Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
An integrated multidimensional risk framework for volcanic hazard zones: insights from Mt. Vesuvius, Italy
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

An integrated multidimensional risk framework for volcanic hazard zones: insights from Mt. Vesuvius, Italy

  • Isabella Lapietra1,
  • Federico Benassi2,
  • Thaís García-Pereiro3,
  • Anna Paterno3 &
  • …
  • Pierfrancesco Dellino1 

Scientific Reports , Article number:  (2026) Cite this article

  • 37 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Environmental sciences
  • Natural hazards
  • Solid Earth sciences

Abstract

Mt. Vesuvius, located in Campania Region (Southern Italy), is considered one of the world’s most dangerous volcanoes due to its probability of future explosive eruptions in a densely populated area. When large populations or significant assets are exposed to volcanic hazards and exhibit high vulnerability, the potential for disaster increases. Consequently, combining volcanic hazard with demographic, social and building characteristics becomes essential to manage disasters. The approach presented in this work in based on integrated multidimensional and multisource framework aimed to risk analysis. It integrates diverse geospatial datasets, by exploring the relationship between long-term volcanic hazard (pyroclastic density currents), human population features (population exposure and social vulnerability) and building characteristics (building exposure and physical vulnerability). The challenge of this approach is to standardize the metrics belonging to physical hazard with those of potential vulnerability and exposure (which derived from different measures), to investigate the volcanic risk spatial distribution. By using Geographic Information System tools and statistical analyses, the approach identifies and prioritizes areas requiring focused mitigation strategies, at the Enumeration Area level. The resulting risk map highlights that areas classified as levels 4 and 5 are mainly concentrated in the northwestern sector of Mount Vesuvius, in particular inside the municipalities of Sant’Anastasia, Volla, Cercola, San Sebastiano al Vesuvio, Ercolano, Portici, and Naples.

Similar content being viewed by others

Observing Etna volcano dynamics through seismic and deformation patterns

Article Open access 10 August 2023

Seismic risk mitigation at Campi Flegrei in volcanic unrest

Article Open access 02 December 2024

Artistic and literary evidence of eruptive activity at Mt. Vesuvius during the apparent long quiescence period before the 1631 eruption

Article Open access 26 September 2025

Data availability

Data will be made available on request by contacting the following email address: isabella.lapietra@uniba.it.

References

  1. Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F. & Vye-Brown, C. Global volcanic hazards and risk. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7653B9CA75E2F32A81CE5B7110BEF8AB/9781107111752AR.pdf/Global_Volcanic_Hazards_and_Risk.pdf?event-type=FTLA (Cambridge University Press, 2015).

  2. Freire, S., Florczyk, A. J., Pesaresi, M. & Sliuzas, R. An improved global analysis of population distribution in proximity to active volcanoes, 1975–2015. ISPRS Int. J. Geo-Inf. 8 (8), 341. https://doi.org/10.3390/ijgi8080341 (2019).

    Google Scholar 

  3. Meredith, E. S. et al. Cities near volcanoes: which cities are most exposed to volcanic hazards? NHESS, 1–36 https://doi.org/10.5194/nhess-25-2731-2025 (2025).

  4. Gurioli, L. et al. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull. Volcanol. 72, 1021–1038. https://doi.org/10.1007/s00445-010-0379-2 (2010).

    Google Scholar 

  5. Lirer, L., Petrosino, P. & Alberico, I. Hazard and risk assessment in a complex multi-source volcanic area: the example of the campania Region, Italy. Bull. Vulcanol. 72 (4), 411–429. https://doi.org/10.1007/s00445-009-0334-2 (2010).

    Google Scholar 

  6. Baxter, P. J. et al. Emergency planning and mitigation at vesuvius: A new evidence-based approach. J. Volcanol Geotherm. 178 (3), 454–473. https://doi.org/10.1016/j.jvolgeores.2008.08.015 (2008).

    Google Scholar 

  7. Civil Protection Department. Risks. https://rischi.protezionecivile.gov.it/en/volcanic/volcanoes-italy/vesuvio/

  8. INGV. Osservatorio Vesuviano, Sezione di Napoli. https://www.ov.ingv.it/index.php/storia-vesuvio

  9. Dellino, P., Dioguardi, F., Isaia, R., Sulpizio, R. & Mele, D. The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of vesuvius. Sci. Rep. 11, 4959. https://doi.org/10.1038/s41598-021-84456-7 (2021).

    Google Scholar 

  10. Doronzo, D. M. et al. The 79 CE eruption of vesuvius: A lesson from the past and the need of a multidisciplinary approach for developments in volcanology. Earth Sci. Rev. 231, 104072. https://doi.org/10.1016/j.earscirev.2022.104072 (2022).

    Google Scholar 

  11. Cubellis, E., Marturano, A. & Pappalardo, L. The last vesuvius eruption in March 1944: reconstruction of the eruptive dynamic and its impact on the environment and people through witness reports and volcanological evidence. Nat. Hazards. 82, 95–121. https://doi.org/10.1007/s11069-016-2182-7 (2016).

    Google Scholar 

  12. EM-DAT dataset. https://public.emdat.be/data

  13. Rosi, M., Acocella, V., Cioni, R., Bianco, F., Costa, A., De Martino, P., Inguaggiato,S. Defining the pre-eruptive states of active volcanoes for improving eruption forecasting. Front. Earth Sci. 10, 795700 (2022).

  14. Dellino, P., Dioguardi, F., Sulpizio, R. & Mele, D. Long-term hazard of pyroclastic density currents at vesuvius (Southern Italy) with maps of impact parameters. Nat. Hazards Earth Syst. Sci. 25, 2823–2844. https://doi.org/10.5194/nhess-25-2823-2025 (2025).

    Google Scholar 

  15. Civil Protection Department. Piano nazionale di protezione civile per il rischio vulcanico al Vesuvio. https://www.protezionecivile.gov.it/it/approfondimento/aggiornamento-del-piano-nazionale-di-protezione-civile-il-vesuvio/

  16. ISTAT. Basi territoriali e variabili censuarie dataset. https://www.istat.it/notizia/basi-territoriali-e-variabili-censuarie/

  17. UNDRR. Global Assessment Report on Disaster Risk Reduction 2022: our World at Risk: Transforming Governance for a Resilient Future https://www.undrr.org/gar/gar2022-our-world-risk-gar (United Nations Office for Disaster Risk Reduction, 2022).

  18. Marzocchi, W., Sandri, L., Gasparini, P., Newhall, C. & Boschi, E. Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount vesuvius. J. Geophys. Res: Solid Earth. 109 (B11). https://doi.org/10.1029/2004JB003155 (2004).

  19. Birkmann, J., Sorg, L. & Welle, T. Disaster vulnerability. In The Palgrave Handbook of Unconventional Risk Transfer, 329–356 (Springer International Publishing, 2017).

  20. Córdoba, G. A. et al. Assessing probabilistic hazard and risk for building, road network, and ecosystems: the case study of La Florida municipality, Galeras Volcano, Colombia. Front. Earth Sci. 13, 1632282. https://doi.org/10.3389/feart.2025.1632282 (2025).

    Google Scholar 

  21. Sparks, R. S. J. et al. Future eruptions of the Kolumbo volcanic field: prognosis with hazard and risk assessment. Bull. Volc. 87 (9), 1–29. https://doi.org/10.1007/s00445-025-01836-x (2025).

    Google Scholar 

  22. Muryani, C., Noviani, R. & Azizah, R. N. Disaster risk analysis of Merapi Volcano eruption in the north slope based on the New Volcanic Risk Ranking (VRR) methods. IOP Conf. Ser.: Earth Environ. Sci. 1314 (1), 012015 https://doi.org/10.1088/1755-1315/1314/1/012015 (IOP Publishing, 2024).

  23. Nieto-Torres, A., Del Pozzo, A. L. M., Groppelli, G. & Viera, M. D. C. J. Risk scenarios for a future eruption in the Chichinautzin monogenetic volcanic field, South México City. J. Volcanol Geotherm. 433, 107733. https://doi.org/10.1016/j.jvolgeores.2022.107733 (2023).

    Google Scholar 

  24. Nieto-Torres, A., Guimarães, L. F., Bonadonna, C. & Frischknecht, C. A new inclusive volcanic risk ranking, part 1: methodology. Front. Earth Sci. 9, 697451. https://doi.org/10.3389/feart.2021.697451 (2021).

    Google Scholar 

  25. Bonadonna, C. et al. Integrating hazard, exposure, vulnerability and resilience for risk and emergency management in a volcanic context: the ADVISE model. J. Appl. Volcanol. 10 (1), 7. https://doi.org/10.1186/s13617-021-00108-5 (2021).

    Google Scholar 

  26. Guimarães, L. F., Nieto-Torres, A., Bonadonna, C. & Frischknecht, C. A new inclusive volcanic risk ranking, part 2: application to Latin America. Front. Earth Sci. 9, 757742. https://doi.org/10.3389/feart.2021.757742 (2021).

    Google Scholar 

  27. Reyes-Hardy, M. P., Barraza, F. A., Birke, J. P. S., Cáceres, A. E. & Pizarro, M. I. GIS-based volcanic hazards, vulnerability and risks assessment of the guallatiri Volcano, Arica y Parinacota Region, Chile. J. South. Am. Earth Sci. 109, 103262. https://doi.org/10.1016/j.jsames.2021.103262 (2021).

    Google Scholar 

  28. Jumadi, J., Malleson, N., Carver, S. & Quincey, D. Estimating spatio-temporal risks from volcanic eruptions using an agent-based model. JASSS 23 (2), https://doi.org/10.18564/jasss.4241 (2020).

  29. Alberico, I., Petrosino, P. & Lirer, L. Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli City (Southern Italy). NHESS 11 (4), 1057–1070. https://doi.org/10.5194/nhess-11-1057-2011 (2011).

    Google Scholar 

  30. Zuccaro, G. & De Gregorio, D. Impact assessments in volcanic areas-The vesuvius and Campi flegrei cases studies. Ann. Geophys. 62 (1), VO02–VO02. https://doi.org/10.4401/ag-7827 (2019).

    Google Scholar 

  31. Zuccaro, G. & De Gregorio, D. Time and space dependency in impact damage evaluation of a sub-Plinian eruption at Mount vesuvius. Nat. Hazards. 68 (3), 1399–1423. https://doi.org/10.1007/s11069-013-0571-8 (2013).

    Google Scholar 

  32. Spence, R. J., Baxter, P. J. & Zuccaro, G. Building vulnerability and human casualty Estimation for a pyroclastic flow: a model and its application to vesuvius. J. Volcanol geotherm. 133 (1–4), 321–343. https://doi.org/10.1016/S0377-0273(03)00405-0 (2004).

    Google Scholar 

  33. Willis, I., Gibin, M., Barros, J. & Webber, R. Applying neighbourhood classification systems to natural hazards: a case study of Mt vesuvius. Nat. Hazards. 70 (1), 1–22. https://doi.org/10.1007/s11069-010-9648-9 (2014).

    Google Scholar 

  34. Pesaresi, C., Marta, M., Palagiano, C. & Scandone, R. The evaluation of social risk due to volcanic eruptions of vesuvius. Nat. Hazards. 47 (2), 229–243. https://doi.org/10.1007/s11069-008-9214-x (2008).

    Google Scholar 

  35. Sulpizio, R., Folch, A., Costa, A., Scaini, C. & Dellino, P. Hazard assessment of far-range volcanic Ash dispersal from a violent strombolian eruption at Somma-Vesuvius volcano, Naples, italy: implications on civil aviation. Bull. Volcanol. 74 (9), 2205–2218. https://doi.org/10.1007/s00445-012-0656-3 (2012).

    Google Scholar 

  36. Rolandi, G. Volcanic hazard at vesuvius: an analysis for the revision of the current emergency plan. J. Volcanol geotherm. 189 (3–4), 347–362. https://doi.org/10.1016/j.jvolgeores.2009.08.007 (2010).

    Google Scholar 

  37. Avvisati, G. et al. Perception of risk for natural hazards in campania region (Southern Italy). IJDRR 40, 101164. https://doi.org/10.1016/j.ijdrr.2019.101164 (2019).

    Google Scholar 

  38. Ricci, T., Nave, R. & Barberi, F. Vesuvio civil protection exercise MESIMEX: survey on volcanic risk perception. Ann. Geophys. 56 (4), S0452–S0452. https://doi.org/10.4401/ag-6458 (2013).

    Google Scholar 

  39. Carlino, S., Somma, R. & Mayberry, G. C. Volcanic risk perception of young people in the urban areas of vesuvius: comparisons with other volcanic areas and implications for emergency management. J. Volcanol geotherm. 172 (3–4), 229–243. https://doi.org/10.1016/j.jvolgeores.2007.12.010 (2008).

    Google Scholar 

  40. Lapietra, I., Benassi, F., Paterno, A., García-Pereiro, T. & Dellino, P. Mapping social risk areas to floods in Southern italy: a Spatial analysis for local emergency planning and place-based risk reduction policies. IJDRR 105666. https://doi.org/10.1016/j.ijdrr.2025.105666 (2025).

  41. Buck, K. D. & Summers, J. K. Application of a multi-hazard risk assessment for local planning. Geomatics Nat. Hazards Risk. 11 (1), 2058–2078 (2020). https://doi.org/10.1080/19475705.2020.1828190.

    Google Scholar 

  42. UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030 (p. 32). United Nations Office for Disaster Risk Reduction (UNISDR). https://www.undrr.org/media/16176/download?startDownload=20260204

  43. Field, I. P. C. C. et al. The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU ENGLAND, pp. 582, (Cambridge University Press, 2012).

  44. Kelman, I. Climate change and the Sendai framework for disaster risk reduction. Int. J. Disaster Risk Sci. 6, 117–127. https://doi.org/10.1007/s13753-015-0046-5 (2015).

    Google Scholar 

  45. Garschagen, M., Doshi, D., Reith, J. & Hagenlocher, M. Global patterns of disaster and climate risk-an analysis of the consistency of leading index-based assessments and their results. Clim. Change. 169 (1), 11. https://doi.org/10.1007/s10584-021-03209-7 (2021).

    Google Scholar 

  46. Ward, P. J. et al. Natural hazard risk assessments at the global scale. NHESS 20 (4), 1069–1096. https://doi.org/10.5194/nhess-20-1069-2020 (2020).

    Google Scholar 

  47. Badreldin, H., Scaini, C., Hassan, H. M. & Peresan, A. High-resolution multi-hazard residential buildings and population exposure model for coastal areas: A case study in northeastern Italy. IJDRR 121, 105403 https://doi.org/10.1016/j.ijdrr.2025.105403 (2025).

  48. Marrero, J. M. et al. Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: the example of La Palma (Canary Islands). J. Appl. Volcanol 8 (1), 1–21 (2019).

  49. Takarada, S. The volcanic hazards assessment support system for the online hazard assessment and risk mitigation of quaternary volcanoes in the world. Front. Earth Sci. 5, 102. https://doi.org/10.3389/feart.2017.00102 (2017).

    Google Scholar 

  50. Sapountzaki, K. Risk mitigation, vulnerability management, and resilience under disasters. Sustainability 14 (6), 3589. https://doi.org/10.3390/su14063589 (2022).

    Google Scholar 

  51. Frigerio, I. & De Amicis, M. Mapping social vulnerability to natural hazards in italy: A suitable tool for risk mitigation strategies. Environ. Sci. Policy. 63, 187–196. https://doi.org/10.1016/j.envsci.2016.06.001 (2016).

    Google Scholar 

  52. Menoni, S., Molinari, D., Parker, D., Ballio, F. & Tapsell, S. Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Nat. Hazards. 64 (3), 2057–2082. https://doi.org/10.1007/s11069-012-0134-4 (2012).

    Google Scholar 

  53. Woo, G. Cost–benefit analysis in volcanic risk. In Volcanic hazards, risks and disasters, 289–300 https://doi.org/10.1016/B978-0-12-396453-3.00011-3 (Elsevier, 2015).

  54. Sandri, L., Jolly, G., Lindsay, J., Howe, T. & Marzocchi, W. Combining long-and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland volcanic Field, new Zealand. Bull. Volcanol. 74 (3), 705–723. https://doi.org/10.1007/s00445-011-0556-y (2012).

    Google Scholar 

  55. Kalfin, K., Sukono, S., Januaviani, T. M. A. & Siregar, B. Determination of Mount eruption insurance premiums in Indonesia based on collective risk and level of risk spread. IJBESD 5 (1), 38–44. https://doi.org/10.46336/ijbesd.v5i1.576 (2024).

    Google Scholar 

  56. Smolka, A. & Käser, M. Volcanic Risks and Insurance. In Volcanic Hazards, Risks and Disasters, 301–314 https://doi.org/10.1016/B978-0-12-396453-3.00012-5 (Elsevier, 2015).

  57. Tadini, A. et al. Uncertainty quantification in volcanology: observations, numerical modelling, and hazard/risk assessment: preface to the special issue. Bull. Volcanol. 87, 48. https://doi.org/10.1007/s00445-025-01835-y (2025).

    Google Scholar 

  58. Marzocchi, W., Newhall, C. & Woo, G. The scientific management of volcanic crises. J VOLCANOL GEOTH RES. 247, 181–189. https://doi.org/10.1016/j.jvolgeores.2012.08.016 (2012).

    Google Scholar 

  59. White, C. J. et al. Towards multi-hazard and multi-risk indicators–a review and recommendations for development and implementation. NHESSD 1–36 https://doi.org/10.5194/nhess-25-4263-2025 (2024).

  60. Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L. & Lewis, B. A social vulnerability index for disaster management. JHSEM 8(1) http://www.bepress.com/jhsem/vol8/iss1/3 (2011).

  61. Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. In Hazards Vulnerability and Environmental Justice (115–132). https://www.jstor.org/stable/42955868. (Routledge, 2003).

  62. Bindu, D. H., Siri, M. & Srivastava, N. Uncovering population patterns in volcanic areas with PCA (principal component analysis of population pattern in volcanic areas. In 2025 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE) (pp. 1–7). IEEE.

  63. Lapietra, I., García-Pereiro, T. A. & Combined Spatial Investigation of social vulnerability and flood hazard: A brief report on the metropolitan City of Bari (Southern Italy). Spat. Demogr. 13 (1), 8. https://doi.org/10.1007/s40980-025-00141-7 (2025).

    Google Scholar 

  64. Frigerio, I. et al. A GIS-based approach to identify the Spatial variability of social vulnerability to seismic hazard in Italy. Appl. Geogr. 74, 12–22. https://doi.org/10.1016/j.apgeog.2016.06.014 (2016).

    Google Scholar 

  65. Pratschke, J. & Benassi, F. Population change and residential segregation in Italian small areas, 2011–2021: an analysis with new Spatial units. Spat. Demogr. 12 (2), 3. https://doi.org/10.1007/s40980-024-00124-0 (2024).

    Google Scholar 

  66. Lapietra, I., Colacicco, R., Rizzo, A. & Capolongo, D. Mapping social vulnerability to multi-hazard scenarios: a GIS-based approach at the census tract level. App Sci. 14 (11), 4503. https://doi.org/10.3390/app14114503 (2024).

    Google Scholar 

  67. ISTAT. Censimento Popolazione Abitazioni dataset. http://dati-censimentopopolazione.istat.it/Index.aspx

  68. Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46 (1), 234–240 https://www.jstor.org/stable/143141 (1970).

    Google Scholar 

  69. Anselin, L. & Rey, S. Properties of tests for Spatial dependence in linear regression models. Geographical Anal. 23 (2), 112–131. https://doi.org/10.1111/j.1538-4632.1991.tb00228.x (1991).

    Google Scholar 

  70. Siagian, T. H., Purhadi, P., Suhartono, S. & Ritonga, H. Social vulnerability to natural hazards in indonesia: driving factors and policy implications. Nat. Hazards. 70 (2), 1603–1617. https://doi.org/10.1007/s11069-013-0888-3 (2014).

    Google Scholar 

Download references

Acknowledgements

This research was conducted within the RETURN Extended Partnership project and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan—NRRP, Mission 4, Component 2, Investment 1.3—D.D. 1243 August 2, 2022, PE0000005).

Funding

This research was conducted within the RETURN Extended Partnership project and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan—NRRP, Mission 4, Component 2, Investment 1.3—D.D. 1243 August 2, 2022, PE0000005).

Author information

Authors and Affiliations

  1. Department of Earth and Geoenvironmental Sciences, University of Bari “Aldo Moro”, Bari, 70125, Italy

    Isabella Lapietra & Pierfrancesco Dellino

  2. Department of Political Sciences, University of Naples Federico II, Naples, 80133, Italy

    Federico Benassi

  3. Department of Political Sciences, University of Bari “Aldo Moro”, Bari, 70125, Italy

    Thaís García-Pereiro & Anna Paterno

Authors
  1. Isabella Lapietra
    View author publications

    Search author on:PubMed Google Scholar

  2. Federico Benassi
    View author publications

    Search author on:PubMed Google Scholar

  3. Thaís García-Pereiro
    View author publications

    Search author on:PubMed Google Scholar

  4. Anna Paterno
    View author publications

    Search author on:PubMed Google Scholar

  5. Pierfrancesco Dellino
    View author publications

    Search author on:PubMed Google Scholar

Contributions

I.L.: Writing—original draft, Software, Investigation, Formal analysis, Data curation, Conceptualization. F. B.: Writing—review & editing, Data curation. T. G-P: Writing—review & editing, Data curation. A. P.: Writing—review & editing, Data curation. P. D.: Writing—review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Isabella Lapietra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapietra, I., Benassi, F., García-Pereiro, T. et al. An integrated multidimensional risk framework for volcanic hazard zones: insights from Mt. Vesuvius, Italy. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40589-1

Download citation

  • Received: 18 November 2025

  • Accepted: 13 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40589-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Volcanic hazard
  • Exposure
  • Vulnerability
  • Statistical analysis
  • GIS
Download PDF

Associated content

Collection

Geospatial data for community resilience

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing