Abstract
Mt. Vesuvius, located in Campania Region (Southern Italy), is considered one of the world’s most dangerous volcanoes due to its probability of future explosive eruptions in a densely populated area. When large populations or significant assets are exposed to volcanic hazards and exhibit high vulnerability, the potential for disaster increases. Consequently, combining volcanic hazard with demographic, social and building characteristics becomes essential to manage disasters. The approach presented in this work in based on integrated multidimensional and multisource framework aimed to risk analysis. It integrates diverse geospatial datasets, by exploring the relationship between long-term volcanic hazard (pyroclastic density currents), human population features (population exposure and social vulnerability) and building characteristics (building exposure and physical vulnerability). The challenge of this approach is to standardize the metrics belonging to physical hazard with those of potential vulnerability and exposure (which derived from different measures), to investigate the volcanic risk spatial distribution. By using Geographic Information System tools and statistical analyses, the approach identifies and prioritizes areas requiring focused mitigation strategies, at the Enumeration Area level. The resulting risk map highlights that areas classified as levels 4 and 5 are mainly concentrated in the northwestern sector of Mount Vesuvius, in particular inside the municipalities of Sant’Anastasia, Volla, Cercola, San Sebastiano al Vesuvio, Ercolano, Portici, and Naples.
Similar content being viewed by others
Data availability
Data will be made available on request by contacting the following email address: isabella.lapietra@uniba.it.
References
Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F. & Vye-Brown, C. Global volcanic hazards and risk. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7653B9CA75E2F32A81CE5B7110BEF8AB/9781107111752AR.pdf/Global_Volcanic_Hazards_and_Risk.pdf?event-type=FTLA (Cambridge University Press, 2015).
Freire, S., Florczyk, A. J., Pesaresi, M. & Sliuzas, R. An improved global analysis of population distribution in proximity to active volcanoes, 1975–2015. ISPRS Int. J. Geo-Inf. 8 (8), 341. https://doi.org/10.3390/ijgi8080341 (2019).
Meredith, E. S. et al. Cities near volcanoes: which cities are most exposed to volcanic hazards? NHESS, 1–36 https://doi.org/10.5194/nhess-25-2731-2025 (2025).
Gurioli, L. et al. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull. Volcanol. 72, 1021–1038. https://doi.org/10.1007/s00445-010-0379-2 (2010).
Lirer, L., Petrosino, P. & Alberico, I. Hazard and risk assessment in a complex multi-source volcanic area: the example of the campania Region, Italy. Bull. Vulcanol. 72 (4), 411–429. https://doi.org/10.1007/s00445-009-0334-2 (2010).
Baxter, P. J. et al. Emergency planning and mitigation at vesuvius: A new evidence-based approach. J. Volcanol Geotherm. 178 (3), 454–473. https://doi.org/10.1016/j.jvolgeores.2008.08.015 (2008).
Civil Protection Department. Risks. https://rischi.protezionecivile.gov.it/en/volcanic/volcanoes-italy/vesuvio/
INGV. Osservatorio Vesuviano, Sezione di Napoli. https://www.ov.ingv.it/index.php/storia-vesuvio
Dellino, P., Dioguardi, F., Isaia, R., Sulpizio, R. & Mele, D. The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of vesuvius. Sci. Rep. 11, 4959. https://doi.org/10.1038/s41598-021-84456-7 (2021).
Doronzo, D. M. et al. The 79 CE eruption of vesuvius: A lesson from the past and the need of a multidisciplinary approach for developments in volcanology. Earth Sci. Rev. 231, 104072. https://doi.org/10.1016/j.earscirev.2022.104072 (2022).
Cubellis, E., Marturano, A. & Pappalardo, L. The last vesuvius eruption in March 1944: reconstruction of the eruptive dynamic and its impact on the environment and people through witness reports and volcanological evidence. Nat. Hazards. 82, 95–121. https://doi.org/10.1007/s11069-016-2182-7 (2016).
EM-DAT dataset. https://public.emdat.be/data
Rosi, M., Acocella, V., Cioni, R., Bianco, F., Costa, A., De Martino, P., Inguaggiato,S. Defining the pre-eruptive states of active volcanoes for improving eruption forecasting. Front. Earth Sci. 10, 795700 (2022).
Dellino, P., Dioguardi, F., Sulpizio, R. & Mele, D. Long-term hazard of pyroclastic density currents at vesuvius (Southern Italy) with maps of impact parameters. Nat. Hazards Earth Syst. Sci. 25, 2823–2844. https://doi.org/10.5194/nhess-25-2823-2025 (2025).
Civil Protection Department. Piano nazionale di protezione civile per il rischio vulcanico al Vesuvio. https://www.protezionecivile.gov.it/it/approfondimento/aggiornamento-del-piano-nazionale-di-protezione-civile-il-vesuvio/
ISTAT. Basi territoriali e variabili censuarie dataset. https://www.istat.it/notizia/basi-territoriali-e-variabili-censuarie/
UNDRR. Global Assessment Report on Disaster Risk Reduction 2022: our World at Risk: Transforming Governance for a Resilient Future https://www.undrr.org/gar/gar2022-our-world-risk-gar (United Nations Office for Disaster Risk Reduction, 2022).
Marzocchi, W., Sandri, L., Gasparini, P., Newhall, C. & Boschi, E. Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount vesuvius. J. Geophys. Res: Solid Earth. 109 (B11). https://doi.org/10.1029/2004JB003155 (2004).
Birkmann, J., Sorg, L. & Welle, T. Disaster vulnerability. In The Palgrave Handbook of Unconventional Risk Transfer, 329–356 (Springer International Publishing, 2017).
Córdoba, G. A. et al. Assessing probabilistic hazard and risk for building, road network, and ecosystems: the case study of La Florida municipality, Galeras Volcano, Colombia. Front. Earth Sci. 13, 1632282. https://doi.org/10.3389/feart.2025.1632282 (2025).
Sparks, R. S. J. et al. Future eruptions of the Kolumbo volcanic field: prognosis with hazard and risk assessment. Bull. Volc. 87 (9), 1–29. https://doi.org/10.1007/s00445-025-01836-x (2025).
Muryani, C., Noviani, R. & Azizah, R. N. Disaster risk analysis of Merapi Volcano eruption in the north slope based on the New Volcanic Risk Ranking (VRR) methods. IOP Conf. Ser.: Earth Environ. Sci. 1314 (1), 012015 https://doi.org/10.1088/1755-1315/1314/1/012015 (IOP Publishing, 2024).
Nieto-Torres, A., Del Pozzo, A. L. M., Groppelli, G. & Viera, M. D. C. J. Risk scenarios for a future eruption in the Chichinautzin monogenetic volcanic field, South México City. J. Volcanol Geotherm. 433, 107733. https://doi.org/10.1016/j.jvolgeores.2022.107733 (2023).
Nieto-Torres, A., Guimarães, L. F., Bonadonna, C. & Frischknecht, C. A new inclusive volcanic risk ranking, part 1: methodology. Front. Earth Sci. 9, 697451. https://doi.org/10.3389/feart.2021.697451 (2021).
Bonadonna, C. et al. Integrating hazard, exposure, vulnerability and resilience for risk and emergency management in a volcanic context: the ADVISE model. J. Appl. Volcanol. 10 (1), 7. https://doi.org/10.1186/s13617-021-00108-5 (2021).
Guimarães, L. F., Nieto-Torres, A., Bonadonna, C. & Frischknecht, C. A new inclusive volcanic risk ranking, part 2: application to Latin America. Front. Earth Sci. 9, 757742. https://doi.org/10.3389/feart.2021.757742 (2021).
Reyes-Hardy, M. P., Barraza, F. A., Birke, J. P. S., Cáceres, A. E. & Pizarro, M. I. GIS-based volcanic hazards, vulnerability and risks assessment of the guallatiri Volcano, Arica y Parinacota Region, Chile. J. South. Am. Earth Sci. 109, 103262. https://doi.org/10.1016/j.jsames.2021.103262 (2021).
Jumadi, J., Malleson, N., Carver, S. & Quincey, D. Estimating spatio-temporal risks from volcanic eruptions using an agent-based model. JASSS 23 (2), https://doi.org/10.18564/jasss.4241 (2020).
Alberico, I., Petrosino, P. & Lirer, L. Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli City (Southern Italy). NHESS 11 (4), 1057–1070. https://doi.org/10.5194/nhess-11-1057-2011 (2011).
Zuccaro, G. & De Gregorio, D. Impact assessments in volcanic areas-The vesuvius and Campi flegrei cases studies. Ann. Geophys. 62 (1), VO02–VO02. https://doi.org/10.4401/ag-7827 (2019).
Zuccaro, G. & De Gregorio, D. Time and space dependency in impact damage evaluation of a sub-Plinian eruption at Mount vesuvius. Nat. Hazards. 68 (3), 1399–1423. https://doi.org/10.1007/s11069-013-0571-8 (2013).
Spence, R. J., Baxter, P. J. & Zuccaro, G. Building vulnerability and human casualty Estimation for a pyroclastic flow: a model and its application to vesuvius. J. Volcanol geotherm. 133 (1–4), 321–343. https://doi.org/10.1016/S0377-0273(03)00405-0 (2004).
Willis, I., Gibin, M., Barros, J. & Webber, R. Applying neighbourhood classification systems to natural hazards: a case study of Mt vesuvius. Nat. Hazards. 70 (1), 1–22. https://doi.org/10.1007/s11069-010-9648-9 (2014).
Pesaresi, C., Marta, M., Palagiano, C. & Scandone, R. The evaluation of social risk due to volcanic eruptions of vesuvius. Nat. Hazards. 47 (2), 229–243. https://doi.org/10.1007/s11069-008-9214-x (2008).
Sulpizio, R., Folch, A., Costa, A., Scaini, C. & Dellino, P. Hazard assessment of far-range volcanic Ash dispersal from a violent strombolian eruption at Somma-Vesuvius volcano, Naples, italy: implications on civil aviation. Bull. Volcanol. 74 (9), 2205–2218. https://doi.org/10.1007/s00445-012-0656-3 (2012).
Rolandi, G. Volcanic hazard at vesuvius: an analysis for the revision of the current emergency plan. J. Volcanol geotherm. 189 (3–4), 347–362. https://doi.org/10.1016/j.jvolgeores.2009.08.007 (2010).
Avvisati, G. et al. Perception of risk for natural hazards in campania region (Southern Italy). IJDRR 40, 101164. https://doi.org/10.1016/j.ijdrr.2019.101164 (2019).
Ricci, T., Nave, R. & Barberi, F. Vesuvio civil protection exercise MESIMEX: survey on volcanic risk perception. Ann. Geophys. 56 (4), S0452–S0452. https://doi.org/10.4401/ag-6458 (2013).
Carlino, S., Somma, R. & Mayberry, G. C. Volcanic risk perception of young people in the urban areas of vesuvius: comparisons with other volcanic areas and implications for emergency management. J. Volcanol geotherm. 172 (3–4), 229–243. https://doi.org/10.1016/j.jvolgeores.2007.12.010 (2008).
Lapietra, I., Benassi, F., Paterno, A., García-Pereiro, T. & Dellino, P. Mapping social risk areas to floods in Southern italy: a Spatial analysis for local emergency planning and place-based risk reduction policies. IJDRR 105666. https://doi.org/10.1016/j.ijdrr.2025.105666 (2025).
Buck, K. D. & Summers, J. K. Application of a multi-hazard risk assessment for local planning. Geomatics Nat. Hazards Risk. 11 (1), 2058–2078 (2020). https://doi.org/10.1080/19475705.2020.1828190.
UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030 (p. 32). United Nations Office for Disaster Risk Reduction (UNISDR). https://www.undrr.org/media/16176/download?startDownload=20260204
Field, I. P. C. C. et al. The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU ENGLAND, pp. 582, (Cambridge University Press, 2012).
Kelman, I. Climate change and the Sendai framework for disaster risk reduction. Int. J. Disaster Risk Sci. 6, 117–127. https://doi.org/10.1007/s13753-015-0046-5 (2015).
Garschagen, M., Doshi, D., Reith, J. & Hagenlocher, M. Global patterns of disaster and climate risk-an analysis of the consistency of leading index-based assessments and their results. Clim. Change. 169 (1), 11. https://doi.org/10.1007/s10584-021-03209-7 (2021).
Ward, P. J. et al. Natural hazard risk assessments at the global scale. NHESS 20 (4), 1069–1096. https://doi.org/10.5194/nhess-20-1069-2020 (2020).
Badreldin, H., Scaini, C., Hassan, H. M. & Peresan, A. High-resolution multi-hazard residential buildings and population exposure model for coastal areas: A case study in northeastern Italy. IJDRR 121, 105403 https://doi.org/10.1016/j.ijdrr.2025.105403 (2025).
Marrero, J. M. et al. Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: the example of La Palma (Canary Islands). J. Appl. Volcanol 8 (1), 1–21 (2019).
Takarada, S. The volcanic hazards assessment support system for the online hazard assessment and risk mitigation of quaternary volcanoes in the world. Front. Earth Sci. 5, 102. https://doi.org/10.3389/feart.2017.00102 (2017).
Sapountzaki, K. Risk mitigation, vulnerability management, and resilience under disasters. Sustainability 14 (6), 3589. https://doi.org/10.3390/su14063589 (2022).
Frigerio, I. & De Amicis, M. Mapping social vulnerability to natural hazards in italy: A suitable tool for risk mitigation strategies. Environ. Sci. Policy. 63, 187–196. https://doi.org/10.1016/j.envsci.2016.06.001 (2016).
Menoni, S., Molinari, D., Parker, D., Ballio, F. & Tapsell, S. Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Nat. Hazards. 64 (3), 2057–2082. https://doi.org/10.1007/s11069-012-0134-4 (2012).
Woo, G. Cost–benefit analysis in volcanic risk. In Volcanic hazards, risks and disasters, 289–300 https://doi.org/10.1016/B978-0-12-396453-3.00011-3 (Elsevier, 2015).
Sandri, L., Jolly, G., Lindsay, J., Howe, T. & Marzocchi, W. Combining long-and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland volcanic Field, new Zealand. Bull. Volcanol. 74 (3), 705–723. https://doi.org/10.1007/s00445-011-0556-y (2012).
Kalfin, K., Sukono, S., Januaviani, T. M. A. & Siregar, B. Determination of Mount eruption insurance premiums in Indonesia based on collective risk and level of risk spread. IJBESD 5 (1), 38–44. https://doi.org/10.46336/ijbesd.v5i1.576 (2024).
Smolka, A. & Käser, M. Volcanic Risks and Insurance. In Volcanic Hazards, Risks and Disasters, 301–314 https://doi.org/10.1016/B978-0-12-396453-3.00012-5 (Elsevier, 2015).
Tadini, A. et al. Uncertainty quantification in volcanology: observations, numerical modelling, and hazard/risk assessment: preface to the special issue. Bull. Volcanol. 87, 48. https://doi.org/10.1007/s00445-025-01835-y (2025).
Marzocchi, W., Newhall, C. & Woo, G. The scientific management of volcanic crises. J VOLCANOL GEOTH RES. 247, 181–189. https://doi.org/10.1016/j.jvolgeores.2012.08.016 (2012).
White, C. J. et al. Towards multi-hazard and multi-risk indicators–a review and recommendations for development and implementation. NHESSD 1–36 https://doi.org/10.5194/nhess-25-4263-2025 (2024).
Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L. & Lewis, B. A social vulnerability index for disaster management. JHSEM 8(1) http://www.bepress.com/jhsem/vol8/iss1/3 (2011).
Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. In Hazards Vulnerability and Environmental Justice (115–132). https://www.jstor.org/stable/42955868. (Routledge, 2003).
Bindu, D. H., Siri, M. & Srivastava, N. Uncovering population patterns in volcanic areas with PCA (principal component analysis of population pattern in volcanic areas. In 2025 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE) (pp. 1–7). IEEE.
Lapietra, I., García-Pereiro, T. A. & Combined Spatial Investigation of social vulnerability and flood hazard: A brief report on the metropolitan City of Bari (Southern Italy). Spat. Demogr. 13 (1), 8. https://doi.org/10.1007/s40980-025-00141-7 (2025).
Frigerio, I. et al. A GIS-based approach to identify the Spatial variability of social vulnerability to seismic hazard in Italy. Appl. Geogr. 74, 12–22. https://doi.org/10.1016/j.apgeog.2016.06.014 (2016).
Pratschke, J. & Benassi, F. Population change and residential segregation in Italian small areas, 2011–2021: an analysis with new Spatial units. Spat. Demogr. 12 (2), 3. https://doi.org/10.1007/s40980-024-00124-0 (2024).
Lapietra, I., Colacicco, R., Rizzo, A. & Capolongo, D. Mapping social vulnerability to multi-hazard scenarios: a GIS-based approach at the census tract level. App Sci. 14 (11), 4503. https://doi.org/10.3390/app14114503 (2024).
ISTAT. Censimento Popolazione Abitazioni dataset. http://dati-censimentopopolazione.istat.it/Index.aspx
Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46 (1), 234–240 https://www.jstor.org/stable/143141 (1970).
Anselin, L. & Rey, S. Properties of tests for Spatial dependence in linear regression models. Geographical Anal. 23 (2), 112–131. https://doi.org/10.1111/j.1538-4632.1991.tb00228.x (1991).
Siagian, T. H., Purhadi, P., Suhartono, S. & Ritonga, H. Social vulnerability to natural hazards in indonesia: driving factors and policy implications. Nat. Hazards. 70 (2), 1603–1617. https://doi.org/10.1007/s11069-013-0888-3 (2014).
Acknowledgements
This research was conducted within the RETURN Extended Partnership project and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan—NRRP, Mission 4, Component 2, Investment 1.3—D.D. 1243 August 2, 2022, PE0000005).
Funding
This research was conducted within the RETURN Extended Partnership project and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan—NRRP, Mission 4, Component 2, Investment 1.3—D.D. 1243 August 2, 2022, PE0000005).
Author information
Authors and Affiliations
Contributions
I.L.: Writing—original draft, Software, Investigation, Formal analysis, Data curation, Conceptualization. F. B.: Writing—review & editing, Data curation. T. G-P: Writing—review & editing, Data curation. A. P.: Writing—review & editing, Data curation. P. D.: Writing—review & editing, Supervision, Funding acquisition.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Lapietra, I., Benassi, F., García-Pereiro, T. et al. An integrated multidimensional risk framework for volcanic hazard zones: insights from Mt. Vesuvius, Italy. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40589-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-40589-1


