Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Ovule and pollen development in Camelina sativa provides systematic insights
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Ovule and pollen development in Camelina sativa provides systematic insights

  • Somayeh Tahmasebi1,
  • Parisa Jonoubi1,
  • Mohammad Majdi2,
  • Ahmad Majd3 &
  • …
  • Parviz Heidari4 

Scientific Reports , Article number:  (2026) Cite this article

  • 332 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Developmental biology
  • Plant sciences

Abstract

Plant sexual reproduction involves highly structured and specialized organs: stamens (male) and gynoecium (female, containing ovules). These organs synchronously develop within protective flower buds. Investigating ovules and pollen is crucial for understanding aspects of fertility and sterility in plants. Research on their development and embryogenesis plays a significant role in determining the taxonomic relationships of various species. Paraffin-embedding associated to examination with light microscope showed the development of ovules and pollen grains in Camelina sativa, a key oilseed crop. The findings indicated that the anthers exhibit tetrasporangiate characteristics, with the anther wall consisting of the epidermis, mechanical layer, transitional layer, and tapetum. The microsporogenesis type is simultaneous and microspore tetrads arrange in tetrahedral tetrads. Scanning electron microscope observations showed that mature pollen grains have a tricolporate aperture and are medium-sized, with microreticulate exine ornamentation on the pollen wall. The gynoecium is characterized as bicarpellate, and the ovule in its mature state is classified as amphitropous and bitegmic. The meiosis division of megasporocytes yields a linear tetrad formation. The eight-nucleate embryo sac following the Polygonum type pattern. With a broader systematic perspective, these embryological and palynological features demonstrate evolutionary conservatism within the Brassicaceae, with minor distinctions potentially representing adaptive changes.

Similar content being viewed by others

Flower opening dynamics, pollen-ovule ratio, stigma receptivity and stigmatic pollen germination (in-vivo) in Chaenomeles speciosa (Sweet) Nakai

Article Open access 26 March 2024

A seasonal strategy for pollen tube growth and ovule development to overcome winter in Japanese stone oak (Lithocarpus edulis)

Article Open access 08 May 2025

Morphological characteristics of pollen from triploid watermelon and its fate on stigmas in a hybrid crop production system

Article Open access 25 February 2022

Data availability

The data generated or analyzed in this study are included in this article. Other materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Harvey, R. & Smith, B. Megasporogenesis and Megagametogenesis of Cardamine Parviflora L. (Brassicaceae). J. Pa. Acad. Sci. 87, 120–124 (2013).

    Google Scholar 

  2. Sreekala, A. K. Importance of plant reproductive biology in conservation. in GRI-DU, Gandhigram, Tamil Nadu: national conference on bioresources: conservation, utilization and future prospects. (2017).

  3. Sundaresan, V. Control of seed size in plants. Proc. Natl. Acad. Sci. 102, 17887–17888 (2005).

    Google Scholar 

  4. Chaudhury, A. M. et al. Control of Early Seed Development. Annu. Rev. Cell. Dev. Biol. 17, 677–699 (2001).

    Google Scholar 

  5. Moreno-Sanz, P., D’Amato, E., Nebish, A., Costantini, L. & Grando, M. S. An optimized histological proceeding to study the female gametophyte development in grapevine. Plant Methods 16, 61 (2020).

  6. Mohammadi, M. et al. Histological study on the stages of pollination and fertilization in the cultivars of red seedless and ghezel-ozum grapes. in Biosci Biotechnol. Res. Commun 306–317 (2017).

  7. Royo, C. et al. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. J. Exp. Bot. 67, 259–273 (2016).

    Google Scholar 

  8. Tello, J., Montemayor, M. I., Forneck, A. & Ibáñez, J. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant. Methods. 14, 3 (2018).

    Google Scholar 

  9. Wilkinson, L. G. & Tucker, M. R. An optimised clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils. Plant Methods (2017).

