Table 3 Regional ranking of searches using potentially discriminatory language toward the source of the outbreak in different periods.

From: The effect of official intervention on reducing the use of potentially discriminatory language during the COVID-19 pandemic in China

Potentially discriminatory language in the initial stage of the outbreak

Potentially discriminatory language in internet searches before official guidance on the use of discriminatory language

Potentially discriminatory language in internet searches after official guidance on the use of discriminatory language

Potentially discriminatory language in internet searches following the official naming of the disease

Trends in potentially discriminatory language in internet searches (3-week average)

1

Shanghai

0.8473

1

Shanghai

0.8257

1

Shanghai

0.3353

1

Qinghai

0.2448

1

Shanghai

0.5489

2

Guangdong

0.8194

2

Beijing

0.7892

2

Beijing

0.3122

2

Shanghai

0.2102

2

Beijing

0.5113

3

Beijing

0.8115

3

Guangdong

0.7690

3

Tianjin

0.2803

3

Tibet

0.2086

3

Chongqing

0.4903

4

Jiangsu

0.7824

4

Jiangsu

0.7489

4

Chongqing

0.2714

4

Hunan

0.2057

4

Hunan

0.4796

5

Tianjin

0.7796

5

Chongqing

0.7352

5

Qinghai

0.2675

5

Chongqing

0.2017

5

Hainan

0.4766

6

Henan

0.7725

6

Zhejiang

0.7290

6

Hunan

0.2595

6

Hainan

0.2000

6

Guangdong

0.4753

7

Sichuan

0.7692

7

Tianjin

0.7256

7

Jiangsu

0.2553

7

Anhui

0.1934

7

Tianjin

0.4736

8

Zhejiang

0.7665

8

Anhui

0.7209

8

Guangdong

0.2543

8

Hainan

0.1728

8

Sichuan

0.4697

9

Anhui

0.7618

9

Henan

0.7189

9

Jilin

0.2508

9

Jiangsu

0.1708

9

Jiangsu

0.4641

10

Jiangxi

0.7540

10

Hunan

0.7152

10

Hainan

0.2500

10

Jiangxi

0.1700

10

Anhui

0.4626