Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Sea-level changes modulate beach face slope in coastal upwelling zones
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Sea-level changes modulate beach face slope in coastal upwelling zones

  • Marius Aparicio1,
  • Laurent Lacaze1,
  • Rafael Almar2 &
  • …
  • José M. Alsina3 

Scientific Reports , Article number:  (2026) Cite this article

  • 54 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Natural hazards
  • Ocean sciences

Abstract

Although waves are commonly regarded as the primary drivers of beach profile evolution, observations and experiments show that the slope of the beach face does not always directly reflect the conditions of the incident waves. The mechanisms governing transitions between equilibrium states are unclear due to feedback loops and delayed sediment responses. In this study, we analyze 3.5 years of daily beach profile data from two tropical low-tide terrace sites in order to characterize nearshore transient periods between seasonal equilibria. Our results reveal episodes in which the traditional classification of equilibrium beaches fails to predict slope evolution. We demonstrate that, at these beaches, transient events can be influenced by water-level variations linked to coastal upwelling, thereby altering sediment redistribution across the swash–surf continuum. Complementary laboratory experiments confirm that the observed dynamics can be reproduced by considering both the Dean number (\(\Omega _0\)), representing wave energy, and nearshore water-level variability. Our findings emphasize that transient sea-level modulations, such as those induced by upwelling, mesoscale eddies or atmospheric systems, can reshape beach profiles across multiple timescales. This highlights the need to extend equilibrium frameworks to account for non-wave-driven processes.

Similar content being viewed by others

Shoreline response to sea-level rise according to equilibrium beach profiles

Article Open access 22 September 2023

Embayed beach configuration explained by wave sheltering

Article Open access 11 January 2024

Scalable, data-assimilated models predict large-scale shoreline response to waves and sea-level rise

Article Open access 14 November 2024

Data availability

Field and laboratory data supporting the conclusions of this study are made available on Zenodo (Dataset). Sea surface temperature data are extracted from ODYSSEA Global Sea Surface Temperature Gridded Level 4 Daily Multi-Sensor Observations (https://doi.org/10.48670/mds-00321). Sea level anomaly data are extracted from Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Nrt (https://doi.org/10.48670/moi-00149). Surface wind directions and intensities are extracted from Global Ocean Physics Reanalysis (https://doi.org/10.48670/moi-00021)

References

  1. Wright, & Short,. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 56, 93–118. https://doi.org/10.1016/0025-3227(84)90008-2 (1984).

    Google Scholar 

  2. Castelle, B. & Masselink,. Morphodynamics of wave-dominated beaches. Cambridge Prisms: Coast. Fut. 1, e1. https://doi.org/10.1017/cft.2022.2 (2023).

    Google Scholar 

  3. Eichentopf, S., Van Der Zanden, J., Cáceres, I., Baldock, T. E. & Alsina, J. M. Influence of storm sequencing on breaker bar and shoreline evolution in large-scale experiments. Coast. Eng. 157, 103659. https://doi.org/10.1016/j.coastaleng.2020.103659 (2020).

    Google Scholar 

  4. Dean, R. G. Equilibrium beach profiles: Characteristics and applications. J. Coastal Res. 53–84 (1991).

  5. Baldock, T. et al. Morphological hysteresis in the evolution of beach profiles under sequences of wave climates - Part 1; Observations. Coast. Eng. 128, 92–105. https://doi.org/10.1016/j.coastaleng.2017.08.005 (2017).

    Google Scholar 

  6. Sonu, C. J. & Van Beek, J. L. Systematic beach changes on the outer banks, North Carolina. J. Geol. 79, 416–425. https://doi.org/10.1086/627649 (1971).

    Google Scholar 

  7. Aubrey, D. G. & Ross, R. M. The quantitative description of beach cycles. Mar. Geol. 69, 155–170. https://doi.org/10.1016/0025-3227(85)90139-2 (1985).

    Google Scholar 

  8. Davidson, M., Splinter, K. & Turner, I. A simple equilibrium model for predicting shoreline change. Coast. Eng. 73, 191–202. https://doi.org/10.1016/j.coastaleng.2012.11.002 (2013).

