Table 2 Parameters and statistics of linear candidate models
From: Rural unemployment pushes migrants to urban areas in Jiangsu Province, China
Parameters and statistics | Linear models with different candidate driving factors | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
\(\mu _{RU}\sim U_R^\ell - U_U^\ell\) | \(\mu _{RU}\sim U_R^\ell\) | \(\mu _{RU}\sim 1 + V_R\) | \(\mu _{RU}\sim 1 + \eta ^\ell\) | \(\mu _{RU}\sim 1 + U_U^\ell\) | \(\mu _{RU}\sim 1 + (V_U - V_R) + \Delta V_R\) | |
β0 p-value) | – | – | 41.31 (<0.001) | −11.251 (0.608) | 32.95 (0.020) | 39.86 (<0.001) |
β1 (p-value) | 159.76 (<0.001) | 144.97 (<0.001) | −0.0010 (0.557) | 82.604 (0.030) | 169.01 (0.722) | −0.0012 (0.439) |
β2(p-value) | – | – | – | – | – | 0.0064 (0.221) |
N | 29 | 29 | 29 | 29 | 29 | 25 |
R | 0.65 | 0.62 | 0.11 | 0.40 | 0.07 | 0.27 |
p-value regression | <0.001 | <0.001 | 0.57 | 0.03 | 0.72 | 0.44 |
LL | −123.80 | −123.49 | – | −126.56 | – | – |
BIC | 250.97 | 250.35 | – | 259.86 | – | – |