).
Royo, C. et al. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. J. Exp. Bot. 67, 259–273 (2016).
Tello, J., Montemayor, M. I., Forneck, A. & Ibáñez, J. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant. Methods. 14, 3 (2018).
Wilkinson, L. G. & Tucker, M. R. An optimised clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils. Plant Methods (2017).
Prieu, C. et al. Aperture number influences pollen survival in Arabidopsis mutants. Am. J. Bot. 103, 452–459 (2016).
Erdtman, G. Pollen Morphology and Plant Taxonomy: Angiosperms Vol. 1 (Brill Archive, 1986).
Bayat, S., Schranz, M. E., Roalson, E. H. & Hall, J. C. Lessons from Cleomaceae, the sister of Crucifers. Trends Plant. Sci. 23, 808–821 (2018).
Kers, L. E. Capparaceae. In Flowering Plants · Dicotyledons 36–56 (Springer Berlin Heidelberg, 2003). https://doi.org/10.1007/978-3-662-07255-4_13.
Brock, J. R., Mandáková, T., Lysak, M. A. & Al-Shehbaz, I. A. Camelina neglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys 115, 51–57 (2019).
Al-Shehbaz, I. A. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61, 931–954 (2012).
Galasso, I., Manca, A., Braglia, L., Ponzoni, E. & Breviario, D. Genomic Fingerprinting of Camelina Species Using cTBP as Molecular Marker. Am. J. Plant. Sci. 06, 1184–1200 (2015).
Martin, S. L. et al. An update to the Canadian range, abundance, and ploidy of Camelina spp. (Brassicaceae) east of the Rocky Mountains. Botany 95, 405–417 (2017).
Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 6, 113–119 (1997).
Nikolov, L. A. Brassicaceae flowers: diversity amid uniformity. J. Exp. Bot. 70, 2623–2635 (2019).
Anderson, J. V., Wittenberg, A., Li, H. & Berti, M. T. High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Ind. Crop Prod. 137, 501–507 (2019).
Waraich, E. A. et al. Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: A review. Aust J. Crop Sci. 7, 1551–1559 (2013).
Berti, M., Gesch, R., Eynck, C., Anderson, J. & Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 94, 690–710 (2016).
Kim, R. J., Kim, H. U. & Suh, M. C. Development of camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C. Ind. Crops Prod. 138, 111475 (2019).
Hsieh, K., Wu, S. S. H., Ratnayake, C. & Huang, A. H. C. Tapetosomes and Elaioplasts in Brassica and Arabidopsis Floral Tapetum. In Advanced Research on Plant Lipids 215–218 (Springer Netherlands, 2003). https://doi.org/10.1007/978-94-017-0159-4_50.
Zhang, Z. et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 52, 528–538 (2007).
Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant. Cell. 2, 755–767 (1990).
De Ronse, P. & Haston, E. The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot. J. Linn. Soc. 151, 453–494 (2006).
Yeung, E. A Beginner’s Guide to the Study of Plant Structure. in Tested Studies for Laboratory Teaching. Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education (ABLE). vol. 19 (1998).
Hesse, M. et al. Pollen Terminology: An Illustrated Handbook (Springer Vienna, 2009).
Conner, J. K. et al. Rapid evolution of a family-diagnostic trait: artificial selection and correlated responses in wild radish, Raphanus raphanistrum. New Phytol. 239, 2382–2388 (2023).
Owen, H. A. & Makaroff, C. A. Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185, 7–21 (1995).
Ma, H. Molecular Genetic Analyses of Microsporogenesis and Microgamentogenesis in Flowering Plants. Annu. Rev. Plant. Biol. 56, 393–434 (2005).
Liu, L. & Fan, X. D. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant. Mol. Biol. 83, 165–175 (2013).
Feng, X. & Dickinson, H. G. Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development 137, 2409–2416 (2010).
Åstrand, J., Knight, C., Robson, J., Talle, B. & Wilson, Z. A. Evolution and diversity of the angiosperm anther: trends in function and development. Plant. Reprod. 34, 307–319 (2021).
Gómez, J. F., Talle, B. & Wilson, Z. A. Anther and pollen development: A conserved developmental pathway. J. Integr. Plant. Biol. 57, 876–891 (2015).