    Google Scholar 

  9. Splinter, K. D. et al. A generalized equilibrium model for predicting daily to interannual shoreline response. J. Geophys. Res.: Earth Surf. 119, 1936–1958. https://doi.org/10.1002/2014jf003106 (2014).

    Google Scholar 

  10. Sonu, C. J. & James, W. R. A Markov Model for beach profile changes. J. Geophys. Res. 78, 1462–1471. https://doi.org/10.1029/JC078i009p01462 (1973).

    Google Scholar 

  11. Bujan, N., Cox, R. & Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar. Geol. 417, 106012. https://doi.org/10.1016/j.margeo.2019.106012 (2019).

    Google Scholar 

  12. Sunamura, T. Quantitative predictions of beach-face slopes. Geol. Soc. Am. Bull. 95, 242 (1984).

    Google Scholar 

  13. Reis, A. H. & Gama, C. Sand size versus beachface slope - An explanation based on the Constructal Law. Geomorphology 114, 276–283. https://doi.org/10.1016/j.geomorph.2009.07.008 (2010).

    Google Scholar 

  14. Flemming, B. Geology, morphology, and sedimentology of estuaries and coasts. In Treatise on Estuarine and Coastal Science 7–38 (Elsevier, 2011) https://doi.org/10.1016/B978-0-12-374711-2.00302-8

  15. Masselink, G. & Puleo, J. A. Swash-zone morphodynamics. Cont. Shelf Res. 26, 661–680. https://doi.org/10.1016/j.csr.2006.01.015 (2006).

    Google Scholar 

  16. Mingo, I. M., Almar, R. & Lacaze, L. Surf and swash dynamics on low tide terrace beaches. Coasts 1, 73–89. https://doi.org/10.3390/coasts1010005 (2021).

    Google Scholar 

  17. Mingo, I. M., Lacaze, L. & Almar, R. A semi-empirical formula of beach slope on flat lower platforms. Coast. Eng. 190, 104506. https://doi.org/10.1016/j.coastaleng.2024.104506 (2024).

    Google Scholar 

  18. Miles, J. & Russell, P. Dynamics of a reflective beach with a low tide terrace. Continent. Shelf Res. 24, 1219–1247. https://doi.org/10.1016/j.csr.2004.03.004 (2004).

    Google Scholar 

  19. Anthony, E. & Blivi, A. Morphosedimentary evolution of a delta-sourced, drift-aligned sand barrier–lagoon complex, western Bight of Benin. Mar. Geol. 158, 161–176. https://doi.org/10.1016/S0025-3227(98)00170-4 (1999).

    Google Scholar 

  20. Lefebvre, J.-P. et al. Contribution of swash processes generated by low energy wind waves in the recovery of a beach impacted by extreme events: Nha Trang, Vietnam. J. Coast. Res. 663–668 (2014).

  21. Thuan, D. H., Almar, R., Marchesiello, P. & Viet, N. T. Video sensing of nearshore bathymetry evolution with error estimate. J. Mar. Sci. Eng. 7, 233 (2019).

    Google Scholar 

  22. Thuan, D. H. et al. Typhoon impact and recovery from continuous video monitoring: A case study from Nha Trang Beach, Vietnam. J. Coast. Res. 263–267 (2016).

  23. Tran, Y. H. et al. Combined longshore and cross-shore modeling for low-energy embayed sandy beaches. J. Mar. Sci. Eng. 9, 979. https://doi.org/10.3390/jmse9090979 (2021).

    Google Scholar 

  24. Kroese, D. P. & Rubinstein, R. Y. Monte carlo methods. Wiley Interdiscip. Rev.: Comput. Stat. 4, 48–58 (2012).

    Google Scholar 

  25. Vallis, G. K. Effects of Rotation and Stratification 55–104 (Cambridge University Press, 2017).

    Google Scholar 

  26. Zimmerman, R. C., Kremer, J. N. & Dugdale, R. C. Acceleration of nutrient uptake by phytoplankton in a coastal upwelling ecosystem: A modeling analysis. Limnol. Oceanogr. 32, 359–367 (1987).

    Google Scholar 

  27. Kunzmann, A., Du, H. T., Brefeld, D., Pinter, S. & Pohlmann, T. A long-term dataset of in-situ temperature data reveals wind-induced up- and downwelling in the coastal waters of Nha Trang, South Central Vietnam. Vietnam J. Mar. Sci. Technol. 24, 319–334. https://doi.org/10.15625/1859-3097/20393 (2024).

    Google Scholar 

  28. Lopez, A. Sea level daily gridded data from satellite observations for the global ocean from 1993 to present, https://doi.org/10.24381/CDS.4C328C78 (2018).

  29. Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573–588. https://doi.org/10.1016/j.coastaleng.2005.12.005 (2006).

    Google Scholar 

  30. Aagaard, T. Modulation of surf zone processes on a barred beach due to changing water levels; skallingen, denmark. J. Coast. Res. 25–38 (2002).

  31. Beach, R. A. & Sternberg, R. W. Suspended-sediment transport in the surf zone: Response to breaking waves. Cont. Shelf Res. 16, 1989–2003 (1996).

    Google Scholar 

  32. Butt, T. & Russell, P. Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: A review. J. Coast. Res. 255–268 (2000).

  33. Elfrink, B. & Baldock, T. Hydrodynamics and sediment transport in the swash zone: A review and perspectives. Coast. Eng. 45, 149–167 (2002).

    Google Scholar 

  34. Eichentopf, S., van der Zanden, J., Cáceres, I. & Alsina, J. M. Beach profile evolution towards equilibrium from varying initial morphologies. J. Mar. Sci. Eng. https://doi.org/10.3390/jmse7110406 (2019).

    Google Scholar 

  35. Theuerkauf, E. J., Rodriguez, A. B., Fegley, S. R. & Luettich, R. A. Sea level anomalies exacerbate beach erosion. Geophys. Res. Lett. 41, 5139–5147. https://doi.org/10.1002/2014GL060544 (2014).

    Google Scholar 

  36. Abessolo, G. O. et al. Beach adaptation to intraseasonal sea level changes. Environ. Res. Commun. 2, 051003. https://doi.org/10.1088/2515-7620/ab8705 (2020).

    Google Scholar 

  37. Bergsma, E. W. & Almar, R. Video-based depth inversion techniques, a method comparison with synthetic cases. Coast. Eng. 138, 199–209. https://doi.org/10.1016/j.coastaleng.2018.04.025 (2018).

    Google Scholar 

  38. Almar, R. et al. A new breaking wave height direct estimator from video imagery. Coast. Eng. 61, 42–48 (2012).

    Google Scholar 

  39. Almeida, L. P. et al. Lidar observations of the swash zone of a low-tide terraced tropical beach under variable wave conditions: The Nha Trang (Vietnam) COASTVAR experiment. J. Mar. Sci. Eng. 8, 302. https://doi.org/10.3390/jmse8050302 (2020).

    Google Scholar 

  40. Abessolo Ondoa, G. et al. Beach response to wave forcing from event to inter-annual time scales at grand Popo, Benin (gulf of guinea). Water https://doi.org/10.3390/w9060447 (2017).

    Google Scholar 

  41. Almar, R. et al. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: Wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 110, 48–59. https://doi.org/10.1016/j.csr.2015.09.020 (2015).

    Google Scholar 

  42. Almar, R. et al. A new remote predictor of wave reflection based on runup asymmetry. Estuar. Coast. Shelf Sci. 217, 1–8 (2019).

    Google Scholar 

  43. Almar, R., Almeida, P., Blenkinsopp, C. & Catalan, P. Surf-swash interactions on a low-tide terraced beach. J. Coast. Res. 75, 348–352. https://doi.org/10.2112/SI75-070.1 (2016).

    Google Scholar 

  44. Almar, R., Almeida, P. & Blenkinsopp, C. Interactions entre la zone de déferlement et le jet de rive sur une plage à terrasse. In XIVèmes Journées, Toulon 1–8 (Editions Paralia, 2016) https://doi.org/10.5150/jngcgc.2016.001.

  45. Almar, R. et al. Shoreline response to a sequence of typhoon and monsoon events. Water 9, 364. https://doi.org/10.3390/w9060364 (2017).

    Google Scholar 

  46. Dally, W. R. Surf Zone Processes. In Encyclopedia of Coastal Science (eds. Finkl, C. W. & Makowski, C.) 1654–1663 (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-319-93806-6_306.

  47. Osborne, P. D. & Greenwood, B. Frequency dependent cross-shore suspended sediment transport. 2. A barred shoreface. Mar. Geol. 106, 25–51. https://doi.org/10.1016/0025-3227(92)90053-K (1992).

    Google Scholar 

  48. Cáceres, I. & Alsina, J. M. Suspended sediment transport and beach dynamics induced by monochromatic conditions, long waves and wave groups. Coast. Eng. 108, 36–55. https://doi.org/10.1016/j.coastaleng.2015.11.004 (2016).

    Google Scholar 

  49. Baldock, T. et al. Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coast. Eng. 58, 214–227. https://doi.org/10.1016/j.coastaleng.2010.10.006 (2011).

    Google Scholar 

  50. Almar, R. et al. Intertidal beach profile estimation from reflected wave measurements. Coast. Eng. 151, 58–63. https://doi.org/10.1016/j.coastaleng.2019.05.001 (2019).

    Google Scholar 

  51. Grasso, F., Michallet, H., Barthélemy, E. & Certain, R. Physical modeling of intermediate cross-shore beach morphology: Transients and equilibrium states. J. Geophys. Res. 114, C09001. https://doi.org/10.1029/2009JC005308 (2009).

    Google Scholar 

  52. Buckingham, E. On physically similar systems; Illustrations of the use of dimensional equations. Phys. Rev. 4, 345 (1914).

    Google Scholar 

  53. Jonsson, I. G. Wave boundary layers amd friction factors. Coast. Eng. Proc. https://doi.org/10.9753/icce.v10.9 (1966).

    Google Scholar 

  54. Van Rijn, L., Tonnon, P., Sánchez-Arcilla, A., Cáceres, I. & Grüne, J. Scaling laws for beach and dune erosion processes. Coast. Eng. 58, 623–636. https://doi.org/10.1016/j.coastaleng.2011.01.008 (2011).

    Google Scholar 

  55. Dean, R. G. & Dalrymple, R. A. Coastal Processes with Engineering Applications (Cambridge University Press, 2004).

    Google Scholar 

  56. Reeve, D., Chadwick, A. & Fleming, C. Coastal Engineering: Processes, Theory and Design Practice (CRC Press, 2012).

    Google Scholar 

  57. Airy, G. B. Tides and waves (B. Fellowes, 1845).

  58. Noda, E. K. Equilibrium beach profile scale-model relationship. J. Waterw. Harb. Coast. Eng. Div. 98, 511–528 (1972).

    Google Scholar 

  59. Kamphuis, J. W. Scale Selection for Mobile Bed Wave Models 1173–1195 https://doi.org/10.1061/9780872620490.066.

Download references

Acknowledgements

MA and LL would like to thank Jean-Dominique Barron, Sébastien Cazin, Hervé Ayroles and Quentin Amati for the crucial technical support they provide to our work. MA, LL and RA are thankful to Ivana M. Mingo for her expertise and her work on which they have relied.

Funding

This study ha been funded by Université de Toulouse and Région Occitanie (project “ADSL”, \(n^\circ\)J452IMF23121). This study has been partially supported through the grant EUR TESS \(N^\circ\)ANR-18-EURE-0018 in the framework of the Programme des Investissements d’Avenir.

Author information

Authors and Affiliations

  1. Toulouse INP, CNRS, IMFT, University of Toulouse, Toulouse, France

    Marius Aparicio & Laurent Lacaze

  2. LEGOS (CNRS-IRD-CNES-University of Toulouse), Toulouse, France

    Rafael Almar

  3. Laboratori d’Enginyeria Marítima, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain

    José M. Alsina

Authors
  1. Marius Aparicio
    View author publications

    Search author on:PubMed Google Scholar

  2. Laurent Lacaze
    View author publications

    Search author on:PubMed Google Scholar

  3. Rafael Almar
    View author publications

    Search author on:PubMed Google Scholar

  4. José M. Alsina
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.A, L.L, J.M.A and M.A conceived, realized and analyzed the experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Marius Aparicio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparicio, M., Lacaze, L., Almar, R. et al. Sea-level changes modulate beach face slope in coastal upwelling zones. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40630-3

Download citation

  • Received: 15 October 2025

  • Accepted: 13 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40630-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Surf and swash zone hydrodynamics

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene