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There is growing support and interest in postsecondary interdisciplinary environmental

education, which integrates concepts and disciplines in addition to providing varied per-

spectives. There is a need to assess student learning in these programs as well as rigorous

evaluation of educational practices, especially of complex synthesis concepts. This work tests

a text classification machine learning model as a tool to assess student systems thinking

capabilities using two questions anchored by the Food-Energy-Water (FEW) Nexus phe-

nomena by answering two questions (1) Can machine learning models be used to identify

instructor-determined important concepts in student responses? (2) What do college stu-

dents know about the interconnections between food, energy, and water, and how have

students assimilated systems thinking into their constructed responses about FEW? Reported

here is a broad range of model performances across 26 text classification models associated

with two different assessment items, with model accuracy ranging from 0.755 to 0.992.

Expert-like responses were infrequent in our dataset compared to responses providing

simpler, incomplete explanations of the systems presented in the question. For those stu-

dents moving from describing individual effects to multiple effects, their reasoning about the

mechanism behind the system indicates advanced systems thinking ability. Specifically,

students exhibit higher expertise in explaining changing water usage than discussing trade-

offs for such changing usage. This research represents one of the first attempts to assess the

links between foundational, discipline-specific concepts and systems thinking ability. These

text classification approaches to scoring student FEW Nexus Constructed Responses (CR)

indicate how these approaches can be used, in addition to several future research priorities

for interdisciplinary, practice-based education research. Development of further complex

question items using machine learning would allow evaluation of the relationship between

foundational concept understanding and integration of those concepts as well as a more

nuanced understanding of student comprehension of complex interdisciplinary concepts.
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Introduction

Many global problems are considered “wicked” in that
they integrate complex systems that are often studied in
distinct disciplines (Balint et al., 2011). To solve these

21st-century socio-ecological problems, students must instead
learn cross-cutting concepts across disciplines within inter-
disciplinary programs. The Next Generation Science Standards
(NGSS) identify crosscutting concepts as a framework to link
different science disciplines, providing a means for students to
link knowledge across fields to establish a cogent, scientifically-
based way of interpreting the world (National Research Council,
2012; NGSS Lead States, 2013). In environmental programs
within higher education, recent efforts are defining the key dis-
ciplinary ideas, concepts, practices, and skills embedded in
complex meaningful learning and implementing new curricula
with interdisciplinary frameworks (Global Council for Science and
the Environment, n.d.; Vincent et al., 2013). Frameworks that link
concepts across disciplines can include the Sustainable Develop-
ment Goals (SDGs; Education for Sustainable Development),
Resilience Thinking, the United Nations Principles for Respon-
sible Management (UN-PRME), and the Food-Energy-Water
Nexus (FEW Nexus) (Leah Filho et al., 2001; Martins et al., 2022).
Interdisciplinary approaches to curricula and course design rely
on content mastery and skill development to understand systems
interactions and higher-order thinking. With this shift toward
higher-level learning across interdisciplinary environmental and
sustainability (IES) programs, we need new assessments that elicit
complex student thinking and can be used to identify and cate-
gorize different levels of understanding, not just memorization of
facts (Laverty et al., 2016; J. W. Pellegrino et al., 2013; Underwood
et al., 2018).

Assessing crosscutting, interdisciplinary learning is challen-
ging, and often constructed responses (CR) (i.e., open-ended
questions) are used for assessing interdisciplinary connections
because student thinking and reasoning are more explicit com-
pared to multiple choice type questions; however, these CR
assessment items are challenging and time-consuming to design
and grade. One rapidly developing tool with the potential to
support this kind of assessment is text classification models,
which are machine learning (ML) algorithms and statistical
models that learn from and analyze data patterns. Due to the
challenges of assessing interdisciplinary learning, IES programs
provide a useful context for education research on the application
of these types of ML for studying complex CR assessment items.
Further, technology such as ML may help us evaluate these
complex formative assessments and provide an opportunity to
improve science teaching and learning (Harrison et al., 2023).
Often in science assessment, each individual model is specifically
developed for each question and response set in an iterative
process using human coding and model development and selec-
tion methods, making this process potentially very time-intensive
(Brew and Leacock, 2013). However, once a model is constructed,
it can be used to score many responses very quickly, thus
addressing the labor and time-intensive aspects of evaluated CR
questions to allow for big data research using those specific
questions and associated models. While this trade-off between
model development and model use is an important consideration,
the process of model development itself can be aided by several
considerations, which may speed development time and improve
the validity of the final model (Rupp, 2018). Thus a well designed
process for developing and evaluating both questions and models
is essential, although iterations throughout the process will always
be necessary.

Here, we report on a process of using human-scored responses
to construct ML-based text classification models for assessing CR
questions focused on the food–energy–water (FEW) Nexus. As

part of this focus on the model development process, we address
two research questions (1) Can machine learning models be used
to identify instructor-determined important concepts in student
responses? (2) What do our students know about the inter-
connections between food, energy, and water, and how have
students assimilated “systems thinking” into their constructed
responses about FEW?

Systems thinking as an example of cross-cutting concepts.
Systems thinking involves understanding the interdisciplinary
connections and relationships between associated components
within a system, rather than simply focusing on discrete concepts
(Meadows, 2008). The Global Council for Science and the
Environment’s (GCSE) draft proposal for key competencies in
sustainability higher education identifies systems thinking as a
core skill and includes increasing complexity across scales in their
definition as the foundation for strategic solution development
and future thinking (Brundiers et al., 2023). This level of
understanding typically falls on the higher levels of Bloom’s
Taxonomy of knowledge that include categories such as “apply”,
“analyze” and “evaluate” (Bloom and Krathwohl, 1956;
Krathwohl, 2002). Systems thinking is a key competency in STEM
education, both in discipline-specific and interdisciplinary rea-
soning (Blatti et al., 2019; Hmelo-Silver et al., 2007; Mambrey
et al., 2020; Momsen et al., 2022; Ravi et al., 2021; Redman et al.,
2021; Redman and Wiek, 2021), and is recognized as a core
competency by the National Science Foundation (NSF), the
National Academies of Sciences, Engineering, and Medicine
(National Science Foundation, 2020), and the US Next Genera-
tion Science Standards for K12 education (NGSS Lead States,
2013). Systems thinking was recently identified as a key compe-
tency by IES educators in higher education (Vincent et al., 2013),
where understanding complex natural and social systems is
applied and evaluated using systems thinking (Clark and Wallace,
2015; Varela-Losada et al., 2016).

While fostering systems thinking remains challenging, many
potential strategies exist to help anchor student learning.
Assessment of systems thinking is challenging and typically is
approached from the context of the subject matter (see Randle
and Stroink, 2018; Grohs et al., 2018; Gray et al., 2019;
Bustamante et al., 2021; Liu, 2023; Dugan et al., 2022 and
references within), which means there is not one agreed upon
definition or assessment for systems thinking. For example, Soltis
and McNeil (2022) have developed a systems thinking concept
inventory specific to Earth Science, but valid and reliable
approaches for measuring learning gains associated with systems
thinking more broadly or in other applications are currently
lacking. However, within the field of interdisciplinary environ-
mental programs, there is a widely accepted definition of systems
thinking from Wiek et al. (2016) for complex problem-solving for
sustainability and commonly accepted concepts associated with
systems thinking from Redman and Wiek (2021) (Box 1) and the
2021 NAS report on Strengthening Sustainability Education.
Assessing systems thinking can be thus understood in the context
of how it is integrated within a particular concept or set of
concepts.

The FEW Nexus provides a concrete concept integration
framework for developing the skill of systems thinking that
applies across many interdisciplinary environmental programs as
it connects complex environmental processes, management,
policy, and socioeconomics of FEW resources (Smajgl et al.,
2016). The FEW Nexus is a coupled systems approach to research
and global development that accounts for synergies and trade-offs
across FEW resource systems (D’Odorico et al., 2018; Leck et al.,
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2015; Simpson and Jewitt, 2019). For teaching and learning
contexts, the FEW Nexus provides a scaffold for incorporating
systems thinking and sustainability concepts into courses and
across curricula. With global resource consumption outpacing
supply, the FEW Nexus is a global priority area for research (Katz
et al., 2020; Simpson and Jewitt, 2019). Understanding the FEW
Nexus and the global focus on FEW research and decision-
making makes it an ideal concept for exploring complex systems
content in introductory IES courses, as FEW resource systems are
visible to learners in their daily lives. Students need to develop
their systems thinking to fully grasp the importance of the FEW
Nexus and how it is impacted and impacts other systems, e.g.,
climate change, resource scarcity (Brandstädter et al., 2012).

The need for tools to assess interdisciplinary systems thinking.
Given the complexity of the relationships within the FEW Nexus
and the relatively recent expansion of college-level IESs that
incorporate FEW Nexus concepts, assessments that target these
more advanced systems-level relationships are lacking. Assessing
student conceptual understanding typically requires constructing
valid and reliable tests, such as concept inventories (CIs) (Hes-
tenes et al., 1992; Libarkin and Anderson, 2005; Libarkin and
Geraghty Ward, 2011; Soltis and McNeal, 2022; Stone et al., 2003;
Tornabee et al., 2016). Disciplinary CIs are traditionally used to
assess learning using close-response questions (i.e., multiple
choice). Existing CIs are inappropriate to assess complex skill
development in IESs for two reasons: (1) IESs are inter-
disciplinary, and existing CIs do not capture the range of concepts
typically covered in IES curricula, and (2) Close-ended questions
(multiple choice) limit the ability to dissect higher level learning,
such as systems thinking. An interdisciplinary, open-ended
environmental CI could address these challenges; however, CR
or open-ended assessments are labor-intensive to evaluate and
can be very subjective for instructors to score. Artificial intelli-
gence (AI) attempts to mimic human intelligent actions, includ-
ing understanding language via Natural language processing
(NLP) and classifying artifacts via ML. In the case of CIs, these
approaches (NLP and ML) have been used to classify student
written assessments and show promise for use with the first
interdisciplinary environmental CI that enables assessment of
deeper skill development (i.e., systems thinking, cause and effect,
tradeoffs) while alleviating the burden of scoring CR questions.
Few studies report on the use of interdisciplinary assessments in
STEM (Gao et al., 2020), and this dearth of assessment tools also
leads to little research about AI-based applications for such
assessments (Zhai et al., 2020a, 2020b). The work presented here
is a start towards developing assessments (like CIs) that use CR
for more complex concepts, such as systems thinking and con-
necting concepts across disciplines. Here, we focus on FEW as it
is a system that incorporates concept integration that connects
environmental processes, management, policy, and socio-
economics of FEW resources. There is a need for education
research and collaboration in the FEW Nexus, as evidenced by the
recently funded National Collaborative for Research on Food,
Energy, and Water Education (NC-FEW), of which author
Romulo is a member. FEW concepts are commonly covered in
introductory environmental courses (Horne et al., 2023), and this

project will focus on IES introductory courses for this process of
development.

Text classification: using machine learning processes for
interdisciplinary assessment. AI has been part of computer
science for a number of decades, with the goal of having com-
puters mimic human intelligence in performing complex tasks. AI
utilizes approaches from several different computational subfields
in computer science depending on the intended use or task
performed. NLP is a branch of computer science that is interested
in how computers can identify, understand, and support human
language. NLP has become foundational for many AI applica-
tions, including speech recognition, language translation, and
chatbots. NLP has been incorporated into education contexts in a
variety of ways, including scoring of student texts, in both sum-
mative and formative uses (McNamara and Graesser, 2011;
Shermis and Burstein, 2013), intelligent agents for interactive
feedback (Chi et al., 2011), and customization of curricula
materials and assessments (Mitkov et al., 2006). NLP has been
applied in science assessment in a variety of ways. For example,
NLP coupled with ML techniques has been used to develop
predictive scoring models (Nehm et al., 2012), as an approach to
explore sets of student responses (Zehner et al, 2015), and to
assist in developing coding rubrics (Sripathi et al., 2023). Here, we
focus on using NLP as part of text classification approaches to
categorize student CR to assessment items (Dogra et al., 2022).
Specifically, these text based CRs are short in length but rich in
disciplinary content and common in STEM assessment practices
(Liu et al., 2014). Using approaches from AI, these CRs can be
automatically categorized according to coding rubrics that are
developed with assessment items (Zhai et al., 2021a).

Machine learning has been described as a “computer program
that improves its performance at some task through experience”
(Mitchell, 1997). “Experience” here refers to some information
(e.g., outcomes, labels) available to the program from which it can
“learn.”Much of the recent work on automated scoring of student
CR has utilized supervised ML approaches, which use text
representations from NLP along with assigned human codes as
input for text classification models (Zhai et al., 2020b). Generally,
in supervised ML, these data are used to “train” ML algorithms in
order to develop a scoring (or classification) model. Once the
scoring model is developed, the model can be “tested” by
comparing the consistency of human and machine-assigned
codes on subsets of the same (or new) data (Jordan and Mitchell,
2015; Williamson et al., 2012). Various ML scoring approaches
have been used to evaluate student CRs in science; these reports
cover a range of grade levels and disciplinary topics (Jescovitch
et al., 2021; Liu et al., 2014; Nehm et al., 2012; Wilson et al.,
2023), such as the water cycle in secondary science (Lee et al.,
2021). These studies and others have identified important
considerations when designing assessment items, rubrics, and
text classification models for evaluating responses to science CR
assessments. Using these ML approaches in automated assess-
ment scoring, important student ideas can be recognized by
machines from authentic student work, as opposed to predefined
answers. This is important to identify these key ideas as actually
expressed by students. Thus a collection of student responses are

Box 1. | Systems thinking in the context of sustainability (Redman and Wiek, 2021)

Ability to collectively apply modeling and complex analytical approaches: (1) to analyze complex systems and sustainability problems across different
domains (environmental, social, economic) and across different scales (local to global), including cascading effects, inertia, feedback loops, and other
system dynamics; (2) to analyze the impacts of sustainability action plans (strategies) and interventions (how they change systems and problems).
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necessary to train the ML model and to represent the range of
possible answers (Shiroda et al., 2022; Suresh and Guttag, 2021).

Methods
Overall, we follow a modified question development cycle
(Urban-Lurain et al., 2015) (Fig. 1) that integrates question,
rubric, and text classification model scoring as part of an inte-
grative formative assessment development and validation process.
Broadly, this approach uses linguistic feature-based NLP methods
(Deane, 2006) to extract linguistic features from writing and then
uses those extracted features as variables in supervised ML
models that predict human raters’ scores of student writing.

In the first stage of the cycle, we begin with Question Design
(top) to target student thinking about important interdisciplinary
constructs. Data Collection is typically done by administering the
questions online to a wide range of students within appropriate
courses and levels to collect a diverse range of responses.
Exploratory analysis combines automated qualitative and quanti-
tative approaches to the student-supplied text, including NLP, to
explore the data corpus. For example, we use text analysis software
to extract key terms and disciplinary concepts from the responses
and look for patterns and themes among ideas. These terms,
concepts and themes are used to assist Rubric Development. We
use rubrics, both analytic and holistic, to code for key disciplinary
ideas or emergent ideas in responses. These coding rubrics are
subsequently used during the Human Coding of student responses
in which one or more experts assign codes or scores to student
responses. During Confirmatory Analysis, we develop text classi-
fication models by extracting text features from student responses
using NLP approaches. These text features are subsequently used
as independent variables in statistical classification and/or ML
algorithms to predict expert human coding of responses, as part of
supervised ML. In this stage, the performance of the ML model is
measured by comparing the machine-assigned score to the
human-assigned score. Once benchmarks for sufficient perfor-
mance are achieved (Williamson et al., 2012), the model is saved
and used as a Predictive Model. These Predictive Models can be
used to completely automate the scoring of a new set of responses,
predicting how experts would categorize or score the data. Often,

results from one or more stages of the cycle are used to refine the
assessment question (dashed arrow), rubrics, and/or human
coding. The overall process is highly iterative, with feedback from
each stage informing the refinement of other components. Fur-
ther, the iterative cycle allows considerations for automated
scoring to be addressed throughout the cycle, providing oppor-
tunities to collect and examine valid evidence (Rupp, 2018).

Concept identification. In previous work, we performed content
analysis on IES course materials collected from 30 institutions to
identify shared learning objectives across IES courses and pro-
grams (Horne et al., 2023). We also conducted ~100 semi-
structured interviews with undergraduates enrolled in the 10 IES
programs used for data collection in this study. From these
interviews, we found that students have a broad range of
knowledge regarding FEW concepts (Horne et al., 2024; Man-
zanares et al. in review). We, therefore, sought to create assess-
ment prompts that allowed us to explore a spectrum of student
responses about the FEW Nexus. Informed by the previous
results of the content analysis (Horne et al. 2023) and student
interviews (Manzanares et al. in review), we identified two focal
areas for assessment item development related to systems
thinking (Box 1): (1) Identifying sources and Explaining Con-
nections between FEW systems, and (2) Evaluating outcomes and
Comparing Trade-offs between FEW systems (e.g., water used for
food is water not used to create energy). We note that these
assessment item topics align with NGSS standards of Systems &
System Models (NGSS Lead States, 2013), since students must
identify multiple boundaries, components, and connections
between components, and they must predict outcomes from
alterations in components or connections. We incorporated
Bloom’s Taxonomy, a classification system for identifying skills
that we intend our students to learn (Krathwohl, 2002), to help us
scaffold our questions. For example, we recognize that students
first must be able to identify sources of FEW and make con-
nections to their environment (Table 1: Sources of FEW and
connections: reservoir) before they can understand the trade-offs
of gaining a local energy source while losing land for crops (Table
2: Trade-offs systems: biomass energy production). As such we
have created questions that align with varying levels of student
knowledge regarding the FEW Nexus.

Assessment Items. We developed multiple assessment items
targeting comprehension of Identifying Sources of FEW and
Connections and Trade-offs of FEW Systems using different phe-
nomena (e.g., dams, biomass energy) commonly encountered in
IES courses (Table 1). Items about important phenomena in IES
courses were presented in relevant disciplinary context and
broadly focused on one of the three main foci identified pre-
viously. For example, the assessment item about reservoirs is
designed to have students identify sources of water and energy
usage, then explain how these usages may be connected (Identi-
fying sources of FEW, Connections between FEW systems). Items
were structured to contain several sub-parts or prompts to better
elicit student thinking, each of which was designed to assess a
specific construct. For example, in Table 1, parts A and B of the
“Sources of FEW & Connections: Reservoir” item was designed to
assess student's ability to identify relevant sources of energy and
water resources, while the last sub-question assesses how students
understand connections between these sources. Thus, many of
these items are multi-dimensional, as they require students to
integrate disciplinary knowledge and crosscutting concepts.

Data collection. Higher education institutions were invited to
participate in this research from the existing connections of the

Fig. 1 A Question Development Cycle describes the general process of
developing assessment items and associated predictive machine learning
models. Adapted from Urban—Lurain et al. (2015), each box represents a
stage of the process beginning with Question Design with outputs from one
stage being used in subsequent stages, as indicated by solid arrows. A
predictive model in the top, right corner is the ultimate goal of the cycle, in
which a machine learning model can accurately predict classifications of
new responses. A dashed arrow represents possible iteration(s) of the
cycle depending on the outcomes of previous stages.
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PIs and via an email to the Association of Environmental Studies
and Sciences Listserv. Ten institutions were purposefully selected
to represent the three primary categories of 4-year colleges
according to the Carnegie Classifications of Institutions of Higher
Education (Carnegie Foundation for the Advancement of
Teaching, 2011) and the three approaches to IES curriculum
design outlined by a representative survey of higher education
institutions (see Vincent et al., 2013 for further description of the
three curricular designs in IES program). The IES program cur-
riculum research conducted by the NCSE found statistical
alignment of all undergraduate degree programs in a large,
nationally representative sample with one of the three broad
approaches to curriculum design (Vincent et al., 2013). Our
sample includes representation from baccalaureate colleges (4),
master’s college and universities (3), and doctoral/research uni-
versities (4) and programs/tracks representative of the three
approaches to curriculum design—emphasis on natural systems
(7), emphasis on societal systems (6), and emphasis on solutions
development (4). By selecting programs that represent different
types of four-year institutions and the three empirically deter-
mined curriculum design approaches, we ensured the inclusion of
course materials representative of the diversity of the IES field.
We focus on four-year programs for the development of the

NGCI due to resource constraints and the lack of equivalent
research on community college IES curriculum design that would
allow us to select representative programs. Additionally, com-
munity college IES degree programs are designed to either
articulate with 4-year degree programs or to prepare students for
immediate employment (Vincent et al., 2013).

Student responses (n= 698) were collected from introductory
IES courses during Fall and Spring semesters from Spring 2022
through Spring 2023 by having students complete the assessment
questions pre- and post-course discussion of the FEW Nexus.
Demographic information revealed 57.45% identified as female,
4% as non-binary, and the remaining 38.55% as male. Racial and
ethnic identities reported were 73.67% white, 5.3% Asian, 4.7%
Hispanic/Latino/latinX, 1.78% black or african american, 1.38%
american indian or Alaskan native and a majority choosing more
than one identity (11.79%). We then added the items in a
Qualtrics survey and administered the survey to over 400 IES
undergraduates from seven post-secondary institutions across the
United States to collect student responses (UNCO IRB#158867-
1). Responses were then de-identified for coding to create training
and testing data for machine learning.

We surveyed the eight IES instructors who had surveyed their
students about the pilot items to collect content validity evidence

Table 1 Constructed response questions.

Assessment Item (Question) What the responses tell us about targeted learning outcomes

Sources of FEW & Connections: Reservoir
(a) A reservoir like the one pictured above is an artificial lake that stores water.
What types of energy does the water in this reservoir possess?
(b) Explain how the kinds of energy listed in your previous response could be used
for food production by nearby farmers.

These responses tell us:
(1) What students understand
about how water can create energy
(2) The linkages students explain between water, energy, and food
resources

Trade-offs of FEW systems: biomass energy production
Biomass energy production involves growing certain crops and converting them to
energy. Corn, in the form of ethanol, is a common source of biomass energy. To
increase its energy independence from natural gas, your community decides to
convert half of their existing agricultural bean fields to corn biomass crops that will
eventually provide energy to the surrounding area. You have taken an
environmental course and know that burning natural gas has a greater energy
return than burning biomass (e.g., one unit of natural gas requires less energy to
produce than one unit of ethanol biomass).
(a) You realize that corn requires more water to produce than beans; much of
your irrigation water comes from a nearby river and limited rainfall. How would
you expect the area’s water use to change as a result of this shift from agriculture
to biomass production?
(b) Trade-offs describe the compromise between positive and negative outcomes
of a decision. A trade-off results in something decreasing in return for gains in
something else. Describe the trade-offs to food, energy, and water systems in
switching from bean farming to biomass (corn) farming

These responses tell us:
(1) Student capacity to evaluate predictions based on their analysis
of cause and effect relationships
(2) Student capacity to understand trade-offs in connection to their
analysis and evaluation of cause and effect relationships

Table 2 Analytic coding rubric for trade-offs systems: biomass energy production.

Part A rubric Part B rubric

Bin Brief description Bin Brief description

A Increased water consumption A1 Less food produced
B1 Water scarcity/not enough water total A2 More land converted to meet food needs
B2 Generally, less water/decrease in water available B1 More water use
B3 Less water for other things B2 Less water available
B4 Change in human behavior in water use C1 Energy produced (corn creates biomass energy)
C Water prices change C2 Energy return on investment (ethanol is less efficient/lower EROI than other sources)
D Changes to river C3 Renewable energy, more sustainable energy, lower environmental impact source of

energy
E Impacts to biodiversity/wildlife/ecosystem
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and feedback on question structure. During this survey
instructors were asked to both respond to the question item as
if they were a student completing the assignment and then, in a
separate survey, instructors were asked questions about the
question items in the context of their courses. Instructors
indicated that assessment phenomena (e.g., food vs. energy
production, and energy flows) were typically covered in their
introductory IES courses and the multi-part question structure
was accessible to student learners.

Rubric development. Rubric development began by reviewing
examples of previously published rubrics that were used in similar
assessments and intended for use with automatic scoring (Jes-
covitch et al., 2021; Sripathi et al., 2023). We agreed upon a scale
that would best represent the students’ varying levels of knowl-
edge (Table 2). We created each rubric by first analyzing the
range of student answers we had received from the different
participating institutions. During this initial review, we used an
inductive approach and read student answers to identify common
themes that revealed student knowledge regarding food, energy,
and water systems and their relationships to each other, to other
natural and to human systems. During this process we also re-
examined our assessment items and the intended goal(s) of the
item and also reviewed instructor responses as examples of
“expert responses” and alignment with what types of responses
students were providing. This was to ensure that students
understood the questions the way we intended and to determine
if our questions and, therefore, rubrics would need further
alterations. To fully capture students’ knowledge, the majority of
the NGCI questions needed to have separate rubrics for each sub-
question, i.e., sub-questions A–C would each have their own
rubrics. At this stage in rubric development, we relied on the
previously acquired instructor responses to define an expert-level
answer. Instructor responses were similar, and where there were
divergences we identified commonalities across responses. We
then compared instructor responses to student responses to create
a range of scores reflecting novice to expert knowledge.

We designed dichotomous, analytic rubrics with parallel
structures for each node of the FEW Nexus. Each response is
categorized based on the ideas it contains, with each response
receiving a zero or one score for each code based on the presence
or absence of the targeted ideas. We provide an example rubric
for parts of the Trade-offs of FEW Systems: Biomass Energy
Production question item (hereafter referred to as “Biomass
question item”) in Table 2, and the other rubrics are available in
the Supplemental Methods file.

To determine the level of expertise a student displayed in their
response, we defined a certain combination of bins to receive a
holistic score of one through four (Table 3). For example, the
following student response to Biomass Part A is considered an
expert level response (coded as 4) because it contains the
following ideas: water usage will increase (bin A) and there will be
changes to the local river (bin D). The student therefore makes
two connections between energy and water (water usage
increasing, impacts to the river).

While the turn to biomass is a more sustainable option, the
use of fresh water is going to increase drastically to be able
to sustain such a change to the energy source. More than
likely the local river will have drastic impacts from such
dependency upon it especially if it is a dry season for rain.

Human coding. After the development of the initial rubrics, we
iteratively refined the rubrics over several rounds of human
coding. During each iteration, two or three researchers separately
assigned scores to a set of 30 randomly selected student respon-
ses. Each student response received a 0 or 1 for each bin in the
rubric for the absence or presence of the corresponding theme in
the response. After scoring the set of 30 responses separately, the
researchers compared assigned scores and calculated percent
agreement. A percent agreement of at least 85% per bin was
considered the acceptable level of agreement between human
coders to move forward with coding the rest of the dataset
independently (80% agreement is acceptable per Hartmann,
1977). The scorers met to discuss agreement for each code; in
cases of high percent disagreement, the rubric was revised to
improve clarity on those codes. During these discussions, deci-
sions about removing or revising codes with very low agreement
or low frequency in the dataset were also made. For example, a
reservoir code, “Energy needed for food production or irrigation”
originally lacked clarification. It was then further described for
coders with the addition of, “Irrigation minimum: POWERING
the transport/pumping of water, but not implied movement of
water without tying to energy. When to code with machinery:
machinery+ either harvest, produce, or process food.” Specifi-
cities like this helped improve coder agreement.

After revising the rubric, a new sample of 30 student responses
was compiled, which were independently scored by two to three
researchers against the bins with previously high disagreement.
This iteration of separate scoring, calculating percent agreement,
and revising the rubric continued until scorers either reached 85%
agreement for each code in the rubric or resolved remaining
disagreements through discussion until consensus was reached (5
iterations for the Biomass question item and 4 iterations for the
Reservoir question item). After reaching a consensus for the
rubric, all student responses were divided between two members
of the research team and were scored independently. A total of
346 responses were scored for the Reservoir question item and
483 responses for the Biomass question item (Supplemental
Tables 5 and 6, respectively).

Text classification model development. We employed a super-
vised ML text classification approach to assign student written
responses a score. During our ML process, each individual stu-
dent response was treated as a document and the bins in each
scoring rubric were treated as classes (Aggarwal and Zhai, 2012).
The predicted output of a ML model is a dichotomous outcome
of whether a response would be categorized in each rubric bin or
not. We decided to combine student responses for both parts of
the Sources of FEW & Connections: Reservoir question item

Table 3 Expertise level determination for Biomass Question Item Part (a).

Expertise level Components Example

4 A
+
(B, D, or E)

While the turn to biomass is a more sustainable option the use of fresh water is going to increase drastically to be able to
sustain such a change to the energy source. More than likely the local river will have drastic impacts from such dependency
upon it especially if it is a dry season for rain.

3 A or B There will be less water because farmers are needing it to sustain the corn.
2 C Prices for water will go up.
1 None I expect the area’s water to not be used up as fast from the shift of agriculture.
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(hereafter referred to as “Reservoir question item”) into a single
text response for text classification model development for two
reasons. First, the final coding rubric for each part of the question
was identical, although certain ideas/bins were expected to be
more frequent in one part than the other. Second, the human
coding team adopted a similar approach when assigning codes:
regardless of in which response part the student included the idea,
the human coders marked the code as “present” for the response
as a whole. For the Biomass question item, student responses to
each part of the question were kept separated during model
development since different parts have different coding rubrics
(see Table 2).

Text features (single or strings of words) were extracted as
n-grams from each response using NLP methods. We used a
default set of extraction settings and processing, including
stemming, stop word removal, and number removal, to generate
a set of text n-grams. The computerized scoring system then
generated predictions on whether each given document was a
member of each class (i.e., rubric bin) using the extracted n-grams
in a bag-of-words approach as input variables in a series of ML
classification algorithms. To generate these predictions, we used
an ensemble of eight individual machine-learning algorithms
(Jurka et al., 2013) to score responses to each question. The
predictions of the set of individual algorithms are then combined
to produce a single class membership prediction for each
response and rubric bin. The text classification, including the
ensemble ML model, was generated using a 10-fold cross-
validation approach using the Constructed Response Classifier
(CRC) tool (Noyes et al., 2020). The CRC has been used
previously to score short, concept-based CR even in complex
disciplinary contexts and is described in more detail elsewhere
(Jescovitch et al., 2021). For evaluation, we compared the
machine-predicted score from the ensemble for each response
in each rubric category to the human-assigned score for each
response.

For each of the models developed in this study, we optimized
model performance based on the training set by starting with a
default set of extraction parameters, then adjusted several other
common model parameters (e.g., n-gram length, digit removal)
and retrained classification models to evaluate model perfor-
mance. This is what we describe as exploratory, basic feature
engineering, and we applied a similar approach to every model
for each rubric bin. We used the human-coded data for Reservoir
and Biomass questions, and we removed several responses with a
missing value for a human-assigned score. We used 345 coded
student responses for the Reservoir question item, 480 for the
Biomass question item Part A, and 466 for Part B as our initial
training and testing sets. During this and further iterative rounds,
we used common benchmarks of Cohen’s kappa as our targets
(kappa > 0.6 as substantial; kappa > 0.8 as “almost perfect” (Nehm
et al., 2012). Cohen’s kappa is a measure of agreement between
raters (in this case, human and machine) that takes into account
chance agreement and is frequently reported in evaluating the
overall performance of ML applications to science assessments
(Zhai et al., 2021b). We further considered evaluation metrics of
accuracy, sensitivity, specificity, F1 score and Cohen’s kappa to
guide iterations of model development and to evaluate the overall
performance of models once a benchmark was achieved (Rupp,
2018). It is noted that while Cohen’s kappa serves as the primary
metric for reporting our model’s overall performance, we also
routinely consider other evaluation metrics during model
building and evaluation. The assessment of these metrics should
not be construed as an all-encompassing validation, as their
effectiveness is contingent upon the distribution of scores
assigned by humans and the quality of those human scores
(Williamson et al., 2012). In our specific context, we encountered

a challenge with the disproportionate representation of certain
score points, particularly in some specific analytic rubric bins
where cases scored as 1 were significantly fewer than 0. Such low
cases of positive occurrences in the training set led to decreased
sensitivity metrics for those rubric bins. In some cases (e.g.
Reservoir B3), the overall model still exhibited an acceptable
overall performance metric and an acceptable F1 score.

Analysis of model outputs and iterative model development.
After performing the initial model development and examining
the basic feature turning settings, we examined the outputs of the
model for low-performing rubric bins, including model evalua-
tion metrics and groups of responses that showed disagreement
between human and machine-assigned scores. We hoped to find
possible ways to adjust the model parameters and/or training set
of data to improve model performance in subsequent iterations.
For example, we collected responses with disagreement in
assigned human and machine scores. We examined the false
negative and false positive predicted responses (compared to the
human coding) in a rubric bin and performed conventional
content analysis to try to identify words, phrases, or ideas that
were common among these misscored responses (Hsieh and
Shannon, 2005). We also reexamined the criteria of coding rub-
rics with low-performing models to ensure the criteria clearly
identify important disciplinary ideas and to confirm the original
assigned human codes to responses (Sripathi et al., 2023). The
coding team met to discuss the results of miscode analysis and
changes to target during iterative cycles, including possible
changes to the rubric, best approaches to tuning model para-
meters consistent with assessment items and student ideas, and/
or adjusting training sets.

The insufficiency of educational data (Crossley et al., 2016;
Wang and Troia, 2023), which often suffers from limited
availability of data for training ML models as compared to other
sectors, and the observed lack of diversity in undergraduates’ CR
(Jescovitch et al., 2021) have long posed challenges for
educational researchers. These issues present difficulties for ML
algorithms in discerning patterns effectively and reliably
identifying a broad range of student ideas. To address these
challenges, we have adopted a set of extended model tuning
strategies, which have been both theoretically and empirically
validated (Bonthu et al., 2023; Jescovitch et al., 2021; Romero
et al., 2008). We employed these extended strategies beyond our
exploratory, basic parameter tuning (described above). The
extended strategies we employed are:

Additional feature engineering. In certain instances, we imple-
mented two advanced feature engineering techniques, often
arising to address patterns identified during our miscode analysis.
These techniques encompassed (1) substituting specific words
with synonyms and (2) extending N-gram analysis to more
complex levels, including trigrams (three words combined into
one feature) and quadgrams (four words combined into one
feature).

Data rebalancing. Training sets that heavily represent only certain
types of responses can impede model training; therefore, we
applied data rebalancing strategies to address situations where the
dichotomous coding significantly favored one category (over
three times). When our dataset exhibited such imbalances, we
implemented data rebalancing techniques by removing responses
associated with the most frequently occurring codes to achieve a
more equal distribution of the dichotomous codes. In our data
set, cases coded as 0 often outnumbered those coded as 1. Since
cases coded as 0 sometimes failed to provide meaningful patterns
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for ML algorithms to learn from, we selectively removed excess
cases coded as 0 to equalize or enhance the distribution (i.e.,
reducing the ratio to equal to or less than two times difference).

Dummy responses. For datasets characterized by a balanced dis-
tribution of dichotomous scoring codes, yet still yielding low
performance metrics, another extended strategy was devised. In
this strategy, we initially ensured dataset balance, saved cases with
human rater scores, and ML-predicted scores and outputs of the
CRC tool after the initial round of analysis. Subsequently, we
filtered out responses that were incorrectly classified, identified by
a misalignment between human and ML predicted scores. These
misclassified cases underwent further qualitative examination,
with notes indicating which phrases and segments included in (or
absent from) the response were indicative of the critical concept
targeted by the rubric. We then generated new cases (i.e., dummy
responses), which only replaced the identified segments of
responses with new words or phrases, without altering the sen-
tence’s underlying meaning. This procedure offers advantages,
including mitigating overfitting concerns in which the model is
only effective on responses very similar to the training set and
augmenting the training dataset’s size. The dummy responses
were integrated into the overall dataset solely for model training
purposes. To derive the final performance metrics of the classifier
model, the dummy responses were subsequently removed for
model evaluation calculations.

Merging rubric bins. In some instances, despite the explicit indi-
cation in the original rubric descriptors that certain ideas are
intended to be scored separately as they are designed as mutually
exclusive during rubric development, some machine models faced
challenges in effectively identifying these subtle textual patterns.
Collaborative discussions with expert raters led to a consensus
among researchers to combine these rubric bins. This decision
was informed by empirical investigation revealing overlapping
content, and the re-coding of these bins to a single code / score to
enhance the model’s performance, aligning with practical con-
siderations in the procedure.

It is important to note that these strategies can be combined or
used consecutively as needed. Nevertheless, the initial round of
analysis consistently adhered to the default and basic settings of
the CRC tool, utilizing the parameter options provided therein.
Further details on the application of these approaches to
individual items and rubric bins, along with illustrative examples
of dummy response creation, can be found in the supplementary
materials.

Results
Here, we report on the use of ML-based text classification models
to assess CR questions focused on the FEW Nexus. This section is
organized by the research question, beginning by describing the
successes and challenges in applying ML to score student CR to
questions about sources of FEW resources and trade-offs asso-
ciated with biomass energy production. We then examine the two
questions related to reservoirs and biomass to describe FEW
connections in student CR and co-occurrences across responses
to understand student system thinking capacities. Co-occurrence
suggests evidence of systems thinking as multiple FEW systems
are interacting simultaneously in student responses.

Research Question (1): can natural language processing be
used to identify instructor-determined important concepts in
student responses? We developed a total of 11 text classification
models for the Reservoir item, one each for the 11 “bins” con-
tained in the coding rubric (Table 1). These eleven models had a

range of overall performance metrics (Table 4), ranging from
Cohen’s kappa of 0 to 0.957 and accuracies ranging from 0.892 to
0.992. Only one model (D2) failed to detect positive cases, which
resulted in an overall Cohen’s kappa= 0.000. This was due to a
severe data imbalance in the human-assigned codes in this rubric
bin, meaning that there were very few positive codes to responses
assigned by humans in this bin. All other ten models met
acceptable performance levels as measured by Cohen’s Kappa
values (kappa > 0.6 as substantial; kappa > 0.8 as “almost perfect”
(Nehm et al., 2012)), with many models exhibiting “almost per-
fect” agreement with human assigned codes. We note that most
models were tuned to this performance using only basic feature
engineering manipulations, as described in the methods. There
were also a few bins that met our target threshold of 0.6 only after
employing extended strategies (e.g., employing dummy responses
for A2), and for one bin (B4), we employed data rebalancing in
tuning the model. The model for D2 showed high accuracy but
decreased performance on other model metrics due to a severe
imbalance of human code occurrence.

One result that emerged from discussions during iterative
model development for the Reservoir question item was the
similarity of codes A2 (producing hydropower) and B4 (energy
transformations). Although we were successful in developing text
classification for each code separately, the two models did require
slightly different tuning strategies. When examining miscoded
responses, the coding team noticed similar patterns in the groups
of correctly and miscoded responses for each bin. Human coders
reflected that during the coding of the responses, students
expressed these ideas similarly, and it was, therefore, sometimes
difficult to distinguish when students were explaining hydro-
power versus describing transformations of energy (e.g., moving
water turning turbines). Thus, these two codes (A2, B4), which
were initially intended to capture a specific understanding of
hydropower and a more general description of energy transfor-
mations, ended up being more similar than intended in the
context of this item. One potential way forward for text
classification is to combine the A2 and B4 codes into a single
code and redevelop a text classification model to recognize the
single code.

We developed 15 text classification models (eight models for
Part A; seven models for Part B) to detect student ideas in
response to the Biomass question item (Table 5). Overall, for this
item, models demonstrated lower performance metrics than
models for the Reservoir question item. For the Biomass question
item, no model achieved a level of almost perfect agreement (as
measured by Cohen’s kappa value of >0.8), although the majority
still achieved acceptable agreement with human scores. Due to
the reduced maximal performance, these fifteen models had a
narrower range of overall performance metrics than models for
the Reservoir question item, ranging from Cohen’s kappa of
0–0.674 and accuracies ranging from 0.755 to 0.991. Correspond-
ingly, these Biomass models had a much broader range of
sensitivity, specificity, and F1 score metrics too. This reduction in
performance metrics is likely due in part to the target of the
Biomass item: trade-offs around FEW. Although the item still
centers on the FEW Nexus, this item allows students to respond
in numerous ways about any number of possible trade-offs
between any of the vertices. Thus, this item allows for a much
wider possible answer space. As a result, a few models failed to
reach the benchmark performance metrics (e.g., B2 in Part A),
despite having frequent occurrences of both codes. This also
suggests that the text complexity of expressing these ideas or the
range of possible ideas in these responses is difficult for these text
classification models to reliably identify. Although we attempted
extended strategies on models for many of the Biomass models,
we report on a few of the bins and attempts as exemplars of this

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03499-z

8 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2024) 11:1033 | https://doi.org/10.1057/s41599-024-03499-z



work, or findings that were similar between different bins. We
provide more detail on applied strategies for each model in the
Supplemental Materials.

The model for B3 code in Biomass question item Part A
showed very low-performance metrics despite having a fair
number of positive cases. The poor model performance is likely
reflective of the range of student ideas covered by this rubric bin:
a decrease in water availability for other uses (here, “other uses”
means outside the context of bean and corn agriculture given in
the question). As such, there is a wide range of possible other uses
students could suggest, such as drinking water, home water use,
and water for other crops. The broad range of acceptable answers
was easy for humans to code, but difficult for the model to detect
the underlying similarity. Although we tried some extended
strategies for model iterations, these had little effect on overall
model performance. During iterative rounds of model develop-
ment, we decided to merge two codes, B3 and B4, since they both
identified similar ideas, about less water available for other things
and changes in human behavior due to less water. During our
review of miscoded responses by the model, we noticed a number
of miscoded responses were somewhat borderline cases of human
code assignment between the two bins B3 and B4, with responses
often implying or vaguely mentioning effects on community
usage of water, without being explicit the change in use or
behavior. For example, the response, “Since this is a place of
limited rainfall, and the source of water is coming from the river I
would expect that water use for the community may need to be
diverted more towards the crops, and less towards other measures
such as household use.” was coded positive for B3 by human
coders but miscoded as missing B3 by the model. After merging
these two codes into a single code and model, the performance of
the overall model for the merged code was significantly improved
for B3 and slightly decreased for B4 (see Table 5). After merging
these bins into a single model, borderline responses, such as the
example, were correctly classified by the model.

Similarly, the initial classification model for C1 in Biomass
question item Part B failed to meet performance benchmarks
even though student responses were nearly equally distributed
between positive and negative cases, and we tried several
extended strategies to improve model performance. However,
the re-examination of coding rubrics for C1 and C2 presented an
opportunity to recombine coding criteria as part of the iterative
process of using model outputs to iterate on items and rubrics.
The rubric was originally designed to identify student ideas about

the production of energy (C1), but not when used in conjunction
with trade-offs with other energy sources or energy return on
investment (C2). After several rounds of model iteration and
discussion with the coding team, we decided to recode the
original dichotomous rubric bins C1 and C2 as a single, multi-
class code (i.e., a holistic coding rubric, with levels as 0, 1, or 2).
This preserved the exclusivity of these two codes (C1 and C2 were
intended to be mutually exclusive) while encoding the exclusive
classes in the model training set. Making this a single, multi-class
prediction increased the overall performance of the model, above
the performance for the separate, binary models made for the
original rubrics.

Research Question (2): what do our students know about the
interconnections between food, energy and water, and how
have students assimilated “systems thinking” into their con-
structed responses about FEW? Here we apply two different
strategies for defining and evaluating student responses as novice
to expert. To evaluate student knowledge about interconnections
and how they have assimilated “systems thinking” into their
constructed responses about FEW, we calculated the co-
occurrence of codes. Level of expertise for the Reservoir ques-
tion item is approximated by co-occurrence of the codes, and
level of expertise for the Biomass question item is calculated by
the code combination provided in Table 3.

Sources of FEW and connections: reservoir question item. We
examined the predicted codes for each response to the Reservoir
item to look for co-occurrence of codes in student responses. This
can help identify connections students are making between FEW
vertices, since the item prompts students to make these connec-
tions. For this analysis, we collapsed individual bins in Table 6 for
the Reservoir rubric by grouping letter codes (e.g., A1 and A2
together as A bin), since these groupings indicate similar themes
(A codes refer to hydroelectricity, B codes refer to energy pro-
duction, C codes refer to use of energy; Table 1 in Supplemental
Methods).

Responses frequently included ideas from A codes with ideas
from C codes, indicating the same response connected
generating hydropower to uses of energy for agriculture or
infrastructure. The C codes also commonly occurred with the B
codes, showing students explained connections between types of
energy and uses of energy in agriculture or community resource
use. D codes (uses of water) were the least frequently coded;

Table 4 Performance measures of automated classification models for reservoir question item.

Measures A1a (N= 345) A2b (N= 417) B1a (N= 345) B2a (N= 345) B3a (N= 345) B4c (N= 208)

n (0, 1)= 133, 212 n (0, 1)= 259, 158 n (0, 1)= 225, 120 n (0, 1)= 270, 75 n (0, 1)= 321, 24 n (0, 1)= 132, 76

Accuracy [95% CI] 0.919 [0.885, 0.945] 0.940 [0.913, 0.961] 0.975 [0.951, 0.988] 0.986 [0.967, 0.995] 0.965 [0.940, 0.982] 0.947 [0.907, 0.973]
Cohen’s Kappa 0.829 0.838 0.943 0.957 0.687 0.825
Specificity 0.895 0.981 0.978 0.996 0.997 0.977
Sensitivity 0.934 0.873 0.967 0.947 0.542 0.894
F1 score 0.895 0.953 0.980 0.991 0.982 0.959

Measures C1b (N= 433) C2b (N= 363) C3a (N= 345) D1b (N= 365) D2a (N= 345)

n (0, 1)= 230, 203 n (0, 1)= 241, 122 n (0, 1)= 232, 113 n (0, 1)= 256, 109 n (0, 1)= 342, 3

Accuracy [95% CI] 0.917 [0.887, 0.941] 0.857 [0.816, 0.891] 0.959 [0.933, 0.978] 0.829 [0.785, 0.867] 0.992 [0.975, 0.998]
Cohen’s Kappa 0.833 0.652 0.906 0.678 0
Specificity 0.935 0.971 0.987 0.953 1
Sensitivity 0.897 0.631 0.903 0.472 0
F1 score 0.923 0.900 0.970 0.892 0.996

The sample size and subsample size in this table pertain to the training data utilized for machine learning training. The original dataset comprises a total of 345 responses. Variations in sample size and
subsample size correspond to different rubric bins, reflecting distinct data manipulation strategies employed to enhance model performance.
- Rubric bins denoted by “a” indicate the use of basic feature engineering settings with no extended strategies.
- Rubric bins marked “b” signify the introduction of an extended strategy of dummy responses.
- Rubric bins marked “c” indicate the extended strategy of data rebalancing before introducing dummy responses.
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however, when D was coded, these responses were very
frequently connected to hydropower (A codes). Co-occurrence
within A codes and D codes suggests that students understand
that hydropower is powered by water and is needed to create
electricity. A–C codes were the most likely to occur together
when students were making connections between FEW systems
(59 responses). Only 12 students made connections between
A–D codes, suggesting that water use beyond hydropower is not
as commonly associated with energy use and production in this
scenario despite water providing the primary source of energy
in the reservoir.

Co-occurrence is how we can approximate the level of
understanding of the respondee from novice to expert for the
Reservoir question item. The assumption is that the quantity of
co-occurrences indicates students have an understanding that
there is some sort of connection between Food, Energy, and
Water. For example, student responses could be coded in a
number of bins regarding the type of energy, and what the energy
is used for, e.g., irrigation or powering homes. We assume that
students’ answers indicating a greater understanding of the
relationships between Food, Energy, and Water will include bin
codes for hydroelectricity, irrigation for food, energy for

Table 5 Performance measures of automated classification models for biomass question item.

Part A

Measures Aa (N= 480) B1c (N= 330) B2c (N= 307) B3b (N= 264)

n (0, 1)= 227, 253 n (0, 1)= 223, 107 n (0, 1)= 130, 177 n (0, 1)= 198, 66

Accuracy [95% CI] 0.819 [0.781, 0.852] 0.842 [0.799, 0.880] 0.759 [0.707, 0.806] 0.814 [0.762, 0.859]
Cohen’s Kappa 0.637 0.602 0.507 0.359
Specificity 0.824 0.973 0.707 0.990
Sensitivity 0.814 0.570 0.799 0.288
F1 score 0.811 0.893 0.718 0.889

Measures B4b,d (N= 505) Ca (N= 480) Da (N= 480) Ea (N= 480)

n (0, 1)= 381, 124 n (0, 1)= 384, 12 n (0, 1)= 412, 68 n (0, 1)= 455, 25

Accuracy [95% CI] 0.877 [0.845, 0.905] 0.977 [0.959, 0.989] 0.921 [0.893, 0.943] 0.973 [0.954, 0.986]
Cohen’s Kappa 0.667 0.151 0.639 0.636
Specificity 0.971 1 0.973 1
Sensitivity 0.589 0.083 0.603 0.480
F1 scores 0.923 0.988 0.955 0.986

Part B

Measures A1a (N= 466) A2a (N= 466) B1a (N= 466) B2a (N= 466)

n (0, 1)= 258, 208 n (0, 1)= 462, 4 n (0, 1)= 254, 212 n (0, 1)= 271, 195

Accuracy [95% CI] 0.805 [0.766, 0.840] 0.991 [0.978, 0.998] 0.839 [0.802. 0.871] 0.779 [0.739, 0.816]
Cohen’s Kappa 0.601 0 0.674 0.538
Specificity 0.868 1 0.882 0.672
Sensitivity 0.726 0 0.788 0.856
F1 score 0.832 0.996 0.857 0.718

Measures C1d (N= 515) C2e (N= 180) C3a (N= 466)

n (0, 1)= 246, 269 n (0, 1)= 121, 59 n (0, 1)= 377, 89

Accuracy [95% CI] 0.755 [0.717, 0.792] 0. 839 [0.777, 0.889] 0.903 [0.873, 0.929]
Cohen’s Kappa 0.512 0.609 0.636
Specificity 0.793 0.942 0.984
Sensitivity 0.721 0.627 0.562
F1 scores 0.756 0.887 0.943

Combined bins

Measures B1&B2f (N= 480) B3&B4f (N= 480) C1&C2g (N= 469)

n (0, 1)= 296, 184 n (0, 1)= 344, 136 n (0, 1, 2)= 184, 219, 66

Accuracy [95% CI] 0.779 [0.739, 0.816] 0.844 [0.808, 0.875] 0.772 [0.731, 0.809]
Cohen’s Kappa 0.520 0.572 0.615
Specificity 0.865 0.956 0.772, 0.831, 0.576
Sensitivity 0.641 0.559 0.832, 0.784, 0.988
F1 score 0.828 0.898 0.759, 0.900, 0.697

The sample size and subsample size in this table pertains to the training data utilized for machine learning algorithms employed in the development of the classification model. The original dataset
consists of a total of 480 responses in Part A and 466 responses in Part B. Within this table, variations in sample size and subsample size correspond to different rubric bins, reflecting distinct data
manipulation strategies adopted to enhance model performance. Strategies are described in more detail in the Methods under “Text Classification Model Development”.
- Rubric bins denoted by “a” indicate basic feature engineering only, with no incorporation of extended strategies.
- Rubric bins denoted by “b” indicate the utilization of an extended strategy of advanced feature engineering by defining synonym sets.
- Rubric bins denoted by “c” indicate the extended strategies of data rebalancing before introducing dummy responses.
- Rubric bins marked as “d” signify the extended strategy of dummy responses.
- Rubric bins marked as “e” indicate that we employed the extended strategy of data rebalancing.
- Rubric bins marked as “f” indicate that we employed the extended strategy of merging rubric bins for Part A.
- Rubric bins marked as “g” indicate that we employed the extended strategy of merging rubric bins for Part B.
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machinery, and energy for housing/farm bins (Table 7). Novice
responses show they know that the dam is used to create
hydropower, but they do not have any further knowledge about
how this energy can be used and how it relates to food (Table 7).

Trade-offs systems: biomass energy production question item.
Overall, students perform at a higher level for explaining chan-
ging water usage (Part A) than discussing trade-offs (Part B)
(Table 8). The large majority of students discuss at least one
trade-off in their response for Part B and, therefore, are placed in
level 1 or higher (see Table 9 for an example of student respon-
ses). Due to the ML model performance for this question item, we
have also included the number of responses for each Novice to
Expert Level as Supplemental Methods Table 9.

For the Biomass question item Part A, slightly over half of the
responses scored a level 3, with over 20% as Level 4 and about
23% as Level 1, and no level 2 responses (example responses
provided in Table 9). For Part B, about half of the responses were
grouped in level 2 and roughly 20% in level 1; both of these levels)
had similar numbers of responses in those levels by ML and
human-assigned codes. A small percentage of responses (~11%)
were placed in level 3 by the ML model, while human codes had

slightly more responses (13.5%) in that level. There were no
student responses predicted for level 4 by the ML model and only
one response in that level based on human-assigned codes.

The lack of level 2 responses for Part A is due to having only
one positive ML predicted for the C component. However, this
response was scored to level 3 response because the student
response also included one of the other codes. Since this was a
poor-performing ML model for the C code (meaning that the
model did not recognize any responses for this code), we explored
using human scores for this code; even so, only three responses
from the data set end up at level 2. Most responses in the dataset
which are categorized in code C end up at levels 3 and 4, since
these responses tend to incorporate water price increase as an
effect of increased water use or water scarcity within their
explanation (Table 9 provides an example student response).

For Biomass Part B, we found no level 4 responses in our data
set, which was driven by the lack of ML predictions for category
A2, which is a requirement for obtaining this level. A2 is an
infrequent category in the dataset with only 4 positive cases
assigned by human coders. Even when we explored using human
scores in place of ML-predicted scores for this specific rubric bin,
we observed only a single response in Level 4. About one-third of
the student responses score at Level 2, which demonstrates an
ability to connect at least two FEW vertices when discussing
trade-offs. The largest group of students (~40%) end up at Level
1, which is a trade-off focused on a single vertice of the nexus
(food, energy, or water).

Of the 138 responses that do not fit the other patterns in Part A
and the 77 responses categorized as Level 0 in Part B, most were a
combination of derivations of “I don’t know” or trivial responses
such as “it will go up” or “You need all food, energy, and water in
this situation.” However, there were also responses that the ML
model did not predict any expertise level, but would be
considered one of the expertise levels by human coders. For
example, this student's response that was not predicted to achieve
an expertise level includes concepts that occurred infrequently
and, as such, was not provided a code—reduced water availability
means that water would need to come from someplace else, and
require more labor and cost for transportation:

Table 7 Example student responses for reservoir question item co-occurrence.

Novice to
expert

Example student response

Expert (a) I guess potential energy. My assumption is that the water will be turned into hydroelectric energy though once passed through the
dam.
(b) The energy produced by this might be used by farmers to move other water for irrigation to their crops. It may also be used to
power some machinery or even just their homes and facilities.

Expert (a) Hydroelectric power and as a water resource.
(b) The water helps farmers grow their crops but also helps power their farms and machinery.

Novice (a) hydraulic
(b) Don’t know

Table 8 ML predicted novice to expert distribution of responses for Biomass.

Level Components # of Part A responses Components # of Part B responses

4 A + (B, D, or E) 103 (21.4%) (A2)+ (B2)+ (C2 or C3) 0
3 A or B 267 (55.6%) (A1)+ (B1)+ (C1) 51 (10.9%)
2 C 0 (0%) Two of the following: (A1 or A2), (B1 or B2), and/or (C1 or C2 or C3) 229 (49.2%)
1 None of the above 110 (22.9%) One of the following: (A1 or A2), (B1 or B2), or (C1 or C2 or C3) 104 (22.3%)
0 N/A None of the above 81 (17.4%)
Total 480 465

Due to data rebalancing, not all responses had predicted scores in all categories. In these cases, we used the human score for the given category for a response.

Table 6 Co-occurrence of predicted codes for reservoir
responses.

Number of responses which
co-occur with other code

Code Total code
instances

A B C D

A—Hydroelectricity 241 N/A 80 157 47
B—Energy production 148 80 N/A 92 30
C—Use of energy 206 157 92 N/A 29
D—Water 69 47 30 29 N/A

Total instances may be less than the sum of the values in a row, since a response can be
categorized in any number of rubric bins.
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“A shift from agriculture to biomass production means the
community will need to pay for excess water. If there is very
minimal rainfall during a year, the community will need to
gain a water supply from the surrounding neighborhoods.
Buying water, transporting it, and ensuring the corn is
watered requires extra labor, which requires extra pay.”

Discussion
The application of ML for assessing interdisciplinary learning
involves both the development of the process as well as using that
process to understand student thinking and learning. The ML
process here shows promise for use in evaluating complex con-
structed responses for systems thinking, especially as part of
formative assessment practice, and we also report on the eva-
luation itself. Here we discuss findings in the context of our
research questions and results, including limitations pertaining to
each topic within each section.

Use of ML to uncover student understanding of FEW Nexus.
Considerations for future assessments of student CRs, particularly in
the context of science-related items, demand significant attention.
Despite the relative success of current applications, there are
remaining challenges to using ML approaches to score a broader
range of assessment constructs and response types (Zhai et al.,
2020a). These challenges can be characterized by limitations such as
insufficient data (or specific types of responses/ideas in CR), sub-
jectivity, imbalances, and the prevalence of noise, and these all
present substantial obstacles within the iterative ML training process
(Maestrales et al., 2021). These challenges, if not effectively addres-
sed, have the potential to compromise the achievement of optimal
model accuracy, thereby raising questions about the validity and
reliability of ML applications in educational evaluation settings
(Suresh and Guttag, 2021). Another challenge is the complexity of
the assessment target (i.e., what you are trying to measure), and the
complexity of expected student responses can pose challenges to
such AI-based evaluation (Zhai et al., 2020a). Others have suggested
that features of the assessment item itself, such as the subject domain
or scenarios used in the assessment, might impact the accuracy of
ML models (Lottridge et al., 2018; Zhai et al., 2021b). To address
these challenges, we utilized automated scoring approaches for text
classification, which examine complex systems integration. In this
study, our technical strategies have introduced a practical solution

through data augmentation to help address insufficient data and
data imbalance, yielding promising implications. This approach
involves generating dummy responses that are subsequently revised
with identified synonym sets, thus facilitating the measurement of
responses with similar structures and content while preserving the
overall meaning and essence. Notably, we found that this approach
effectively improved model performance, particularly when dealing
with specific descriptors in Reservoir and Biomass question items.

One complexity of assessing complex CRs in postsecondary
education is that there are varying disciplinary requirements and
usages of student literacy compared to the more consistent
expectations of K-12 education. As such, student responses
considered holistically consist of a range of literacy abilities, which
can impact the “understanding” of natural language processing and
text classification models. For this research, student responses were
collected from across the United States at different institution types
(baccalaureate colleges, master’s colleges, and doctoral universities)
to provide a wider range of student responses from which to develop
the ML models. The resulting models are thus trained on the many
ways that people may write about the question item concepts. High
variation in the responses, which can be the result of variation in
literacy, language, and understanding, result in more complexity,
and are thus more difficult items for model development. Some of
this difficulty may be addressed with a larger sample size, but if
student responses are too varied or certain types of responses are too
infrequent in the sample, then accurate ML models may not be
easily achievable. Further, although we refer to the scoring of
responses into rubric bins, we posit another important outcome of
this work is characterizing students' thinking about FEW concepts.
The inclusion of automated text scoring systems into formative
assessment evaluation isn’t only for “scoring” but provides a way for
instructors to use open-response items and identify complex student
ideas, or potential barriers to student learning (Harris et al., 2023).
This is a critical aspect of formative assessment practice, allowing
instructors a richer, more nuanced view of how students’ think
about complex systems like the FEW nexus.

Defining criteria for developing text classification models. During
the course of our iterative process, models exhibited superior per-
formance in certain rubric categories characterized by well-defined
criteria and a robust explanatory framework outlining the expected
content under each rubric category. This finding aligns with prior
research that underscored the efficacy of ML algorithms in

Table 9 Example student responses for the biomass question item using calculations from Table 3.

Novice to
expert level

Example student response to Part A Example student response to Part B

4 The people living in the area would have to take serious water cuts
in order for this plan to work. Watering grass lawns, for example,
would likely be banned. We would use more of the river water
even still, and in drought years, we might not be fully able to
produce biomass for fuel. We would ask people to take shorter
showers, water lawns less, if at all, and to not leave faucets running
unless essential.

No predicted responses

3 Water usage will likely shoot up as a result of the increased use of
corn crops in order to produce more energy via biomass compared
to food production for beans that could be facilitated by the same
fields.

The switch from beans to corn in order to create more energy
independent from natural gas means less food production for the
community because of that shift. The switch also requires more
water to involved in order to produce more of the corn. The more
corn that is produced the more energy that is produced. This
energy could help with food in other ways.

2 No predicted responses More water will be diverted to the corn, and because of that, there
will be limited water for other uses.

1 What I would expect the area’s water use to change as a result of
this shift from agriculture to biomass production by using a non-
renewable resource for the process

I think the trade-off in this situation would be an increase[d] in
corn production and a decrease in water and energy systems.
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successfully discerning the quality of student responses using fine-
grained analytic scoring methodologies (Ariely et al., 2023). Con-
versely, challenges become apparent in scenarios where substantial
overlap exists between rubric categories, leading to redundancy and
a lack of clarity (Liu et al., 2014). In such instances, the Kappa value
frequently falls short of the desired threshold (Zhai et al., 2021).
These insightful observations underscore the imperative need for the
refinement of rubric definitions within future assessments. This
refinement should be guided by a comprehensive and quantitative
delineation of assessment criteria, aimed at mitigating the issues of
overlap and ambiguity that our study and prior research have duly
highlighted. For example, we revised closely related yet exclusive
rubric bins to a single, multi-class prediction after attempting mul-
tiple model improvement strategies, yet failing to meet threshold
performance metrics. Changing the structure of the rubric main-
tained the coding criteria of individual bins, now as “levels”, but
provided additional information about exclusivity which resulted in
better overall model performance. Alternatively, other coding bins
with overlapping criteria or developed with too fine-grained of
categories than needed to differentiate student ideas, can be merged
into a single code. Conversely, other rubric codes that are too broad
initially may need to be split or have better-defined coding criteria to
better categorize cases (Sripathi et al., 2023).

We also note different levels of successful performance metrics
for text classification models for the Reservoir versus Biomass
question items. Indeed, most models for the Reservoir question
item rubric bins achieved very good performance (i.e., “almost
perfect” Cohen’s kappa measures), but most models for the
Biomass question item rubric bins achieved only “acceptable”
performance. This is despite both assessment items being in the
Environmental Science domain, being centered on the FEW
Nexus as context, and undergoing similar iterations in ML
development. We interpret these findings to provide further
evidence that the underlying construct of the assessment items
and/or the expected complexity in student response can influence
ML model performance, as noted by others (Haudek and Zhai,
2023; Lottridge et al., 2018). Thus, a practical implication of this
work is that more complex assessment targets (e.g., trade-offs in
socio-ecological systems), or assessment items that encompass
larger systems will need additional feature engineering or more
advanced ML techniques for accurate response evaluation (Wiley
et al., 2017; Zhai et al., 2020a). Further, this highlights the need
for an iterative approach in these research efforts. Although we
lay out our approach as a “cycle” (see Fig. 1), in practice, it is
highly iterative, with results from all stages informing the work of
other stages, often in feedback loops. To improve final model
outcomes, all stages of item development, data collection, and
rubric alignment should be revisited, not only tuning specific
model features. Following principled item design procedures (e.g.
Harris et al., 2019) and incorporating automated scoring systems
into the methodological pipeline (Rupp, 2018) are important
considerations. Nevertheless, successful item/rubric/model devel-
opment often takes multiple iterative rounds, which we continue
to do, and models should be updated and expanded.

Such challenges to using NLP for short answer scoring are well
reported and exist for assessments across science domains
(Shermis, 2015; Liu et al., 2016). This leads to a broad range of
scoring model performances (see Zhai et al., 2021b). These
iterative cycles of revision do require an investment of human
effort with an outcome of having automated classification models
that can predict categories for any number of new responses and
for any number of new users. Further, researchers also learn
about student thinking about the targeted key concepts (see
section “Student understanding of systems thinking in the FEW
nexus” below) as they work to design items, rubrics, and models
(e.g. Sripathi et al., 2023).

Scoring novice to expert levels. Scoring through levels [Level 1–Level
4] allows us to see the real distribution of knowledge for students in
introductory courses. Level 4 responses were least frequent, most
likely due to this level’s creation being based on an instructor’s
expert response. Although, level 4 responses were seldom seen in
students, it allows us to set a growth goal and see students who have
previous knowledge at the expert level. As seen previously, only one
student was able to achieve that level, which suggests that the task at
hand is indicative of student ability. The level 4 response level is a
baseline for exemplary understanding, it can also be used in the
future to see if senior level or graduate students are performing at
the expected level or to evaluate different strategies for achieving
higher learning outcomes. Another We did have one student be
within the level, which suggests that it is possible that students can
strive to that level at a beginning level course. In addition, this
supports student learning and growth, as we can expect as learning
improves the FEW system understanding and could be a good
baseline for growth as more students learn better. Additionally, no
students fell within the pre-established Level 2 for responses that
only included C codes (responses that only addressed a change in
water prices), however students who were rated in Level 3 and Level
4 did include that content in their response. This particular content
seems to be closely connected with the higher level responses rather
than being a piece of information distinct from the other content
and future research may delve into the content mapping of student
responses.

We report on using the computer predicted scores to place
student response in expertise levels. Overall, the computer
placement may slightly underpredict student performance on
these items as compared to human assignment, especially in the
mid-level. This is more notable in the Biomass item, especially for
Part A, indicating that the difficulty of this item may affect level
assignment. However, although the classifications result from
individual models with varying degrees of accuracy, the overall
distribution of responses across all levels approximates the
distribution from human assigned placements (see Table 9 of
the Supplemental Methods for human assigned placements as
comparison with the ML predictions of Table 8). This supports
the use of these automated classification models to evaluate group
or large class performance as part of formative assessment
practice, even though individual response placement in specific
levels may vary. That is, a reasonable approximation of the
distribution of a large number of responses collected in an
introductory course can be generated in seconds to minutes using
the developed classification models, as opposed to the effort of
human reading and assigning levels to all collected responses.

Future prospects of generative AI. The recent advancements in
generative AI have raised additional considerations about assessment
in education, among a host of many different possible applications
(Kasneci et al., 2023). Although many of these issues are common to
uses of classroom assessment in many contexts, some issues are
particularly overlapping with the process of assessment development
and automated scoring presented here. Recent explorations in using
large language models for automated scoring of essays and short
responses show great promise (e.g. Cochran et al., 2023; Mizumoto
and Eguchi, 2023; Latif and Zhai, 2024). Using such an approach
would simplify and expedite the automated scoring process, thus
permitting automated scoring for different assessment prompts
(Weegar and Idestam-Almquist, 2024) and could contribute to
generalizability of models (Mayfield and Black, 2020). One pro-
mising application of generative AI is to do pattern finding,con-
textualized representation of information, and clustering of
collections of student responses to open-ended tasks in support of
formative assessment practice (Wang et al., in review; Wulff et al.,
2022). This may assist instructors to easily find patterns and capture
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token-level representations in student responses based on the lin-
guistic context, thus allowing them to attend to student ideas and
thinking as exhibited in their classroom, without reading and sorting
individual responses.

On the other hand, the use of generative AI in education raises
many concerns about academic integrity and students easily
finding or asking AI to generate answers to assessments (Chan,
2023). Some studies have found that generative AI models still
perform less well for producing more complex assessment tasks
and tend to do better on quantitative tasks as compared to
explanatory (Nguyen Thanh et al., 2023). Additionally, regarding
the language attributes, current AI-generated responses, when
compared to human-authored counterparts, typically manifest a
discernible deficiency in cohesive and coherent elements,
accompanied by a writing style characterized by uniformity and
repetition (Wang et al., 2023). It is very likely these shortcomings
of these AI models will not last long. Instead, educators should re-
evaluate the purposes of assessment (Chan, 2023), including how
and what content and practices are necessary for students to be
“skilled” in a discipline. Therefore, focusing teaching and learning
on foundational principles within the discipline, which allows
students to see science across contexts and define problem
boundaries, like systems and systems models, maybe one such
approach. Educators should also consider the purpose learning
activities that students engage with, both in the classroom and
outside of the classroom. The application of generative AI
represents a frontier in the use of technology in support of
formative assessment in the classroom (Harris et al., 2023).

Student understanding of systems thinking in the FEW Nexus.
Systems thinking involves understanding the interdisciplinary
connections and relationships between associated components
within a system, rather than simply focusing on discrete concepts
(Meadows, 2008). For teaching and learning contexts, the FEW
Nexus provides a scaffold for incorporating systems thinking and
sustainability concepts into courses and across curricula. A pri-
mary advantage of the NGCI is the potential to capture a stu-
dent’s understanding of relationships within the FEW Nexus.
While the analytic rubrics were developed to score student
understanding of FEW isolated discrete parts of the systems in
the scenario presented by each item, by examining the con-
stellation of scores a student response achieved across criteria, we
quantified student patterns of explanations about these systems.

What our students know about the Food–Energy–Water Nexus.
Both the Reservoir and the Biomass question items present students
with scenarios about the FEW Nexus relationship centering water
with connections to energy production and agriculture. The codes
described in the analytic rubric represent the most common con-
cepts students included when presented with these scenarios. The
frequency of these concepts may indicate that these ideas are
foundational as introductory students construct knowledge about
FEW systems. Many of the most common codes could be classified
as demonstrating basic knowledge, which is the simplest cognitive
task presented in Bloom’s taxonomy model (Bloom and Krathwohl,
1956; Krathwohl, 2002). For example, in the Reservoir question item
rubric, the A codes were the most commonly found in our dataset
(Table 6), and indicated responses identifying that a dam could be
related to hydropower. While this type of statement is reasonable for
introductory level courses where students are developing new
understanding and aligns with the content presented in introductory
IES courses (Horne et al., 2023), knowledge statements alone do not
achieve the competency goals for IES students (Wiek et al., 2011).
More complex student responses in our study contained combina-
tions of codes, however exceptionally creative explanations or

concepts were not always frequent enough to be included in the
analytic rubric or be captured reliably in the ML models.

The Biomass item presents students with an opportunity to
consider directionality within trade-offs, and directionality con-
cepts are thus frequent in the associated rubric. In the Biomass
sub-questions, students often included at least one statement about
directionality of the quantity of food, energy, or water, but
responses including predictions across these three ideas were
infrequent. Making a statement about change or directionality,
such as describing the quantity of food or water decreasing, is a
relatively simple task in systems thinking, but is foundational to
more complex tasks that consider changes over time (Sweeney and
Sterman, 2007). Students who described trade-offs in their
responses to this question sometimes went beyond discussing the
cause-and-effect components of the system and discussed concepts
not immediately asked by the question, such as the impact of this
scenario on water pricing. However, these types of responses did
not always register in the ML models, and some were too
infrequent to be included in the rubric. The frequency of simpler
codes describing FEW concepts in comparison to codes describing
FEW consequences presents a challenge, given that IES curricula
prioritizes FEW in relation to socio-environmental topics (Horne
et al., 2023). The emergence of these concepts in student responses
provides insight into what students will need to do with these ideas
after the classroom and how students may move from identifying
FEW concepts to applying predictions about FEW impacts on
people, land, and communities.

How students assimilate systems thinking into their constructed
responses. The frequency of co-occurrences in our analysis can serve
as a proxy for gauging the level of understanding among respon-
dents, ranging from novice to expert, regarding the relationships
between food, energy, and water. The pattern of responses students
gave sheds light on the connections between the concepts of food,
energy, and water within the context of our study (see Table 6). In
responses to the Reservoir item, we observed in our data that stu-
dents frequently combined ideas under A codes (descriptions of
hydropower) with C codes (uses of energy). This combination of
concepts aligns well with the task presented in the item, and this
pattern suggests a moderate association between generating hydro-
power and its applications in agriculture or infrastructure. Addi-
tionally, we noticed a prevalent co-occurrence of connections
between C codes and B codes, signifying that students can connect
the production of various energy types and their local utilization in
agriculture or community resource management. These types of
responses represent a robust understanding among students that
hydropower is harnessed from water sources and plays a role in
electricity generation. When students’ responses were coded into
various categories such as the type of energy and its intended pur-
poses (e.g., irrigation or powering homes), we found that responses
indicating a more comprehensive understanding tended to include
bin codes related to hydroelectricity, energy for irrigation in food
production, energy for machinery, and energy for residential or
agricultural purposes (see Table 7). In contrast, D codes represented
facets of student explanations that centered on the use of water, and
not necessarily energy, from the reservoir in the prompt. While
overall these codes were less frequent than codes describing the use
of energy, they were associated with more novice responses that co-
occurred with A codes (e.g., stating that hydropower is related to the
prompt) but not as frequently with explanations of how energy is
produced and used for agriculture. Students commonly linked the
concepts of energy generation, energy applications in agriculture,
and broader infrastructure. In contrast, novice responses included
the basic concept that dams were related to hydropower but lacked
further knowledge about how energy is generated, how energy could
be employed, or its relevance to food production, and instead offered
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how water from the reservoir could be used for agricultural purposes
(see Table 7).

While examining co-occurrences between codes within the
Reservoir item explores how students characterize the components
of a FEW system, examining co-occurring codes in responses to the
Biomass item offers a way to model how students describe trade-offs.
The combinations of co-occurring codes reflect the complexity of a
students’ response, which serves as the basis for the logic of the
Novice to Expert scale (Table 8). Without including at least two of
the facets of the FEW Nexus, a response to the Biomass item would
not describe a trade-off. For example, a Level 1 response to the
Biomass item would only include one facet of FEW, while a response
including more specific details and more than one FEW element
would be more expert-like. Further, moving from describing
individual effects to multiple effects may also indicate a student is
reasoning about the mechanism behind the system, which is a more
expert-like approach to systems thinking (Hmelo-Silver and Pfeffer,
2004). However, aligned with previous research in science education
indicating the challenge of developing expert-like systems thinking
(Hmelo-Silver and Pfeffer, 2004; Jacobson and Wilensky, 2006;
Sweeney and Sterman, 2007), expert-like Level 3 and Level 4
responses were infrequent in our dataset compared to responses
providing simpler, incomplete explanations of the systems presented
in the question.

Conclusion
There is growing support and interest in establishing inter-
disciplinary environmental education in higher education that
integrate concepts and disciplines in addition to providing varied
perspectives (Christie et al., 2015; Cooke and Vermaire, 2015;
Wallace and Clark, 2018). Most of these IESs do not incorporate
systematic evaluation and assessment, and especially non-
summative evaluations, with one of the main challenges to devel-
oping evaluation being the diversity of content and fields (Vincent
et al., 2017). There is a need to assess student learning in IESs as
well as rigorous evaluation of IES educational practices, especially of
complex synthesis concepts. Here, we described initial steps in
developing ML text classification models as a tool to assess student
systems thinking capabilities using two questions anchored by FEW
Nexus phenomena (i.e., water-energy connections, biomass trade-
offs). Our two questions are first steps to fulfilling a much-needed
gap in educational assessment by providing a means to analyze
complex concept integration related to the FEW Nexus using ML.
Successes and challenges to ML approaches to scoring student FEW
Nexus CR indicate several future research priorities for inter-
disciplinary, practice-based education research: further develop-
ment of human scoring methods to specifically prepare training and
test data for ML models; developing evaluation systems for student
responses on novice to expert scales; developing assessment
instruments using multiple CR question items; and examining how
students incorporate social competencies and human factors into
their explanations of FEW topics. Some of these research priorities
address the critical issue of time investment in developing text
classification models. Data collection, in the form of hundreds of
student responses to the same question, rubric development (an
iterative process), human scoring of student responses for training
and test data, and model development (also an iterative process), all
require a large amount of person-hours. This particular project has
included the collaboration of 10 institutions for data collections, as
well as two research labs at two additional institutions for scoring
and model development with multiple postdoctoral scholars and
graduate students. This investment is a severe limitation in the
development of such models, and the process information pre-
sented here is intended to support other scholars in their model
development through in-depth discussion of strategies for model

improvement and likely outcomes. However, once a model is
developed and has achieved acceptable evaluation metrics, it can be
used to very quickly assess large numbers of students’ responses and
conduct research on large datasets. This trade-off in investment is
also offset by research that makes available resulting models to the
scholarly community, as with questions and models presented in
this paper (see supplemental information access).

Development of these question items using text classification
models and CR assessment items allows evaluation of the rela-
tionship between foundational concept understanding and inte-
gration of those concepts as well as more nuanced understanding
of student comprehension of complex interdisciplinary concepts.
This proposed research represents one of the first attempts to
assess the links between foundational, discipline-specific concepts
and systems thinking and learning. We have been able to engage a
range of institutions in all phases of the project thus far. Institu-
tions were chosen as a representative sample of EPs across the US
and include baccalaureate colleges (4), master’s colleges (3), and
doctoral universities (3). This is critical to ensure that findings and
outcomes are applicable to undergraduates across the US. We
anticipate that the information gleaned from reviewing environ-
mental curricula across the United States, combined with concept
inventory results showing student learning, will better inform those
making curricular and staffing decisions regarding college envir-
onmental science and studies programs. Thus, students enrolled in
IES programs will benefit by having courses and programs eval-
uated with a valid and reliable instrument. Additionally, combining
discipline-specific ideas and phenomena within a new set of CR
assessment items focused on complex system thinking will provide
faculty with a valid and reliable instrument for evaluating learning.
Our instrument development methodology is also applicable to
other multidisciplinary assessments. For instance, the Next Gen-
eration Science Standards places a strong emphasis on using three-
dimensional learning—how science practices, content knowledge,
and crosscutting concepts interconnect (Douglas et al., 2020).
Lastly, environmental and sustainability objectives are becoming
commonplace among university mission and vision statements.
Providing shared EP objectives with aligned assessments that can
inform instruction and student learning helps meet these objectives
of undergraduate education.

Data availability
Scored student response data is available through contact with the
corresponding author. Source code for the text classification tools
used in this study is available at https://github.com/
BeyondMultipleChoice/AACRAutoReport. Assessment items are
available at https://beyondmultiplechoice.org/. Text classification
models will be saved and published to the public in subsequent
papers at https://beyondmultiplechoice.org/.
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