Mitsuda, N., Seki, M., Shinozaki, K. & Ohme-Takagi, M. The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence. Plant. Cell. 17, 2993–3006 (2005).
Dong, X., Hong, Z., Sivaramakrishnan, M., Mahfouz, M. & Verma, D. P. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J. 42, 315–328 (2005).
Fitzgerald, M. A. & Knox, R. B. Initiation of primexine in freeze-substituted microspores of Brassica campestris. Sex Plant. Reprod. 8, 99–104 (1995).
Paxson-Sowders, D. M., Dodrill, C. H., Owen, H. A. & Makaroff, C. A. DEX1, a Novel Plant Protein, Is Required for Exine Pattern Formation during Pollen Development in Arabidopsis. Plant. Physiol. 127, 1739–1749 (2001).
Reeder, S. H., Lee, B. H., Fox, R. & Dobritsa, A. A. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1. PLoS Genet. 12, e1006060 (2016).
Pacini, E. Relationships between Tapetum, Loculus, and Pollen during Development. Int. J. Plant. Sci. 171, 1–11 (2010).
Teagen, D., Quilichini, Carl, J., Douglas & Lacey, S. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann. Bot. 114, 1189–1201 (2014).
Wilson, Z. A., Song, J., Taylor, B. & Yang, C. The final split: the regulation of anther dehiscence. J. Exp. Bot. 62, 1633–1649 (2011).
Nelson, M. R. et al. A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. New Phytol. 196, 1030–1037 (2012).
Zhu, T. et al. Normal Structure and Function of Endothecium Chloroplasts Maintained by ZmMs33-Mediated Lipid Biosynthesis in Tapetal Cells Are Critical for Anther Development in Maize. Mol. Plant. 13, 1624–1643 (2020).
Zhan, H., Xiong, H., Wang, S. & Yang, Z. N. Anther Endothecium-Derived Very-Long-Chain Fatty Acids Facilitate Pollen Hydration in Arabidopsis. Mol. Plant. 11, 1101–1104 (2018).
Wodehouse, R. P., Pollen & Grains Their Structure, Identification and Significance in Science and Medicine. J. Am. Med. Assoc. 106, 1118 (1936).
Amina, H. et al. Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab-Pakistan. Microsc Res. Tech. 83, 446–454 (2020).
Saha, S. & Begum, K. N. A comparative analysis on pollen morphology of the genus Brassica L. (Brassicaceae) in Bangladesh. Int. J. Bot. Stud. 5, 191–194 (2020).
Auer, W. Camelina sativa. In: PalDat. A Palynological Database (2021). https://www.paldat.org/pub/Camelina_sativa/306093
Karaismailoğlu, M. C. & Erol, O. Pollen morphology of some taxa of Thlaspi L. sensu lato (Brassicaceae) from Turkey, and its taxonomical importance. Palynology 43, 244–254 (2019).
Gabr, D. G. I. Taxonomic importance of pollen morphology for some species of Brassicaceae. Pak J. Biol. Sci. 21, 215–223 (2018).
Umber, F. et al. Implication of light and scanning electron microscopy for pollen morphology of selected taxa of family Asteraceae and Brassicaceae. Microsc Res. Tech. 85, 373–384 (2022).
Chang, H. & Sun, F. Temporal Distinction between Male and Female Floral Organ Development in Nicotiana tabacum cv. Xanthi (Solanaceae). Plants 9, 127 (2020).
Hill, J. P. & Lord, E. M. Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can. J. Bot. 67, 2922–2936 (1989).
Okada, K., Komaki, M. K. & Shimura, Y. Mutational analysis of pistil structure and development of Arabidopsis thaliana. Cell. Differ. Dev. 28, 27–37 (1989).
Shamrov, I. I. Structural differentiation of the ovule and seed and its importance for reproduction in angiosperms. Wulfenia 29, 61–93 (2022).
Yankova-Tsvetkova, E., Yurukova-Grancharova, P. & Vladimirov, V. On the embryology of Brassica jordanoffii (Brassicaceae)–an endemic species in the Bulgarian flora Phytologia Balcanica. Int. J. Balkan Flora Veg. 22, 149–153 (2016).
Shamrov, I. I. The ovule and seed morphogenesis in Arabidopsis thaliana (Brassicaceae). 92, 945–964 (2007).
