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Innovation rate and population structure moderate
the effect of population size on cumulative
technological culture
Alexandre Bluet 1,2✉, François Osiurak 1,3 & Emanuelle Reynaud 1

Cumulative technological culture is defined as the increase in efficiency and complexity of

tools and techniques over generations that allowed humans to conquer the whole Earth.

While one part of the puzzling ability of humans to develop such a form of culture lies in their

cognitive capacities giving rise to reliable transmission of information, another lies in the

impact of demographic factors. Indeed, many studies have examined the impact of population

size, innovation rate and population structure on cumulative technological culture. Here, we

present a computational model based on a previous model of micro-society that we extended

to study the impact of population size and the influence of innovations on cumulative

technological culture. Our results showed that population size exhibits an influence on

cumulative technological culture, principally in small-scale populations. Additionally, the

model suggests that the innovation rate constrains cumulative technological culture and the

importance of population size. Indeed, when innovations are frequent, the impact of popu-

lation size is diminished. Furthermore, our results demonstrate that individuals rely more on

themselves than on others to innovate in earlier generations as well as in small populations.

However, when populations grow as well as in later stages of evolution, reliance on inno-

vation from others increases. Overall, these results indicate that population size has a limited

impact on cumulative technological culture and that other demographic factors such as

innovation rate could offer a viable alternative explanation for archeological records.
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Introduction

Our success in expanding and conquering the whole Earth
(and even space) has been attributed to our capacity for
sharing, maintaining and improving tools and techniques

over generations, a phenomenon called cumulative technological
culture [hereafter shortened as CTC, see Boyd and Richerson
(1988), Derex (2022), and Tomasello et al. (1993). CTC is driven
by the transmission of technical knowledge. It is widely accepted
that this is supported by social learning, referring to learning
about others or the physical world that is influenced by obser-
vation of, or interaction with, another individual or its products
(Boyd et al. 2011; Derex 2022; Heyes 1994). While CTC has long
been linked to humans (Tomasello 1999), contemporary research
has uncovered instances of cumulative culture, and even CTC, in
non-human animals (Boesch et al. 2020; Jesmer et al. 2018;
Mesoudi and Thornton 2018; Sasaki and Biro 2017; Whiten
2021). This challenges the conventional belief that CTC is an
exclusively human trait. Nevertheless, the question of the origin
of our CTC in our evolutionary history persists.

One part of the puzzle lies in the human cognitive capacities
underlying CTC. The main hypothesis in this regard assumes that
the emergence of CTC is enabled by a high-fidelity information
transmission mechanism. This mechanism allows for the main-
tenance of CTC, until an innovation occurs and improves it
[referred to as the ratchet hypothesis (Tennie et al. 2009;
Tomasello 1999; Tomasello et al. 1993)]. This hypothesis focuses
on human social cognitive skills that can support high-fidelity
transmission [e.g., theory of mind, ToM hereafter, the ability to
detect as well as attribute intentions and mental states in others
(Piaget 1932; Premack and Woodruff 1978; Whiten 1991)]. While
acknowledging the role of social cognitive skills in CTC, recent
studies have stressed the importance of understanding the non-
social cognitive skills underlying both social and asocial events of
transmission (Osiurak et al. 2021; Osiurak et al. 2022; Osiurak
and Reynaud 2020; Singh et al. 2021; Vale et al. 2021; Whiten
2022). One such account is the technical-reasoning hypothesis
(Osiurak and Reynaud, 2020), stipulating that technical reasoning
(shortened as TR hereafter), a specific form of causal reasoning
oriented towards the physical world acquired through experience
(i.e., both asocial and social learning), allows humans to under-
stand, build and use tools. While claims from both hypotheses
allowed for great advancement in the study of the cognitive fac-
tors underlying CTC, we are still in the early stage of this
investigation and much more needs to be done in this regard
(Heyes 2018, 2023).

Another piece of the puzzle lies in demographic factors, which
are vital contributors to CTC. Over the past two decades,
researchers have concentrated on population size as a key
determinant, positing that larger populations foster greater CTC
(Shennan 2001). A pivotal study by Henrich (2004) associated
population size with cultural complexity. According to this
model, larger populations enhance cultural complexity, while
smaller populations lead to a decrease in cultural complexity (e.g.,
fewer tools in a population). These findings have been applied to
interpret cultural changes, such as the loss of artefacts in Tas-
mania post-separation from Australia (Henrich 2004, 2016).
Numerous subsequent studies have built on these findings,
investigating population structure, toolkit size, learning bias, and
validating results through archeological records and laboratory
experiments (Andersson and Read 2016; Aoki 2018; Baldini 2015;
Derex et al. 2013; Kempe and Mesoudi 2014; Kline and Boyd
2010).

Despite the decade-long prominence of the population-size
hypothesis in CTC, recent challenges have surfaced. Arche-
ological studies supporting Henrich’s model face limitations, with
factors such as abrupt climate change possibly explaining tool loss

in Tasmania (Andersson and Read 2016; Vaesen et al. 2016).
Moreover, empirical studies show a limited connection between
population size and CTC (Buchanan et al. 2015; Collard et al.
2013; Vaesen 2012). Additionally, several studies using micro-
society paradigms [a paradigm where chains of individuals are
asked to improve a physical system, for a detailed explanation see
Caldwell and Millen (2008)] have shown that increasing the
number of demonstrators did not lead to greater CTC (Caldwell
and Millen 2010) and could even lead to no CTC at all (Fay et al.
2019). Finally, it is important to note that several studies still
showed an effect of population size but it would be significant
only in small-scale populations (Andersson and Törnberg 2016;
Ben-Oren et al. 2023; Vaesen et al. 2016).

Henceforth, other demographic factors have been put forward
to explain how CTC can develop. Indeed, population structure,
along with connections between individuals of that population,
have been considered important factors (Creanza et al. 2017; Derex
and Boyd 2016; Kolodny et al. 2015; Lehmann et al. 2011). More
specifically, partially connected populations where subgroups of
individuals preferentially interact within their peers than with the
rest of the population yield a greater CTC than in fully connected
populations in which everyone is interacting with one another
(Ben-Oren et al. 2023; Derex et al. 2018). Another factor is the
social learning strategies that bias individuals toward copying
specific traits or individuals [for a review see Kendal et al. (2018)].
For example, in the model of Henrich (2004) a strong success bias
(i.e., copying the most successful individual) is assumed, while
others have shown that under unbiased social learning (i.e., copy at
random) population size does not correlate with CTC (Andersson
and Törnberg 2016; Bentley and O’Brien 2011). It has been shown
that the rate at which innovation occurs in a population exhibits
great control over the effect of population size, where innovation
rate dictates the benefit of increasing the number of individuals in
a population (Baldini 2015; Fogarty et al. 2017; Kobayashi and
Aoki 2012). Finally, recent studies started using effective population
size, defined as the relationship between population size and the
connectedness of the population (Derex and Mesoudi 2020) rather
than simple population size. They have shown that this distinction
is critical to understand CTC (Deffner et al. 2022).

Our study aims to integrate both pieces of this puzzle, namely
the cognitive and demographic facets of CTC. To do so, we used a
computational model (Bluet et al. 2022) based on the micro-
society paradigm to explore the influence of various cognitive
factors on CTC. Expanding this model, we run multiple trans-
mission chains simultaneously to simulate a population. To
demonstrate the significance of this approach, we first replicate
known results from the recent literature that the impact of
population size on CTC is not linear. Afterwards, we delve into
the reasons behind this non-linear relationship, focusing on the
dynamics of innovations, their occurrence, and the cognitive
factors influencing them. Finally, we investigate the connection
between innovation rate and population size. Our results suggest
that increasing the population size only impacts CTC in small
populations, and that the innovation rate constraints the impact
of population size on CTC.

The model
The model we present here is based on a computational model of
microsociety (Bluet et al. 2022). This model assumes a trans-
mission chain composed of only one individual per generation
(Fig. 1A). In this model, a single technology is passed along
individuals, whose goal is to improve said technology. To achieve
this goal, individuals learned about the underlying mechanisms of
the technology from their predecessors using one of three social
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learning forms (namely reverse-engineering, observation or
teaching). This learning process depends on the two cognitive
skills of the individuals: technical reasoning, the ability to reason
about the physical properties of objects (Osiurak 2014; Osiurak
and Reynaud 2020), and theory of mind, defined as the ability to
share attribute mental states to oneself and others (Harris 1991;
Mead and Mead 1985; Piaget 1932). From this model, we keep the
transmission chain structure, and only teaching1, the best per-
forming and most reliable social learning forms in Bluet et al.
(2022) model.

We extend this model to run multiple transmission chains in
parallel, simulating a population (Fig. 1B). A population is composed
of NC chains (akin to the population size) denoted as C, each having
its variant TC of a general technology (for example, each chain has a
specific variation of a bow). We assume a cross-learning population,
where each individual can socially learn from every other individual
in the parent population (Fig. 1C). The general flow of the model is
as follows. First, a new generation is introduced in the model. Each
individual is allocated to a specific chain C and inherits the tech-
nology TC from their respective chain. The values of their two
cognitive skills are then computed. While their theory of mind is
drawn from a normal distribution, their technical reasoning is based
on the quality of their technological environment, largely derived
from the technology TC they inherited (more on that in section (b)
individuals). Note that this model does not assume reproduction or
genetic inheritance, but only the inheritance of cultural traits. Sec-
ond, individuals socially learn about the technology, choosing a
random single individual from the parent generation (i.e., unbiased

social learning) as their teacher. In the hypothetical case where the
teacher has a technology Tc that has undergone innovations that did
not happen in the individuals’ chain, we assume that they learn these
innovations and implement them in their technology. We call this
phenomenon socially acquired innovation. Third, individuals apply
their teaching and modify the technology from their chain (i.e., the
one they inherited). Finally, they might have the opportunity to
innovate themselves through their own personal experience with the
physical environment. We call those innovations asocial innovations.
Then, the process repeats itself for NG generations G, as a new
generation of individuals is introduced in the model.

To illustrate the model, let us imagine a population of hunter-
gatherers using bows where everyone knows each other. Each
child inherits the bow of their family when they are born and
learn about its underlying mechanisms growing up. When they
are at the age of making their own bows, children have the
opportunity to learn from anyone in the population by going with
them on a hunting episode. After this learning phase, they return
home and apply what they have learned to the bow of their
family, including modifying existing traits (the modification
phase) and implementing the innovations they saw (socially
acquired innovation) in others. Finally, they may witness a nat-
ural event that sprouts new ideas to implement in their bows
(asocial innovation).

Technology. In the model, a technology T is composed of n distinct
independent traits, such that T ¼ trait1; trait2; ¼ ; traitn

� �
, each

Fig. 1 Overview of the model and its network structure. A Network structure of Bluet et al. (2022) model. In this model, a single transmission chain is run.
At each generation, a new individual is introduced in the model. This individual inherits the technology from its predecessor and learn from them.
B Network structure of the model presented here. The model is composed of NC chains, akin to population size. At each generation, NC individual is created
and inherits the technology from their direct predecessor. Then, they learn from one of any individuals in the past generation. C Model workflow. A
population was created, replacing the previous one and inheriting their technology. Each individual from this generation learned from a single individual in
the previous generation. Then, individuals modified their inherited technology. Under a certain probability and criteria, individuals innovate, bringing new
traits to the technology (in this case, addition of feather to the arrow). This process is then repeated for NG generation.
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trait has a quality and a limit. The quality represents the efficiency
of the trait, with an initial value of 1. We assume that the sum of the
qualities of each trait gives the quality of the technology T, denoted
quality(T) such as:

quality Tð Þ ¼ ∑
n

i¼1
quality traiti

� �
:

The limit represents the maximum potential quality a trait can
achieve in its current state, set to an arbitrary natural number
(limit traiti

� � ¼ 2 if not stated otherwise). Note that limits can
move through the generation, as innovations increase the limits
of every trait (for more information about innovation, see section
(e) innovation). As for the quality, the limit of T, denoted limit(T)
is computed as:

limit Tð Þ ¼ ∑
n

i¼1
limit traiti

� �
:

Individuals. In the model, an individual I possess two cognitive
skills, namely theory of mind and technical reasoning (hereafter
ToM and TR respectively). Their ToM noted ToMI is drawn from
a truncated Gaussian distribution, such that ToMI belongs to [0,
1] with μ ¼ 1

2 and sd ¼ 1
6. In the model, their TR, noted TRI, is

also drawn from a truncated Gaussian distribution but it belongs
to [0, TE] with μ ¼ TE

2 and sd ¼ TE
6 , where TE is short for tech-

nological environment. This value represents the quality of the
technological environment where individuals first appear. We
assume that the TE of each individual is principally composed of
their chain’s technology TC. However, one can imagine that the
technology transmitted TC is not the only technology that com-
poses the TE of the individual. To account for that, we add a noise
variable, ε, drawn from a uniform distribution in the range

� quality TCð Þ
10 ; qualityðTCÞ

10

h i
. ε is based on quality(TC) because we

assume that every technology in the individual TE should be close
in terms of quality to the main technology TC (e.g., every bow
owned by the parent should be similar to the one inherited). This
gives:

TE ¼ quality TC

� �þ ε:

The model assumes that the TE of each individual shapes their
TR skills because the richer the environment is in technology, the
greater the chance an individual has to increase their technical
reasoning through either social or asocial learning (Osiurak et al.
2022; Osiurak and Reynaud 2020). Note that the increase in
quality(TC) will lead to an increase in TE, resulting in an increase
in the TR skills of individuals. Indeed, we assume that a greater
technological environment will lead to greater individuals in
terms of technical reasoning skills. To reflect the overall mastery
of the technological environment by an individual, we use the
ratio between its TR skills and TE, TRI

TE .
Each individual I is also defined according to its understanding

about the mechanisms underlying each traitC;i of the technology
TC, such as I ¼ cog1; cog2; ¼ ; cogn

� �
, with each cogi corre-

sponding to a specific traitC;i. For example, understanding the
effect of the length of a bow on the energy stored when stringing
it could be stored in cog1, while the impact of the material used
for the string could be cog2. Each cogi can take some value
between 0 (no knowledge at all) to the limit of traitC;i (a total
understanding of traitC;i). To initialize each cogi, we first
randomly select a random one with replacement and then assign

a value drawn in the range 0; limit traitC;i
� �h i

. This process is

repeated until the pool of knowledge, represented by TRI, is

depleted, such that

∑
n

i¼1
cogi ¼ TRI :

This leads to a heterogeneous distribution of understanding,
where some cogi might centralize a majority of TRI, while other
cogi are very limited. We argue that this way of allocation cogi
gives a more diverse knowledge landscape in our population,
allowing for some individuals to be specialized in a specific
traitC;i.

Learning. We assume that individuals learn once and choose
their teacher at random from their parent generation. This means
that while some individuals might learn from their direct parent
(i.e., the one from whom they inherited their technology), most
individuals learn from someone outside of their chain C, akin to
how many people learn from a teacher in school rather than from
their parents. In our model, learning is defined using a modified
version of the learning equation for teaching from Bluet et al.
(2022), for more detail about the modification from the previous
model of this equation, please see Supplementary Material S1:
Simplification of Bluet et al. (2022) model]

cog 0i ¼ cogi þ ΔRE �
TRI

TE

� 	
þ ΔOBS �

TRI

TE

� 	
þ ΔTCH � TRI

TE
� ToMT

� �� 	
;

ð1Þ
where cog0i represents the new understanding traitC;i after the
learning process, each Δ represents the amount of knowledge that
can be learned for each traitC;i compared to what the individual
already knows, and ToMT represents the ToM of the teacher. In
this learning equation, three distinct social learning components
are at play: reverse engineering (RE), observation (OBS), and
teaching (TCH). Let’s revisit our example of an individual
observing a bow hunting episode. While watching an experienced
hunter, the individual can scrutinize the bow, employing reverse
engineering to extract vital insights about its construction. Post-
hunt, the observer may witness the experienced hunter fine-
tuning and enhancing the bow based on the hunting results,
illustrating observation in line with the transmission chain lit-
erature (Caldwell and Millen 2009; De Oliveira et al. 2019; Fay
et al. 2019; Osiurak et al. 2016). Throughout the entire hunting
episode, the individual also has the opportunity to engage in
communication with the experienced hunter, who may provide
teachings on how to enhance the bow.

Hence, ΔRE represents the information given by observing the
teacher’s technology, given by

ΔRE ¼ quality teacher:traitC;i
� �

� individual:cogi:

This equation reflects to which extent individuals understand a
specific traitC;i of their teachers’ technology. ΔOBS represents the
information gained by observing the teaching improving its own
technology, such that

ΔOBS ¼ quality teacher:TC;i

� �
� quality teacher:TC;i�1

� �
;

where teacher:TC;i represents the teacher’s technology, and
teacher:TC;i�1 represents the teacher’s technology before mod-
ification (i.e., the one it inherited).

Finally, ΔTCH represents the direct comparison between the
teacher’s and the individual’s cogi, such that

ΔTCH ¼ teacher:cogi � individual:cogi:

We assume that each Δ are set to 0 if Δ<0. Indeed, in the case
where an individual has a better understanding of a trait than
their teacher, we assume that they are simply not learning
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anything. All three types of learning are influence by the learner
TR, represented by the aforementioned TRI

TE . The implication of TR
skills in CCE has been suggested by multiple experiments using
the transmission chain paradigm [(Osiurak et al. 2016; Osiurak,
De Oliveira, et al. 2020; Osiurak et al. 2021), for a review see
Osiurak and Reynaud (2020), for an alternative perspective,
please see Derex et al. (2019)]. As for the teacher ToM, ToMT , it
can be compared to the teaching ability of an individual in our
model, it only impacts the teaching learning form. Indeed, it has
been repeatedly suggested that ToM (or more generally
mentalizing process) might play an important role in teaching
(Herrmann et al. 2007; Tomasello 1999; Tomasello et al.
1993, 2005). In the context of transmission chains, it is
particularly the teacher’s ToM (Osiurak et al. 2020) that may
impact the CCE.

Modification of the technology. After the learning phase is over,
individuals modify their technology according to what it has
learned. For every traitC;i of a technology TC, a modification
factor βi is computed such that

βi ¼ βdown þ βup � βdown

� �
� cogi0
traitC;i

; ð2Þ

where βup ¼ 1:2 and βdown ¼ 0:6 [these values are chosen arbi-
trarily, but a parameter sweep shows that our results are robust to
different values for βup and βdown, for more information see
Supplementary Material S2: Parameter sweep]. Thus, the new
quality of TC after modification is given by

quality TC

� � ¼ ∑
n

i¼1
qualitiy traitC;i

� �
� βi:

Innovation. Finally, individuals may have an opportunity to
innovate, referred to as asocial innovation, with probability
pinnovation. To seize this opportunity, we assume that one of two
criteria must be satisfied:

– TR criterion: the individual TR skills must be advanced
compared to the TE, specifically TRI

TE >0:8.
– Optimization criterion: the technology T needs to be nearly

optimized, meaning its quality approaches its limits, specifi-
cally quality Tð Þ

limitðTÞ > 0:8.

The reasoning for the first criterion is that individuals with
great TR skills will come up with new ways to integrate other
traits into their current technology, as their understanding of the
mechanisms underlying the technology is outstanding in the
population. As for the second criterion, we consider that a near-
optimized technology will lead to fewer possible improvements,
thus prompting individuals to try new ways to improve the
technology, leading to innovations. This is close to the concept of
exploitation of Type II CCE and exploitation of natural
phenomena proposed by Derex (2022), which proposes that
human CTC evolves through a succession of slow improvement
periods and brief and rapid boost in efficiency brought by the
exploitation of a natural phenomenon [for a similar view in a
real-life setting, see Miu et al. (2018)].

If neither of these two criteria are met, no innovation occurs.
We called that a missed opportunity. Conversely, meeting at least
one criterion leads to the individual seizing the innovation
opportunity, changing the technology in two ways. First, the
technology gains a new trait, which refers to groundbreaking
innovation (Kolodny et al. 2015). Second, all the traits traitc;i have
their limits limitðtraitc;iÞ increased by an arbitrary number,
representing the innovative combination (Kolodny et al. 2015).

As said previously, we assume that innovations are transmitted
through social learning, leading to socially acquired innovations.
Thus, when an individual learns from a teacher with a technology
more advanced (i.e., with more traits), the learner first applies the
innovation, to its own technology, with similar mechanisms to an
asocial innovation (i.e., with groundbreaking innovation and
innovative combination). Then, the learner tries to learn from
every trait (both old and new) of the teacher’s technology. The
newly added traits and their related cogi will start with the lowest
quality possible (i.e., 1 and 0 respectively) and the same limit as
those of the teacher’s technology.

Results
As in the initial version of the model (Bluet et al. 2022), we
averaged the quality of the technology over multiple simulation
runs as the model incorporates various random elements that
may impact a single simulation run. Except when stated other-
wise, all the results presented below were obtained using the
following set of parameters: βup ¼ 1:2, βdown ¼ 0:6, and
pinnovation ¼ 0:01, NC ¼ 200. Other parameter values were kept as
the based value from the previous model [see Bluet et al. (2022)
for more details on the parameters and their impact on the
model].

Population size and number of innovations. Our model shows
an increase in the quality of the technology as population size
grows (Fig. 2A). However, this increase follows a logarithmic-like
function. Our results show that an increase in population size has
a larger impact on increasing the technology’s quality in smaller
populations than in larger populations. The model also shows
that this limitation is stronger when the population size is at least
100 individuals, i.e., approaching the stage where there is theo-
retically one asocial innovation per generation (with
pinnovation ¼ 0:01).

If a larger population does not always result in greater
technology quality, it might be attributed to the fact that larger
populations do not necessarily mean more innovations. However,
contrary to the technology’s quality, the total number of
innovations increase in a linear fashion with population size
(Fig. 2B). Furthermore, both the total number of opportunities to
innovate and the number of missed opportunities increase
linearly (Fig. 2C). This means that when the population grows,
more opportunities for asocial innovation appear in the
population and individuals also convert more of these opportu-
nities. This is consistent with our results, showing that the
percentage of missed opportunities reaches an asymptote around
a population size of 20 individuals (Fig. 2D).

Overall, these results reveal that the relationship between
population size and CTC is not linear. Indeed, the impact of
increasing the size of a population on its CTC offers diminishing
returns. This result left us with a puzzling question: why does a
population that innovate noticeably more not show greater
technology’s quality? To answer this question, we will first explore
the relationship between population size and the type of
innovation (asocial innovation or socially acquired innovation)
occurring and take a closer look at which criterion (TR criterion
and Optimization criterion) are met in the case of asocial
innovation. We will also investigate the relationship between
population size and individual technology knowledge, examine
the propagation of innovations within the population, and
consider the impact of the asocial innovation rate in relation to
population size.

Type of innovation. Unsurprisingly, our model shows that there
are more asocial innovations compared to socially learned
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innovations both when the population is small and in the early
generations of the population (Fig. 3A, B). In the early genera-
tions, this happens because until there is an asocial innovation, it
cannot be passed on socially. This makes it impossible to see
socially learned innovations. In smaller populations, fewer indi-
viduals lead to less learning interaction, resulting in less socially
learned innovation overall. We observe that the rate of asocial
innovation decreases very quickly to about 10% of total innova-
tions. From these results, a question remains: what are the
mechanisms leading to asocial innovation in different populations
size and at different generations? To address this question, we
delve into the repartition of the distribution of both the TR cri-
terion and the optimization criterion.

The repartition of asocial innovation based on the TR criterion
and the Optimization criterion suggests that smaller populations
tend to rely more on optimized technology for innovation
compared to bigger populations that are mainly driven by
innovating on the TR criterion (Fig. 4, left part). We also observed
an equal repartition of the asocial innovation type in the early
generations (Fig. 4, bottom part). It may be because at the early
age of a society, the technology is easy to optimize, and thus the
TE value is also small, meaning that any individual has access to
an optimized technology while also being ahead in terms of TR.
Another interesting result is the small resurgence of technology-
based innovation in later generations, even for large populations
(Fig. 4, top part). An explanation is that in the latter stages of

Fig. 2 Population size and number of innovations as a function of population size. A Model results in terms of technology’s quality as a function of
population size. We run 200 simulations of 200 generations for each population size NC in the range [0, 100]. Gray lines represent each simulation single
simulation run for a specific population size NC. The blue line represents the averaged technology’s quality between simulations. Common parameter
values for all models: n= 2, θ= 5, βUP= 1.2, βDOWN= 0.6, pinnovation= 0.01. B The total number of innovations (both social and asocial) as a function of
population size. C The total number of opportunities to innovate (solid line) and missed opportunities (dotted line) as a function of population size.
D Percentage of missed opportunities compared to the total number of opportunities as a function of population size.

Fig. 3 Proportion of innovation’s type as a function of population size and generation. A The proportion of asocial innovations compared to total
innovations (asocial innovationtotal innovation ) as a function of population size (NC). B The proportion of asocial innovations compared to total innovations (asocial innovationtotal innovation ) as a
function of generations (NG).
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populations, technologies are too advanced for individuals to
catch up with them in terms of knowledge, meaning that
populations need again to rely more on optimized technology
than on individuals with great TR.

Relationship between population size and individual knowl-
edge of the technology. We then investigated the relationship
between population size and TR skill compared to the TE along
with the overall optimization status of the technology, defined as
the ratio between the technology’s quality and its limit, such that
optimization ¼ quality Tð Þ

limit Tð Þ . The model suggests that individuals
exhibit the highest TR skills level in early to middle generations,
especially in larger populations (Fig. 5A), while simultaneously,
the technology exhibits suboptimal optimization within the same
range of generations and population size (Fig. 5B). This indicates
that in these early generations, individuals have an overall better
understanding of their environment, leading the way to many
improvements and asocial innovations of the technology, which
makes it theoretically excellent [i.e., increases limit(T)] but also
reduce its optimization at the same time [because limit(T) will be
far greater than quality(T)]. Note that this pattern is absent for
very small populations (i.e., less than 5 individuals). This rela-
tionship between TR skills and optimization can be explained by
the fact that the overall quality(T) of the technology dictates the
quality of TE upon which the TRI of individuals are drawn.
However, our model suggests that even the worst populations in
terms of TR are still high (TRI

TE >0:75) while the technology opti-

mization is very low (quality Tð Þ
limitðTÞ < 0:85).

This pattern of early bursts of high-skilled individuals followed
by a small and steady increase in technology quality is also

present when we investigate the mean number of generations
needed to achieve the asocial innovation requirements (as a
reminder either TRI

TE > 0:8 or quality Tð Þ
limitðTÞ > 0:8, Fig. 6) after an asocial

innovation occurs. For the TR, our results suggest a slower
catchup speed for small populations (Fig. 6A). However, note that
the number of generations is very small, as almost every
generation in every population size reaches easily the TR criteria
for asocial innovation. This is not true for the mean technology
optimization speed, which increases with population size until
reaching a plateau value around the 20th generation (Fig. 6B).
This value should be taken with caution as there is a lot of
fluctuation in our result. Nevertheless, the results show that
smaller populations, while having worse technology in terms of
quality, optimized their technology faster.

Propagation of the innovation. One might think that greater
population size means that it is more difficult for innovation to
spread socially. Indeed, it is normal to consider that a larger
population goes with a longer transmission of information to all
its members. Despite this, our model shows that the speed of
innovation propagation (i.e., the number of generations needed
for an innovation to spread in all technologies) follows a loga-
rithmic trend as a function of population size (Fig. 7). Thus, the
propagation of innovation cannot account for the disparity
between the increase in population size and CTC.

This observation, while perhaps not surprising in the context of
diffusion mechanisms, is interesting to investigate within our
model. This result stems from two conflicting forces: asocial and
socially learned innovation. Indeed, our previous results already
illustrated that increasing the population means that more

Fig. 4 Repartition of the criteria met for asocial innovations as a function of population size (NC) and generation (NG). White areas represent missing
values, where no innovation occurred.
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individuals have the opportunity to innovate, and also that in
bigger populations individuals have greater TR skills. On the
other side, greater population size means that the chance of
learning from an individual that happens to have a technology
with innovations when learning is rarer (think of it as a 1%
chance to find the chain where an individual just innovates the
previous generation for a population of 100 individuals). In
summary, increasing population means more asocial innovation,
but more time to find this innovation in the population for it to
be learned socially.

We did a computational model of this trade-off in innovation
diffusion mechanisms and the result is qualitatively the same as
the one seen in the model (Supplementary Material S3:
Innovation computational model), suggesting that this result is
explained by the innovation dynamics of our model.

Innovation rate. When varying the value of pinnovation, our model
shows that the effect of population size is constrained by the
asocial innovation rate, as it was previously stated in the literature
(Baldini 2015; Fogarty et al. 2017; Kobayashi and Aoki 2012).
Indeed, our results show that when the asocial innovation rate is
low, population size increases the technology quality linearly (Fig.
8A). However, as the value of pinnovation increases, the effect of the

population size decreases (Fig. 8B–D). We observe that the
quality of this impact decreases rapidly around the value of
population size that equals an asocial innovation every generation
(i.e., around 100 individuals for pinnovation ¼ 0:01, 20 for
pinnovation ¼ 0:05 and 10 for pinnovation ¼ 0:10).

Discussion
Here, we propose a model of CTC that simulates the effect of
demographic factors from a micro-scale modeling framework of
social information transmission. This model is based on a pre-
vious model of micro-society (Bluet et al. 2022), a paradigm used
to study CTC in the laboratory (Caldwell and Millen 2008; Derex
et al. 2019; Osiurak et al. 2022; Osiurak et al. 2020; Osiurak et al.
2020; Osiurak et al. 2016). To create a population using this
model, we extend it to run multiple transmission chains in par-
allel, in which individuals could learn from any other individual.
This setup has also been studied in previous laboratory experi-
ments and showed that increasing population size leads to a
better CTC (Derex and Boyd 2016; Kempe and Mesoudi 2014).
However, contrasting results have been provided by other
transmission chain experiments, where bigger group sizes did not
lead to a greater CTC (Caldwell and Millen 2010; Fay et al. 2019).

Fig. 5 Relationship between population size, individual knowledge and technology optimization. A The mean overall mastery of the environment in
terms of TR, computed with ITR

env as a function of both population size (NC) and generation (NG). B The mean overall optimization of the technology
computed with qualityðTÞ

limitðTÞ as a function of both population size (NC) and generation (NG).

Fig. 6 Relationship between population size and innovation catch-up. A We computed the mean number of generations it takes for individuals to reach
the innovation. We computed the mean number of generations it takes for the individual to meet the requirement for asocial innovation using TR ( ITRenv>0:8)
after an innovation occurs as a function of population size. B We computed the mean number of generations it takes for the technology to be optimized
enough for an asocial innovation (qualityðTÞlimitðTÞ >0:8) after an innovation occurs as a function of population size.
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Fig. 7 Average propagation speed of innovation. We computed the average number of generations for the population to all have the last innovation that
occurred. We called this the mean propagation speed (MPS) and showed it as a function of population size.

Fig. 8 Model results in terms of technology’s quality as a function of population size. We run 200 simulations of 200 generations for each population
size in the range [0, 100]. Gray lines represent each simulation single simulation run for a specific population size. The blue line represents the averaged
technology’s quality between simulations. Common parameter values for all models: n= 2, θ = 5, βUP= 1.2, βDOWN= 0.6. A pinnovation= 0.001.
B pinnovation= 0.01. C pinnovation= 0.05. D pinnovation= 0.1.
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Our results are consistent with these last studies, by showing
that larger population sizes do not relate to a greater CTC in a
linear fashion. More specifically, while the CTC increases with
population size, this effect becomes limited as the population
grows larger, indicating that the contributions of additional
individuals in the population is significant primarily for smaller
populations. These results are in line with the literature that
shows an effect of population size only when the population is
small (Andersson and Törnberg 2016; Ben-Oren et al. 2023;
Vaesen et al. 2016). Furthermore, multiple studies show no
relationship between population size and the archeological tool
record (Andersson and Read 2016; Buchanan et al. 2015; Collard
et al. 2013; Schiffels and Durbin 2014; Vaesen 2012). Our model
predicts that this is not due to slowing the innovative process in
larger populations, as the number of innovations is evolving
linearly with population size. It is also not linked to more missed
opportunities in big populations, as the model shows that the
mean asocial innovation loss decreases as the population size
increases. Finally, larger populations do not mean a slower spread
of innovation. Indeed, our model shows that the innovation
spread speed is growing logarithmically. Thus, the question of
why larger populations are not linked to greater CTC while they
are innovating significantly more than lesser populations remains
open. Overall, these results provide insights into the underlying
mechanisms of CTC and highlight the effectiveness of our micro-
scale modeling framework in exploring demographic factors.

Our model shows that individuals rapidly rely on socially
learned innovations, meaning that they do not innovate them-
selves but take the asocial innovation of the few individuals who
do. This is akin to the free-rider problem expressed by Roger in his
1988 paper (Rogers 1988). In his model, Roger shows that as the
frequency of social learning grows, the overall fitness of the
population decreases. Indeed, learning socially has less cost than
learning asocially, hence an individual should try to learn from
others. However, if every individual does so, no one will bring new
knowledge to the population, and thus the fitness of the popula-
tion will decrease. This problem was solved by integrating social-
learning bias (Boyd and Richerson 1995; Kameda and Nakanishi
2003). Thus, our results showing the lesser impact of population
size in larger populations could be explained because unbiased
social learning is assumed in the model. A model integrating social
learning bias could lead to a linear increase in CTC as a function
of population size. Nevertheless, it is important to note that the
implication of social learning biases, particularly the prestige bias
[(Henrich and Gil-White 2001) for a review see Kendal et al.
(2018)], remains contested in the literature (Chellappoo 2021).

Another result of our model is that in larger populations,
individuals rely more on their skills (here, TR) to innovate than
on the fact that the technology is already optimized, and thus it
can be improved through asocial innovation only. This is in
contrast to smaller populations, where asocial innovation is
rooted in both technical reasoning and technological optimiza-
tion. In later generations, we observe a resurgence of asocial
innovation relying on technology optimization, even for larger
populations. This could be because, in the later stages of a
population, the technology is too advanced for individuals to
master its underlying mechanism during their lifetime, a known
fact in the literature (Mesoudi 2011). In line with this inter-
pretation, our model shows that individuals are at their best in
terms of understanding the technology in larger populations and
at earlier stages of their development. On the contrary, popula-
tions have more optimized technology either when they are small,
yielding simpler technology easier to optimize or in the latter
generations. This result indicates that while smaller populations
may have less diverse or complex technologies, they might have a
better understanding of them, while larger, more advanced

populations rely more on others to develop technologies and
techniques.

We also tested for the influence of the asocial innovation rate
on the effect of population size. Our results show that greater
asocial innovation rates (i.e., more chance to innovate) are linked
with a decreased effect of population size on CTC. Indeed,
although increasing the rate of asocial innovation leads to a better
CTC, it also leads more quickly to the asymptote of the popu-
lation size effect. It has already been suggested that the effect of
population size might be limited by the rate of innovation
(Baldini 2015; Fogarty et al. 2017; Kobayashi and Aoki 2012).
Moreover, this asymptote seems to arrive in our model at the
moment when the threshold of one asocial innovation per gen-
eration is reached (i.e., around 100 individuals for
pinnovation ¼ 0:01, 20 for pinnovation ¼ 0:05 and 10 for
pinnovation ¼ 0:10), which indicates that once there are enough
innovators in the population, it is no longer necessary to increase
its size to obtain a better CTC.

While these results contribute to the debate on the involvement
of demographic factors in CTC, we would like to point out that
our model has its limitations. First, we assume a cross-learning
population for simplicity. However, it has been shown many
times that population structure has an impact on CTC (Creanza
et al. 2017; Derex and Boyd 2016; Kolodny et al. 2015; Lehmann
et al. 2011). Furthermore, recent studies have shown the impact
of effective population size on CTC (Deffner et al. 2022; Derex
and Mesoudi 2020). Because of our assumption of a fully cross-
learning population, the effective population size is the same as
the population size in our model, thus reinforcing the idea that to
study CTC, a non-fully cross-learning population is better suited.
It seems important to us that future research on this topic should
focus on population structure and connectivity. Second, we
assume unbiased social learning, where each individual randomly
chooses the predecessor they will learn from. The choice to
abstain from social learning biases is a choice that we assume, but
integrating these biases into the model could give interesting
results, as several studies have already pointed out (Acerbi and
Alexander Bentley 2014; Atkisson et al. 2012; Henrich and Gil-
White 2001; Jiménez and Mesoudi 2019; Thompson and Griffiths
2021). Finally, as we have shown, our results depend greatly on
the way we model innovations and whether they are socially
transferable. First, how individuals innovate is derived from the
model on which the present work relies (Bluet et al. 2022) which
itself bases its innovation process on another model (Creanza
et al. 2017; Kolodny et al. 2015) that has been proven successful.
Second, the assumption that innovations are socially transmitted
is consistent with most models in the literature in which indivi-
duals pick up the majority of traits from the person they observe
(Andersson and Törnberg 2016; Aoki 2018; Baldini 2015; Ben-
Oren et al. 2023; Creanza et al. 2017; Henrich 2004; Kobayashi
and Aoki 2012; Miu et al. 2018; Powell et al. 2009). However, the
assumption that innovation can be acquired without any cost for
the social learner can be questioned. Simple solutions to this
problem could either be to add a cost for socially acquired
innovation, or to implement criterion for this type of innovation,
akin to asocial innovation. Nevertheless, the potential emergence
of a link between innovation and population size could be
investigated as a function of the innovative process.

Humanity has relied heavily on technologies to conquer the
world, and our success as a species cannot be explained without
CTC. Our model suggests that population size is not the sole
explanatory reason for our success and that the way innovation
arise, are transmitted and their frequencies have a much greater
impact on CTC. Thus, future studies should focus more on the
process behind innovation and its implication in the demographic
factors governing CTC.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03157-4

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2024) 11:649 | https://doi.org/10.1057/s41599-024-03157-4



Data accessibility
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are available in the online electronic supplementary material and
at https://osf.io/zm68r/?view_only=751aafbaf4f744a089908882e
214edd8.
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Note
1 Note that in the previous model, the condition was called communication. We decided
to change it to teaching as it led to confusion in the previous paper over the meaning of
communication and its implication in CTC [for a more detailed explanation, see Bluet
et al. (2022)].
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