  10. Prieu, C. et al. Aperture number influences pollen survival in Arabidopsis mutants. Am. J. Bot. 103, 452–459 (2016).

    Google Scholar 

  11. Erdtman, G. Pollen Morphology and Plant Taxonomy: Angiosperms Vol. 1 (Brill Archive, 1986).

  12. Bayat, S., Schranz, M. E., Roalson, E. H. & Hall, J. C. Lessons from Cleomaceae, the sister of Crucifers. Trends Plant. Sci. 23, 808–821 (2018).

    Google Scholar 

  13. Kers, L. E. Capparaceae. In Flowering Plants · Dicotyledons 36–56 (Springer Berlin Heidelberg, 2003). https://doi.org/10.1007/978-3-662-07255-4_13.

    Google Scholar 

  14. Brock, J. R., Mandáková, T., Lysak, M. A. & Al-Shehbaz, I. A. Camelina neglecta (Brassicaceae, Camelineae), a new diploid species from Europe. PhytoKeys 115, 51–57 (2019).

    Google Scholar 

  15. Al-Shehbaz, I. A. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61, 931–954 (2012).

    Google Scholar 

  16. Galasso, I., Manca, A., Braglia, L., Ponzoni, E. & Breviario, D. Genomic Fingerprinting of Camelina Species Using cTBP as Molecular Marker. Am. J. Plant. Sci. 06, 1184–1200 (2015).

    Google Scholar 

  17. Martin, S. L. et al. An update to the Canadian range, abundance, and ploidy of Camelina spp. (Brassicaceae) east of the Rocky Mountains. Botany 95, 405–417 (2017).

    Google Scholar 

  18. Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 6, 113–119 (1997).

    Google Scholar 

  19. Nikolov, L. A. Brassicaceae flowers: diversity amid uniformity. J. Exp. Bot. 70, 2623–2635 (2019).

    Google Scholar 

  20. Anderson, J. V., Wittenberg, A., Li, H. & Berti, M. T. High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Ind. Crop Prod. 137, 501–507 (2019).

    Google Scholar 

  21. Waraich, E. A. et al. Camelina sativa, a climate proof crop, has high nutritive value and multiple-uses: A review. Aust J. Crop Sci. 7, 1551–1559 (2013).

    Google Scholar 

  22. Berti, M., Gesch, R., Eynck, C., Anderson, J. & Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 94, 690–710 (2016).

    Google Scholar 

  23. Kim, R. J., Kim, H. U. & Suh, M. C. Development of camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C. Ind. Crops Prod. 138, 111475 (2019).

    Google Scholar 

  24. Hsieh, K., Wu, S. S. H., Ratnayake, C. & Huang, A. H. C. Tapetosomes and Elaioplasts in Brassica and Arabidopsis Floral Tapetum. In Advanced Research on Plant Lipids 215–218 (Springer Netherlands, 2003). https://doi.org/10.1007/978-94-017-0159-4_50.

    Google Scholar 

  25. Zhang, Z. et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 52, 528–538 (2007).

    Google Scholar 

  26. Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant. Cell. 2, 755–767 (1990).

    Google Scholar 

  27. De Ronse, P. & Haston, E. The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot. J. Linn. Soc. 151, 453–494 (2006).

    Google Scholar 

  28. Yeung, E. A Beginner’s Guide to the Study of Plant Structure. in Tested Studies for Laboratory Teaching. Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education (ABLE). vol. 19 (1998).

  29. Hesse, M. et al. Pollen Terminology: An Illustrated Handbook (Springer Vienna, 2009).

  30. Conner, J. K. et al. Rapid evolution of a family-diagnostic trait: artificial selection and correlated responses in wild radish, Raphanus raphanistrum. New Phytol. 239, 2382–2388 (2023).

    Google Scholar 

  31. Owen, H. A. & Makaroff, C. A. Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185, 7–21 (1995).

    Google Scholar 

  32. Ma, H. Molecular Genetic Analyses of Microsporogenesis and Microgamentogenesis in Flowering Plants. Annu. Rev. Plant. Biol. 56, 393–434 (2005).

    Google Scholar 

  33. Liu, L. & Fan, X. D. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant. Mol. Biol. 83, 165–175 (2013).

    Google Scholar 

  34. Feng, X. & Dickinson, H. G. Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development 137, 2409–2416 (2010).

    Google Scholar 

  35. Åstrand, J., Knight, C., Robson, J., Talle, B. & Wilson, Z. A. Evolution and diversity of the angiosperm anther: trends in function and development. Plant. Reprod. 34, 307–319 (2021).

    Google Scholar 

  36. Gómez, J. F., Talle, B. & Wilson, Z. A. Anther and pollen development: A conserved developmental pathway. J. Integr. Plant. Biol. 57, 876–891 (2015).

    Google Scholar 

  37. Mitsuda, N., Seki, M., Shinozaki, K. & Ohme-Takagi, M. The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence. Plant. Cell. 17, 2993–3006 (2005).

    Google Scholar 

  38. Dong, X., Hong, Z., Sivaramakrishnan, M., Mahfouz, M. & Verma, D. P. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J. 42, 315–328 (2005).

    Google Scholar 

  39. Fitzgerald, M. A. & Knox, R. B. Initiation of primexine in freeze-substituted microspores of Brassica campestris. Sex Plant. Reprod. 8, 99–104 (1995).

  40. Paxson-Sowders, D. M., Dodrill, C. H., Owen, H. A. & Makaroff, C. A. DEX1, a Novel Plant Protein, Is Required for Exine Pattern Formation during Pollen Development in Arabidopsis. Plant. Physiol. 127, 1739–1749 (2001).

    Google Scholar 

  41. Reeder, S. H., Lee, B. H., Fox, R. & Dobritsa, A. A. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1. PLoS Genet. 12, e1006060 (2016).

    Google Scholar 

  42. Pacini, E. Relationships between Tapetum, Loculus, and Pollen during Development. Int. J. Plant. Sci. 171, 1–11 (2010).

    Google Scholar 

  43. Teagen, D., Quilichini, Carl, J., Douglas & Lacey, S. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann. Bot. 114, 1189–1201 (2014).

    Google Scholar 

  44. Wilson, Z. A., Song, J., Taylor, B. & Yang, C. The final split: the regulation of anther dehiscence. J. Exp. Bot. 62, 1633–1649 (2011).

    Google Scholar 

  45. Nelson, M. R. et al. A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. New Phytol. 196, 1030–1037 (2012).

    Google Scholar 

  46. Zhu, T. et al. Normal Structure and Function of Endothecium Chloroplasts Maintained by ZmMs33-Mediated Lipid Biosynthesis in Tapetal Cells Are Critical for Anther Development in Maize. Mol. Plant. 13, 1624–1643 (2020).

    Google Scholar 

  47. Zhan, H., Xiong, H., Wang, S. & Yang, Z. N. Anther Endothecium-Derived Very-Long-Chain Fatty Acids Facilitate Pollen Hydration in Arabidopsis. Mol. Plant. 11, 1101–1104 (2018).

    Google Scholar 

  48. Wodehouse, R. P., Pollen & Grains Their Structure, Identification and Significance in Science and Medicine. J. Am. Med. Assoc. 106, 1118 (1936).

    Google Scholar 

  49. Amina, H. et al. Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab-Pakistan. Microsc Res. Tech. 83, 446–454 (2020).

    Google Scholar 

  50. Saha, S. & Begum, K. N. A comparative analysis on pollen morphology of the genus Brassica L. (Brassicaceae) in Bangladesh. Int. J. Bot. Stud. 5, 191–194 (2020).

    Google Scholar 

  51. Auer, W. Camelina sativa. In: PalDat. A Palynological Database (2021). https://www.paldat.org/pub/Camelina_sativa/306093

  52. Karaismailoğlu, M. C. & Erol, O. Pollen morphology of some taxa of Thlaspi L. sensu lato (Brassicaceae) from Turkey, and its taxonomical importance. Palynology 43, 244–254 (2019).

    Google Scholar 

  53. Gabr, D. G. I. Taxonomic importance of pollen morphology for some species of Brassicaceae. Pak J. Biol. Sci. 21, 215–223 (2018).