Bouman, F. Integument initiation and testa development in some Cruciferae. Bot. J. Linn. Soc. 70, 213–229 (1975).
Bouman, F. Developmental Studies of the Ovule, Integuments, and Seed in Some Angiosperms (University of Amsterdam, 1974).
Shamrov, I. I. Diversity and typification of ovules in flowering plants. Wulfenia 25, 81–109 (2018).
Shamrov, I. I. Ovule and seed study in Capsella bursa-pastoris (Brassicaceae) with a peculiar endothelium formation pattern. Acta Biol. Crac Ser. Bot. 44, 79–90 (2002).
Bowman, J. L., Drews, G. N. & Meyerowitz, E. M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant. Cell. 3, 749–758 (1991).
Kapil, R. N. & Tiwari, S. C. The integumentary tapetum. Bot. Rev. 44, 457–490 (1978).
Robinson-Beers, K., Pruitt, R. E. & Gasser, C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant. Cell. 1237–1249. https://doi.org/10.1105/tpc.4.10.1237 (1992).
Erickson, R. O. Cytological and Growth Correlations in the Flower Bud and Anther of Lilium longiflorum. Am. J. Bot. 35, 729 (1948).
Soliman, M., Espinoza, F., Ortiz, J. P. A. & Delgado, L. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. Ann. Bot. 123, 901–915 (2019).
Vinogradova, G. Y. U. & Zhinkina, N. A. Why does only one embryo sac develop in the Paeonia ovule with multiple archesporium? Plant. Biol. 23, 267–274 (2021).
Smith, B. B. & Gilbert, S. L. Early ovule development, megasporogenesis, and megagametogenesis in Draba verna L. (CRUCIFERAE). J. Pa. Acad. Sci. 63, 88–92 (1989).
Drews, G. N. & Yadegari, R. Development and Function of the Angiosperm Female Gametophyte. Annu. Rev. Genet. 36, 99–124 (2002).
Prasad, K. The development and structure of basal body in the ovule and seed of certain species of Cruciferae. J. article: Bot. Jahrbucher fur Systematik Pflanzengeschichte Pflanzengeographie. 98, 171–266 (1977).
Wang, D. et al. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte. BMC Plant. Biol. 10, 110 (2010).
Bor, J. Development of ovule and integuments in Euphorbia and Codiaeum variegatum. Phytomorphology 24, 280–296 (1974).
Yankova-Tsvetkova, E., Semerdjieva, I. B., Nikolova, R. & Zheljazkov, V. D. On the Embryology of Two Species of Genus Lepidium (Brassicaceae). HortScience horts. 53, 582–588 (2018).
Van Went, J. & Cresti, M. Pre-fertilization degeneration of both synergids in Brassica campestris ovules. Sex. Plant. Reprod. 1, 208–216 (1988).
Faure, J., Rotman, N., Fortuné, F. & Dumas, C. Fertilization in Arabidopsis thaliana wild type: Developmental stages and time course. Plant J. 30, 481–488 (2002).
Johansen, D. A. Plant Embryology (Chronica Botanica Co., 1950).
Schulz, R. & Jensen, W. A. Capsella embryogenesis: the egg, zygote and young embryo. Am. J. Bot. 55, 807–819 (1968).
Tykarska, T. Rape embryogenesis I. The proembryo development. Acta Soc. Bot. Pol. 45, 3–16 (1976).
Mansfield, S. G. & Briarty, L. G. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69, 461–476 (1991).
Kawashima, T. & Goldberg, R. B. The suspensor: not just suspending the embryo. Trends Plant. Sci. 15, 23–30 (2010).
Lau, S., Slane, D., Herud, O., Kong, J. & Jürgens, G. Early Embryogenesis in Flowering Plants: Setting Up the Basic Body Pattern. Annu. Rev. Plant. Biol. 63, 483–506 (2012).
Liu, Y. et al. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc. Natl. Acad. Sci. 112, 12432–12437 (2015).
Zhang, M. et al. Expression of a plastid-localized sugar transporter in the suspensor is critical to embryogenesis. Plant. Physiol. 185, 1021–1038 (2021).
Edger, P. P. et al. Brassicales phylogeny inferred from 72 plastid genes: A reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Am. J. Bot. 105, 463–469 (2018).
Cardinal-McTeague, W. M., Sytsma, K. J. & Hall, J. C. Biogeography and diversification of Brassicales: A 103 million year tale. Mol. Phylogenet Evol. 99, 204–224 (2016).
Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa. 261, 201–217 (2016).
Hall, J. C., Iltis, H. H. & Sytsma, K. J. Molecular Phylogenetics of Core Brassicales, Placement of Orphan Genera Emblingia, Forchhammeria, Tirania, and Character Evolution. Syst. Bot. 29, 654–669 (2004).
Lysak, M. A. Brassicales: an update on chromosomal evolution and ancient polyploidy. Plant Syst. Evol. 304, 757–762 (2018).
Basiri, E., Jafari Marandi, S., Arbabian, S., Majd, A. & Malboobi, M. A. Development of male and female gametophytes and embryogenesis in the Arabidopsis thaliana. Biol. (Bratisl). 76, 853–863 (2021).
Tobe, H. & Raven, P. H. Embryology of Koeberlinia (Koeberliniaceae): Evidence for core-Brassicalean affinities. Am. J. Bot. 95, 1475–1486 (2008).
Fathima, T. & Kusuma Kumari, P. Embryological studies in Capparidaceae. Proc. Indian Acad. Sci. 72, 207–215 (1970).
Rao, A. V. N. Embryological studies in Cleome monophylla Linn. Proc. / Indian Acad. Sci. 65, 249–256 (1967).
Raghavan, T. S. & Venkatasubban, K. R. Studies in the Capparidaceæ. Proc. / Indian Acad. Sci. 13, 235–243 (1941).
Raghavan, T. S. Morphological and Gytological Studies in the Gapparidaceae: II. Floral Morphology and Cytology of Gynandropsis pentaphylla DC. Ann. Bot. 2, 75–95 (1938).
Nguyen, N. T. T. et al. Pollen and Seed Morphology of Cleome Species (Cleomaceae) in Vietnam. Sains Malays. 52, 1977–1984 (2023).
Erden, A. & Menemen, Y. Comparative pollen morphology studies on some species of Brassicaceae in Turkey. Biol. Divers. Conserv. 14, 105–118 (2021).
Kasem, W. T. & Anatomical Pollen Grains and Seed Exomorphic Studies on Five Species of Cleome L (Cleomaceae Bercht. & Presl) Collected from South West of Saudi Arabia. J. Plant. Sci. 4, 29–36 (2016).
Nasser, N. S. & Manfy, E. A. Biological aspects of pollen development in six species of Brassicaceae. Iraqi J. Science 1770–1779 (2014).
Edeoga, H. O., Omosun, G., Osuagwu, G. G. E., Mbaebie, B. O. & Madu, B. A. Micromorphological Characters of the Vegetative and Floral Organs of Some Cleome Species from Nigeria. American-Eurasian J. Sci. Res. 4, 124–127 (2009).
Fici, S. Micromorphological observations on leaf and pollen of Capparis L. sect. Capparis (Capparaceae). Plant. Biosystems - Int. J. Dealing all Aspects Plant. Biology. 138, 125–134 (2004).
Thulin, M. Cleome socotrana (Capparaceae) and allied species in the Horn of Africa region. Nord J. Bot. 22, 215–218 (2002).
Perveen, A. & Qaiser, M. Pollen Flora of Pakistan-XXXI Capparidaceae. Turk. J. Bot. 25, 389–395 (2001).
Solomon, A. M., King, J. E., Martin, P. S. & Thomas, J. Further Scanning Electron Photomicrographs of Southwestern Pollen Grains. J. Arizona Acad. Sci. 8, 135 (1973).
Acknowledgements
This study was an excerpt from the first author’s thesis, submitted to Tehran Kharazmi University under the supervision of Dr. Parisa Jonoubi and Dr. Mohammad Majdi.
Author information
Authors and Affiliations
Contributions
S.T., P.J. and M.M. conceived and design the study. S.T., P.J., M.M. and P.H. organized and performed the experiments. S.T., P.J., M.M. and A.M. were involved in data interpretation. S.T., P.J. and M.M. wrote the manuscript. P.J. and M.M. planned and supervised the study and edited the final version of the manuscript. All authors read and approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Tahmasebi, S., Jonoubi, P., Majdi, M. et al. Ovule and pollen development in Camelina sativa provides systematic insights. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40573-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-40573-9