    Google Scholar 

  54. Umber, F. et al. Implication of light and scanning electron microscopy for pollen morphology of selected taxa of family Asteraceae and Brassicaceae. Microsc Res. Tech. 85, 373–384 (2022).

    Google Scholar 

  55. Chang, H. & Sun, F. Temporal Distinction between Male and Female Floral Organ Development in Nicotiana tabacum cv. Xanthi (Solanaceae). Plants 9, 127 (2020).

    Google Scholar 

  56. Hill, J. P. & Lord, E. M. Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can. J. Bot. 67, 2922–2936 (1989).

    Google Scholar 

  57. Okada, K., Komaki, M. K. & Shimura, Y. Mutational analysis of pistil structure and development of Arabidopsis thaliana. Cell. Differ. Dev. 28, 27–37 (1989).

    Google Scholar 

  58. Shamrov, I. I. Structural differentiation of the ovule and seed and its importance for reproduction in angiosperms. Wulfenia 29, 61–93 (2022).

    Google Scholar 

  59. Yankova-Tsvetkova, E., Yurukova-Grancharova, P. & Vladimirov, V. On the embryology of Brassica jordanoffii (Brassicaceae)–an endemic species in the Bulgarian flora Phytologia Balcanica. Int. J. Balkan Flora Veg. 22, 149–153 (2016).

    Google Scholar 

  60. Shamrov, I. I. The ovule and seed morphogenesis in Arabidopsis thaliana (Brassicaceae). 92, 945–964 (2007).

  61. Bouman, F. Integument initiation and testa development in some Cruciferae. Bot. J. Linn. Soc. 70, 213–229 (1975).

    Google Scholar 

  62. Bouman, F. Developmental Studies of the Ovule, Integuments, and Seed in Some Angiosperms (University of Amsterdam, 1974).

  63. Shamrov, I. I. Diversity and typification of ovules in flowering plants. Wulfenia 25, 81–109 (2018).

    Google Scholar 

  64. Shamrov, I. I. Ovule and seed study in Capsella bursa-pastoris (Brassicaceae) with a peculiar endothelium formation pattern. Acta Biol. Crac Ser. Bot. 44, 79–90 (2002).

    Google Scholar 

  65. Bowman, J. L., Drews, G. N. & Meyerowitz, E. M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant. Cell. 3, 749–758 (1991).

    Google Scholar 

  66. Kapil, R. N. & Tiwari, S. C. The integumentary tapetum. Bot. Rev. 44, 457–490 (1978).

    Google Scholar 

  67. Robinson-Beers, K., Pruitt, R. E. & Gasser, C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant. Cell. 1237–1249. https://doi.org/10.1105/tpc.4.10.1237 (1992).

  68. Erickson, R. O. Cytological and Growth Correlations in the Flower Bud and Anther of Lilium longiflorum. Am. J. Bot. 35, 729 (1948).

    Google Scholar 

  69. Soliman, M., Espinoza, F., Ortiz, J. P. A. & Delgado, L. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. Ann. Bot. 123, 901–915 (2019).

    Google Scholar 

  70. Vinogradova, G. Y. U. & Zhinkina, N. A. Why does only one embryo sac develop in the Paeonia ovule with multiple archesporium? Plant. Biol. 23, 267–274 (2021).

    Google Scholar 

  71. Smith, B. B. & Gilbert, S. L. Early ovule development, megasporogenesis, and megagametogenesis in Draba verna L. (CRUCIFERAE). J. Pa. Acad. Sci. 63, 88–92 (1989).

    Google Scholar 

  72. Drews, G. N. & Yadegari, R. Development and Function of the Angiosperm Female Gametophyte. Annu. Rev. Genet. 36, 99–124 (2002).

    Google Scholar 

  73. Prasad, K. The development and structure of basal body in the ovule and seed of certain species of Cruciferae. J. article: Bot. Jahrbucher fur Systematik Pflanzengeschichte Pflanzengeographie. 98, 171–266 (1977).

    Google Scholar 

  74. Wang, D. et al. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte. BMC Plant. Biol. 10, 110 (2010).

    Google Scholar 

  75. Bor, J. Development of ovule and integuments in Euphorbia and Codiaeum variegatum. Phytomorphology 24, 280–296 (1974).

    Google Scholar 

  76. Yankova-Tsvetkova, E., Semerdjieva, I. B., Nikolova, R. & Zheljazkov, V. D. On the Embryology of Two Species of Genus Lepidium (Brassicaceae). HortScience horts. 53, 582–588 (2018).

    Google Scholar 

  77. Van Went, J. & Cresti, M. Pre-fertilization degeneration of both synergids in Brassica campestris ovules. Sex. Plant. Reprod. 1, 208–216 (1988).

    Google Scholar 

  78. Faure, J., Rotman, N., Fortuné, F. & Dumas, C. Fertilization in Arabidopsis thaliana wild type: Developmental stages and time course. Plant J. 30, 481–488 (2002).

    Google Scholar 

  79. Johansen, D. A. Plant Embryology (Chronica Botanica Co., 1950).

  80. Schulz, R. & Jensen, W. A. Capsella embryogenesis: the egg, zygote and young embryo. Am. J. Bot. 55, 807–819 (1968).

    Google Scholar 

  81. Tykarska, T. Rape embryogenesis I. The proembryo development. Acta Soc. Bot. Pol. 45, 3–16 (1976).

    Google Scholar 

  82. Mansfield, S. G. & Briarty, L. G. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69, 461–476 (1991).

    Google Scholar 

  83. Kawashima, T. & Goldberg, R. B. The suspensor: not just suspending the embryo. Trends Plant. Sci. 15, 23–30 (2010).

    Google Scholar 

  84. Lau, S., Slane, D., Herud, O., Kong, J. & Jürgens, G. Early Embryogenesis in Flowering Plants: Setting Up the Basic Body Pattern. Annu. Rev. Plant. Biol. 63, 483–506 (2012).

    Google Scholar 

  85. Liu, Y. et al. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc. Natl. Acad. Sci. 112, 12432–12437 (2015).

    Google Scholar 

  86. Zhang, M. et al. Expression of a plastid-localized sugar transporter in the suspensor is critical to embryogenesis. Plant. Physiol. 185, 1021–1038 (2021).

    Google Scholar 

  87. Edger, P. P. et al. Brassicales phylogeny inferred from 72 plastid genes: A reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. Am. J. Bot. 105, 463–469 (2018).

    Google Scholar 

  88. Cardinal-McTeague, W. M., Sytsma, K. J. & Hall, J. C. Biogeography and diversification of Brassicales: A 103 million year tale. Mol. Phylogenet Evol. 99, 204–224 (2016).

    Google Scholar 

  89. Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa. 261, 201–217 (2016).

  90. Hall, J. C., Iltis, H. H. & Sytsma, K. J. Molecular Phylogenetics of Core Brassicales, Placement of Orphan Genera Emblingia, Forchhammeria, Tirania, and Character Evolution. Syst. Bot. 29, 654–669 (2004).

    Google Scholar 

  91. Lysak, M. A. Brassicales: an update on chromosomal evolution and ancient polyploidy. Plant Syst. Evol. 304, 757–762 (2018).

    Google Scholar 

  92. Basiri, E., Jafari Marandi, S., Arbabian, S., Majd, A. & Malboobi, M. A. Development of male and female gametophytes and embryogenesis in the Arabidopsis thaliana. Biol. (Bratisl). 76, 853–863 (2021).

    Google Scholar 

  93. Tobe, H. & Raven, P. H. Embryology of Koeberlinia (Koeberliniaceae): Evidence for core-Brassicalean affinities. Am. J. Bot. 95, 1475–1486 (2008).

    Google Scholar 

  94. Fathima, T. & Kusuma Kumari, P. Embryological studies in Capparidaceae. Proc. Indian Acad. Sci. 72, 207–215 (1970).

  95. Rao, A. V. N. Embryological studies in Cleome monophylla Linn. Proc. / Indian Acad. Sci. 65, 249–256 (1967).

    Google Scholar 

  96. Raghavan, T. S. & Venkatasubban, K. R. Studies in the Capparidaceæ. Proc. / Indian Acad. Sci. 13, 235–243 (1941).

    Google Scholar 

  97. Raghavan, T. S. Morphological and Gytological Studies in the Gapparidaceae: II. Floral Morphology and Cytology of Gynandropsis pentaphylla DC. Ann. Bot. 2, 75–95 (1938).

    Google Scholar 

  98. Nguyen, N. T. T. et al. Pollen and Seed Morphology of Cleome Species (Cleomaceae) in Vietnam. Sains Malays. 52, 1977–1984 (2023).

    Google Scholar 

  99. Erden, A. & Menemen, Y. Comparative pollen morphology studies on some species of Brassicaceae in Turkey. Biol. Divers. Conserv. 14, 105–118 (2021).

    Google Scholar 

  100. Kasem, W. T. & Anatomical Pollen Grains and Seed Exomorphic Studies on Five Species of Cleome L (Cleomaceae Bercht. & Presl) Collected from South West of Saudi Arabia. J. Plant. Sci. 4, 29–36 (2016).

    Google Scholar 

  101. Nasser, N. S. & Manfy, E. A. Biological aspects of pollen development in six species of Brassicaceae. Iraqi J. Science 1770–1779 (2014).

  102. Edeoga, H. O., Omosun, G., Osuagwu, G. G. E., Mbaebie, B. O. & Madu, B. A. Micromorphological Characters of the Vegetative and Floral Organs of Some Cleome Species from Nigeria. American-Eurasian J. Sci. Res. 4, 124–127 (2009).

    Google Scholar 

  103. Fici, S. Micromorphological observations on leaf and pollen of Capparis L. sect. Capparis (Capparaceae). Plant. Biosystems - Int. J. Dealing all Aspects Plant. Biology. 138, 125–134 (2004).

    Google Scholar 

  104. Thulin, M. Cleome socotrana (Capparaceae) and allied species in the Horn of Africa region. Nord J. Bot. 22, 215–218 (2002).

    Google Scholar 

  105. Perveen, A. & Qaiser, M. Pollen Flora of Pakistan-XXXI Capparidaceae. Turk. J. Bot. 25, 389–395 (2001).

    Google Scholar 

  106. Solomon, A. M., King, J. E., Martin, P. S. & Thomas, J. Further Scanning Electron Photomicrographs of Southwestern Pollen Grains. J. Arizona Acad. Sci. 8, 135 (1973).

    Google Scholar 

Download references

Acknowledgements

This study was an excerpt from the first author’s thesis, submitted to Tehran Kharazmi University under the supervision of Dr. Parisa Jonoubi and Dr. Mohammad Majdi.

Author information

Authors and Affiliations

  1. Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

    Somayeh Tahmasebi & Parisa Jonoubi

  2. Agricultural Biotechnology Department, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

    Mohammad Majdi

  3. Biology Department, College of Bioscience, Islamic Azad University, Tehran North Branch, Tehran, Iran

    Ahmad Majd

  4. Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

    Parviz Heidari

Authors
  1. Somayeh Tahmasebi
    View author publications

    Search author on:PubMed Google Scholar

  2. Parisa Jonoubi
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohammad Majdi
    View author publications

    Search author on:PubMed Google Scholar

  4. Ahmad Majd
    View author publications

    Search author on:PubMed Google Scholar

  5. Parviz Heidari
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.T., P.J. and M.M. conceived and design the study. S.T., P.J., M.M. and P.H. organized and performed the experiments. S.T., P.J., M.M. and A.M. were involved in data interpretation. S.T., P.J. and M.M. wrote the manuscript. P.J. and M.M. planned and supervised the study and edited the final version of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Parisa Jonoubi or Parviz Heidari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, S., Jonoubi, P., Majdi, M. et al. Ovule and pollen development in Camelina sativa provides systematic insights. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40573-9

Download citation

  • Received: 07 August 2025

  • Accepted: 13 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40573-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Embryonic
  • Megasporogenesis
  • Microsporogenesis
  • Polygonum type
  • Secretory tapetum
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing