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Dynamic analysis and application of network
structure control in risk conduction in the
industrial chain
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According to control theory, a dynamical system is controllable if, with a suitable choice of

inputs, it can be driven from any initial state to any desired final state within a finite time.

Most dynamic characteristics of real networks are nonlinear, so achieving target control is

more practical and necessary. The network’s control energy is also a problem that must be

considered. Whether and how to control the complex system of the industrial chain has high

theoretical and practical significance. In this study, we use the GARCH model, DCC model,

and network structure control theory comprehensively to study the price fluctuation risk of

the mining stock market from the perspective of the industry chain and network control

dynamics and obtain interesting results. (1) Risk conduction among stocks has a prominent

industry-driving effect, and the risk conduction ability of upper and middle stocks is stronger.

(2) The risk regulation cost, time cost, and node number cost of the whole-industry chain are

all higher than those of the two-tier chain, which indicates that the correlation complexity of

the network has a positive relationship with risk control. (3) Key risk nodes play an essential

role in risk control, so monitoring key stocks from the industrial chain perspective is

necessary to control risks in time. This work can provide valuable suggestions for market

regulators and policy-makers in terms of risk management and control.
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Introduction

W ith the rise and vigorous development of complex
network research, structural controllability has
attracted extensive attention and much research from

relevant researchers in physics (Zhao et al., 2023), biology
(Newby et al., 2022), and economics (Galbiati et al., 2013) because
of its importance in systems engineering applications. In complex
system research, we always hope that the state of each node in the
system can change to the desired state, which is the problem of
complex network system control (Liu et al., 2011). The financial
market is a complex system, and research on its risk control is
highly important. In recent years, China has put forward the goal
of “carbon neutrality”, proposing to optimize the structural
reform of the supply side of energy and resources and give play to
the role of mining as a “booster” in carbon reduction. This will
inevitably lead to uncertainty in China’s mining financial market
and the risk of sharp fluctuations in stock prices. This will
inevitably lead to uncertainty in China’s mining financial market
and the risk of large stock price fluctuations, increasing the
uncontrollability of the system and attracting greater attention
from scholars and managers. Recently, there has been much
research on price volatility transmission and risk conduction (Xie
et al., 2021; Zhang et al., 2023). With the requirement of “focusing
on improving the toughness and safety level of the industrial
chain”, it is necessary to understand how the risk of stock price
volatility in the mining industry chain is transmitted and how to
control it. Solving this problem can provide suggestions for
policy-makers and market regulators to monitor the mining stock
market better and prevent risks in time.

At present, studies on price fluctuations focus mainly on time
series analysis and use methods such as the Pearson correlation
(Li et al., 2022; Yuan et al., 2020), Granger causality (Gao et al.,
2018; Wang et al., 2020) and pattern causality (Sun et al., 2024) to
define the correlation between stock prices. An increasing num-
ber of scholars are studying the spillover relationship of price
volatility using the copula model (Dai et al., 2020; Wang et al.,
2021b), the DCC model (Jiang et al., 2022; Kim et al., 2020) and
the GARCH model (Chen et al., 2020). Some scholars have
constructed the GARCH time-varying copula-CoVaR model to
dynamically study the price spillover relationship (Xu et al.,
2021), while others study the spillover relationship of stock prices
based on the basis of the BEKK-GARCH model (Ahmed and
Huo, 2021; Xie et al., 2021). At present, the econometric model is
still the mainstream model of risk measurement. Many scholars
have adopted Granger causality (Gao et al., 2018; Wang et al.,
2021a), and the entropy model (Niu and Lu, 2021) to analyze the
risk contagion. An increasing number of scholars have measured
CoVaR and delta CoVaR, which are good measures of the sys-
temic risk contribution, spillovers of financial individuals, and
even tail risks. The DCC (Zhang et al., 2023) and GARCH models
(Abuzayed et al., 2021) are the main methods used for measuring
risk. Compared with quantile regression or the copula method,
the GARCH model can better describe the nonlinear structure
and dynamic characteristics of time series data, which is con-
sistent with the research purpose of this paper. Therefore, we
adopt BEKK-GARCH and DCC-GARCH to measure the spil-
lover effect of stock price volatility and the risk spillover
relationship.

In terms of risk control, previous scholars have focused on
macroeconomic indicators (Christensen and Li, 2014; Kaminsky
and Reinhart, 1999), corporate financial information (Shang et al.,
2021), capital market information (Tan et al., 2023), etc., and
built a risk indicator system and a risk early warning index sys-
tem. At present, machine learning models such as quantile ran-
dom forests, support vector machines, and deep neural networks,
provide practical tools for effectively predicting financial risk

(Aprillia et al., 2021; Huang et al., 2021; Ristolainen 2018). Some
scholars carry out risk control according to monetary and fiscal
policies, with monetary policy playing a more critical role
(Fratzscher and Rieth, 2019). With the proposal of the new reg-
ulatory concept of “too connected to fail”, an increasing number
of scholars have begun to conduct risk control from the network
perspective. Some scholars have constructed a global economy
risk network and proposed a control strategy (Brissette et al.,
2021). Some scholars have used combinatorial optimization to
control contagion regarding complete information in the inter-
bank network (Fukker and Kok, 2024). Some have investigated
how the two risk control strategies inhibit credit risk contagion
among enterprises in the network (Qian et al., 2023). Current risk
control is more inclined to control multiple complex relationships
rather than superficial relationships.

Lombardi A first proposed the concept of network controll-
ability (Lombardi and Hrnquist, 2007) and, for the first time,
equated the state transition matrix of a linear system to the
weighted adjacency matrix of a network system. In 2011, scholars
combined traditional control theory with complex networks (Liu
et al., 2011), and the problem of selecting control nodes in large-
scale network systems was solved. Some scholars subsequently
proposed the criterion and theory of accurate controllability
(Yuan et al., 2013), further developing the controllability of
complex networks. Many scholars have conducted relevant stu-
dies on network control, including optimal control of complex
network ageing (Sun et al., 2020), structure control of complex
networks on the basis of nonlinear dynamics (Zañudo et al.,
2017), and network structure control and dynamic control (Gates
and Rocha, 2016). Scholars have proposed dynamic control the-
ories and methods for nodes or edges in networks (Gao et al.,
2015; Lu et al., 2020). This method provides a new research idea
and direction for risk control in the network. Introducing net-
work structure control theory into the study of financial risk
control is valuable.

Hence, we attempt to construct a research framework that
combines econometrics, cascade conduction, and structural
control theories to realize the risk control of price fluctuations
in the industrial chain. First, on the basis of the BEKK-
GARCH model and sliding window, we measure the volatility
spillover effect of stocks under different windows. Second, on
the basis of the DCC-GARCH model, the systematic spillover
risk (Delta CoVaR) among stocks is calculated, and the risk
cascade conduction network model based on CoVaR is then
constructed. Third, we construct the risk control network
model by combining the structural control and energy con-
sumption minimization theories. Finally, combined with the
industrial chain, we set up different cases of the industrial
chain and analyzed the risk regulation signals and control
strategies under different cases.

This paper makes two contributions. To our knowledge, this
paper is the first to provide insights into the risk control of price
fluctuations in mining stock, combining the network control
dynamics model and industry chain theory. This study can pro-
vide market managers and policy-makers with a reference for risk
control. Second, this study is the first to apply network structure
control theory to risk control in the stock market and explore risk
control signals and strategies in different situations, significantly
expanding the methods and means of stock market risk control
research.

Data and methods
Data description. The data are from the Choice database.
Listed mining companies belong to the mining, smelting, and
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manufacturing industries under the China Securities Reg-
ulatory Commission (CSRC) industry classification. They are
in the industrial chain’s upper, middle, and lower reaches. We
went through a process that selected 83 companies; the
detailed information can be found in Table S1 in the supple-
mentary information. The closing prices of 83 listed mining
companies are selected as the research data. The study period
is from January 2, 2020, to December 31, 2021, for a total of
486 trading days. The closing price measures the volatility
spillover effect and risk spillover value between stocks.

Methods
Volatility spillover effect based on BEKK-GARCH. The BEKK-
GARCH model is used to calculate the spillover effect between
stocks. We adopted a binary BEKK-GARCH model, which con-
sists of two parts: the mean value equation and the variance
equation, as shown in Formulas (1)–(3).

Mean equation:

R tð Þ ¼ R1ðtÞ
R2ðtÞ

� �
¼ μ1ðtÞ

μ2ðtÞ

� �
þ φ11 φ12

φ21 φ22

� �
R1ðt � 1Þ
R2ðt � 1Þ

� �
þ ε1ðtÞ

ε2ðtÞ

� �

ð1Þ
Variance equation:

Ht ¼ C0C þ A0εt�1εt�1
0Aþ B0Ht�1B ð2Þ

H ¼ h11t h12t
h12t h22t

� �
;C ¼ C11 C12

C12 C22

� �
;A ¼ a11 a12

a21 C22

� �
;B ¼ b11 b12

b21 b22

� �
;

ð3Þ
The spillover effect includes the shock and the volatility effects.

The shock effect from stock 1 to stock 2 is represented by a12; the
volatility effect from stock 1 to stock 2 is represented by b12. The
total volatility spillover effect (SP) of stock 1 to stock 2 is shown
in Formula (4):

SP1;2 ¼ a12
�� ��þ b12

�� �� ð4Þ
Risk cascade conduction network model based on DCC-GARCH-
CoVaR. The concept of conditional value at risk (CoVaR) can
measure financial individuals’ degree of systemic risk contribu-
tion and risk spillover effect (Adrian and Brunnermeier, 2016).
Moreover, delta CoVaR is good at capturing tail risk in extreme
situations (Rodríguez-Moreno and Peña, 2013). The DCC-
GARCH model is widely used to study the time-varying corre-
lation between variables. We use it to fit the stock return, and the
time-varying ΔCoVaRijj

q is obtained (Engle, 2002). The dynamic

correlation coefficient ρijt is obtained, and the expressions of the

VaR and CoVaR can be written as:

VaRi
q;t ¼ μ̂it � QðqÞĥit ð5Þ

CoVaRijj
q;t ¼ γijt VaR

i
q;t ð6Þ

4CoVaRijj
q;t ¼ γijt VaRi

q;t � VaRi
50%;t

� �
ð7Þ

γijt ¼ ρijt
hjt
hit

ð8Þ

where μ̂it is the average value estimated by the GARCH model and
Q(q) is the q quantile value of the distribution. The key to solving
VaRi

q;t is to obtain the conditional standard deviation by fitting

the univariate GARCH model, and the key to solving 4CoVaRijj
q;t

is to find the dynamic correlation coefficient ρijt by using the DCC
function.

Combined with the sliding window method, we construct a
dynamic network with a window length of k and a sliding step
length of s. We set the sizes of k and s to 240 and 5, respectively,
which is mainly considered from a realistic perspective and by the
characteristics of stock price data. Stock price data are high-
frequency time series data. The window length of 240 days is
exactly one year, and the opening time of the stock price is 5 days
a week. This setting can be analyzed not only from a long-term
perspective but also in combination with short-term changes,
which helps us gain a comprehensive understanding of stock
price fluctuations.

Listed mining companies are located in different industrial
chain positions, so the industrial driving coefficient is considered
when setting the risk conduction rules. Combined with the input‒
output table, we calculated the backwards correlation as the
industry-driving effect size (risk amplification ability) among
stocks. We determined the antirisk ability according to enterprise
financial operations. The financial operation of an enterprise is
reflected by the Z value index, which comprehensively considers
factors such as the asset scale, liquidity, profitability, financial
structure, and debt-paying ability and can reflect the ability of an
enterprise to resist risk. When the Z value is greater than 2.675,
the enterprise’s ability to resist risk is greater; in contrast, the
ability of enterprises to resist risk is weak. The Z value of each
company is very different, so the logarithm of the Z value is
calculated with a base of 2.675 as the antirisk ability index. We
build a risk conduction network model with stock as the node, the
stock volatility spillover relationship as the edge, and the adjusted
risk spillover value as the edge weight. The details are shown i
Formula (9).

4CoVaRq
½T1þs w�1ð Þ ;Tkþs w�1ð Þ� ¼

0 � � � 1þ IPC1;j

� �
4CoVaR1;j

q
½T1þs w�1ð Þ ;Tkþs w�1ð Þ� � � � 1þ IPC1;j

� �
4CoVaR1;n

q
½T1þs w�1ð Þ ;Tkþs w�1ð Þ�

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. ..

.

1þ IPCi;1

� �
4CoVaRi;1

q

½T1þs w�1ð Þ;Tkþs w�1ð Þ � � � � 1þ IPCi;j

� �
4CoVaRi;j

q
½T1þs w�1ð Þ;Tkþs w�1ð Þ � � � � 1þ IPC1;n

� �
4CoVaRi;n

q
½T1þs w�1ð Þ;Tkþs w�1ð Þ �

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. ..

.

1þ IPCn;1

� �
4CoVaRn;1

q
½T1þs w�1ð Þ ;Tkþs w�1ð Þ� � � � 1þ IPCn;j

� �
4CoVaRn;j

q

½T1þs w�1ð Þ;Tkþs w�1ð Þ � � � � 0

2
6666666666666666664

3
7777777777777777775

ð9Þ
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where IPCi;j ¼ xisz � bi;j, xisz is the market value of i, and bi;j is the

industrial driving coefficient between stocks i and j. ð1þ
IPCi;jÞΔCoVaRi;j

q
½T1þs w�1ð Þ;Tkþsðw�1Þ � indicates the strength of risk

conduction between stocks under a specific window.

Risk control network model based on network control dynamics.
Network structure control and minimum energy
consumption theory

According to control theory, a dynamic system is controllable
if appropriate external inputs can move the system’s internal state
from any initial state to any reachable final state in a finite time
interval (Kalman, 1963). The same is true for the study of
complex networks. The dynamic characteristics of real networks
are mostly nonlinear, but they can be transformed into linear
systems to be studied (Slotine, 2004). The dynamics formulas of
linear time-invariant networks are shown as (10)–(12):

_xðtÞ ¼ AxðtÞ þ BuðtÞ ð10Þ

y tð Þ ¼ Cx tð Þ ð11Þ
where x tð Þ 2 Rn, u tð Þ 2 Rm, and y tð Þ 2 Rp represent the
network’s state, input, and output, respectively, at time t. A 2
Rn ´ n is an n ´ n matrix, B 2 Rn ´m is an n ´m matrix, which is a
node matrix controlled by an external input signal, and C 2 Rp ´ n

is a p ´ n matrix of output nodes. The linear time-invariant
network dynamics formula is converted to the network structure-
directed graph formula:

_xi ¼ ∑
N

j¼1
aijxj þ ∑

M

j¼1
bijuj ð12Þ

where aij represents the directed weighted adjacency matrix of the
risk conduction network, bij is the control node matrix, and uj is
an external input signal. The controllability of the system is
judged on the basis of the Kalman condition, and the system
controllability must satisfy the controllability matrix C full rank:

C ¼ ðB;AB;A2B; ¼ ;An�1BÞ ð13Þ
The system (A, B, C) is said to be target controllable

concerning a given target node set C if there exists a time-
dependent input vector u tð Þ ¼ ðu1ðtÞ…umðtÞÞT , that can drive the
state x0 of the target nodes to any desired final state xf in finite
time. Each input of u tð Þ brings a node in the network closer from
its initial state, x0, to its final state, xf . Finally, the network output
yðtÞ is guided from the initial value yð0Þ ¼ y0 to the expected
value yð0Þ ¼ yf in a finite number of steps t, as shown in Fig. 1.

To quantify the state transition cost on the system, we can
consider the control input u tð Þ that minimizes the energy input
(Lindmark and Altafini, 2018). The function expression is shown
in Formula (14), and the corresponding transition cost is shown

in Formula (15).

εðtf Þ ¼
Z tf

0
jju τð Þjj2dτ ð14Þ

εðtf Þ ¼ ðxf � eAtf x0Þ
T
W�1

r tf
� �

xf � eAtf x0
� �

ð15Þ

where W�1
r ðtf Þ ¼ ∑t

0e
AτBBTeA

Tτdτ is called the controllability
Gramian matrix. The control of state transition achieved at
minimum cost can be more precisely expressed as Formula (16),
which is used as the node risk control cost:

u tð Þ ¼ BTeA
T tf �tð ÞW�1

r ðtf Þðxf�eAtf x0Þ; t 2 ½0; tf � ð16Þ

Risk conduction control network model based on the VaR and
CoVaR

We calculate the risk conduction matrix of stocks under 50
windows in 2020 and 2021 and construct the risk conduction
control network model. The risk cascade conduction network
evolution model is obtained, as shown in Formulas (17–20).

V t ¼ Vα; α 2 1; ¼ ; n1 ¼ ; nt
� �� �� Vm

t nt 2 n ð17Þ

nt ¼ n1 þ4n2 þ � � � þ 4nt ð18Þ

Et ¼ fetij; i; j 2 f1; ¼ ; ntg; i≠ jg nt 2 n ð19Þ

etij ¼
1; ð1þ IPCi;jÞ4CoVaRi;j

q

��� ���>0;
0; otherwise

( )
ð20Þ

where there are n1 nodes in the network when t ¼ 0. After the t
unit time evolution of the network, some new nodes 4nt will
appear and some nodes Vm

t will disappear due to the influence of
interdependent behavior, collective behavior, etc. Then, the node
set in the network at t is V t . e

t
ij represents an edge in the network

at time t. If the absolute value of risk conduction between stock
nodes i and j is greater than 0, there is a connected edge between
them; otherwise, there is no connected edge.

According to the risk conduction network evolution model,
some edges may occur only once, indicating that the probability
of their occurrence is minuscule and has no significant impact on
the overall risk conduction. Therefore, the edge of the network
was screened, and the edges with a cumulative proportion of 80%
were extracted. That is, the edge with a frequency greater than 10,
and the risk conduction control network model is finally built:

G ¼ V ;E;Wð Þ ð21Þ

V ¼ Vα; α 2 α 2 1; ¼ ; nf g� � ð22Þ

E ¼ feij; i; j 2 f1; ¼ ; ng i≠ jg ð23Þ

Fig. 1 Diagram of signal input and result output.
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eij ¼
1; Pk ≥ 10

0; otherwise

	 

ð24Þ

W ¼ Pk= ∑
m

k¼1
Pk

� �
� 100 ð25Þ

where V represents the node set in the network, E represents a set
of edges in a network, and Pi;j ≥ 10 indicates that the number of
risk conduction relationships between nodes is greater than or
equal to 10; then, there is an edge between them; otherwise, there
is no edge. W represents the edge weights between nodes, Pk
represents the frequency of the edge, and m represents the
number of all edges with a frequency greater than 10.

Our ultimate goal is to control the network’s risk transmission
to reduce the risk. Therefore, combined with the above
calculation and the actual risk size (VaR fluctuates approximately
10%), the initial state VaR and the final state 0.9*VaR were set in
this paper, and the risk conduction control formula was finally
obtained as follows:

SC ¼ f ðA;B; x0; xf ;U tð Þ;TÞ ð26Þ

x0 ¼ VaR1;VaR2; ¼ ;VaRn

� � ð27Þ

xf ¼ VaR1f ;VaR2f ; ¼ ;VaRnf

n o
ð28Þ

U tð Þ ¼
u11 � � � u1t

..

. . .
. ..

.

um1 � � � umt

2
664

3
775; m 2 n ð29Þ

where A represents the adjacency matrix of risk conduction in
different networks, B represents the driver node matrix, x0
represents the initial state VaR, xf represents the final state, and
U(t) represents the value of risk regulation. Its absolute value
represents the cost of risk regulation, and T represents the
control time.

Results
Identification of key risk conduction nodes. The listed mining
companies are located in different positions in the industrial
chain, and we believe that risk conduction between stocks is
affected by industry drive. Different layers have different indus-
trial driving effects. Therefore, to better reveal the risk trans-
mission characteristics of stocks from the perspective of the
industrial chain, we set different layers for analysis. We set up
four cases, including the whole-industrial chain network (WICN),
upper- and middle-layer network (UMN), upper- and lower-layer
network (ULN), and middle- and lower-layer network (MLN).
This not only provides certain risk point prevention and control
suggestions for decision-makers and market managers from the
perspective of the industrial chain but also provides a certain
basis for subsequent risk control.

The characteristics of risk conduction are mainly considered in
three main aspects: conduction range, conduction strength, and
conduction number. In this paper, the conduction range refers to
the length of the conduction time, which is the point in time
when no new node can be conducted and how many time steps
are counted. For example, we set the original time t= 0. When
t= 1, risk conduction occurs in stock a, and when t= n, risk
conduction stops. The conduction step is n; that is, the
conduction range of node a is n. The conduction intensity
represents the cumulative value of the risk conduction of the
node. The conduction number indicates how often the whole
network node is infected with risk.

We comprehensively considered the three indicators of conduction
range, strength, and number and constructed three-dimensional
graphs under different situations, as shown in Fig. 2. The conduction
range, strength, and number exhibited positive distributions. This
means that the other two are more considerable when one is more
extensive. The probability that the number of nodes’ risk conduction
is above 40 is less than 20%, which aligns with the “80/20 law”. This
shows that only a few nodes in the mining finance network play a
more critical role in risk conduction.

The frequency of the top ten stocks in each dimension is
calculated according to the three dimensions, and the stock with
the greatest frequency is extracted. If the frequency is the same,
reference is made to its conduction strength. The final results are
shown in Table 1.

In the WICN and UMN, the metal smelting industry in the
middle reaches accounts for the most significant proportion and
plays a more critical role in risk conduction. In the MLN, the
metal smelting stocks, also in the middle layer, play a more
critical role in risk conduction. In the ULN, the upstream mining
industry is more critical in risk conduction. In the mining
financial network, the nodes in the middle layer play the most
vital role in the network to which they belong. They also connect
to the industrial chain, indicating that the industrial drive affects
risk conduction. Managers should focus effectively on and control
the few stocks marked in the table to reduce large-scale risk
transmission. For example, 600508.SH, 600307.SH, 600231.SH,
600971.SH and 600188.SH plays an important role in each case.

Dynamic simulation of risk control in a two-layer case based
on key risk stocks. We construct a risk control network model
and then divide the two-layer and three-layer network cases. The
two- or three-layer network not only includes the relationships
between the nodes of a single layer but also includes the rela-
tionships between the layers. Therefore, we did not analyze the
single-layer situation but focused on analyzing the two-layer and
the whole-industrial chain from the perspective of the industrial
chain. The networks are the upper-middle layer network (UMN),
upper-lower layer network (ULN), lower-middle layer network
(MLN), and three-layer network (WICN). The control difficulty
and control strategy in different situations are compared. The cost
of risk control includes the cost of risk regulation, time, and the
number of nodes. The higher the risk control cost, the more
difficult it is to control. The risk regulation cost refers to the
absolute sum of the control signal energy consumption within a
particular control time, the time cost refers to the final control
time, and the number of nodes cost refers to the minimum
number of drive nodes under complete control.

First, the network in the two-layer case is analyzed, and the top
ten key risk nodes are taken as the driver nodes individually. The
ratio of driver nodes and control nodes of networks is shown in
Fig. 3. Under the same drive node, the control ratio of the ULN is
the highest, followed by those of the MLN and UMN. They need
5, 6, and 6 nodes to achieve global control. This high probability
indicates that controlling the upper-lower layer is easier, whereas
controlling the upper-middle layer is more complicated.

The changing trend of the control signal of the double-layer
network under complete control is shown in Fig. 4, where the
horizontal coordinate is time t, and the vertical coordinate is the
control signal ut of the drive node. When t= 24, the network
control effect is better in the two-layer case, and the control signal
converges infinitely and is close to 0. When t= 1, the control
signal is enormous, and the control signal gradually decreases
with increasing time. The figure shows that if the overall risk
value in the network is reduced by 10% within the time of t= 8,
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the control signal that must be input is enormous; that is, the risk
regulation cost is high, and the unit is 10,000. Over time, the
control signal clearly tends to decrease. When t= 16, the control
signal decreases to hundreds of digits, and when t= 24, the
control signal decreases to less than ten and approaches 0
indefinitely. This shows that with increasing time costs, the cost
of its control signal continues to decrease. To obtain the shortest
time and most effective control, it is necessary to input a
considerable signal energy cost. Therefore, the arrival purpose of
less energy consumption can choose t= 24 as an adequate control
time. The control signal forms and specific control strategies of
different stocks are now analyzed.

(1) Control strategy for six key risk stocks in the UMN case
In Fig. 5, 600231.SH and 600307.SH are ferrous metal
smelting and rolling industry stocks in the middle layer,
while the remaining four are coal mining stocks in the
upper layer. The stock nodes in the upper layer have an
extensive industry-driving coefficient to the stock nodes in
the middle layer, indicating that a decrease in the risk value

of the upper layer nodes is more conducive to a decrease in
the risk value of the middle layer nodes. Therefore, in this
situation, more attention and control should be given to the
coal mining and selection stocks in the upper layer. From
the perspective of controlling signal energy consumption,
the risk control cost of stocks is 600231.SH, 600188.SH and
600971.SH is larger, and midstream enterprises have a more
significant industry-driving effect on their industries. They
also play an essential role in reducing the risk value in their
industries. The top nodes in the upper and middle layers
have strong risk transmission ability and must strengthen
prevention.

(2) Control strategy for five key risk nodes in the ULN case
In Fig. 6, 600326.SH belongs to the lower layer, whereas the
other four are mining and selection industries in the upper
layer. This indicates that more attention should be given to
the upstream nodes when controlling risks in the ULN case.
From the perspective of industry driving, the upstream
industry has a more significant industrial driving coefficient
than the downstream industry, indicating that the risk

Fig. 2 Three-dimensional figure of stock conduction range, strength, and number. The blue nodes represent the characteristics of these three
dimensions, and the conduction number determines the size. The red dots are projections based on the conduction range. (a), (b), (c), and (d) represent
cases of WICN, UMN, ULN, and MLN, respectively.
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control of upstream nodes is more conducive to overall risk
reduction in the ULN case. Therefore, in this situation,
more control should be carried out on the coal mining and
selection industry in the upper layer. From the perspective
of controlling signal energy consumption, 600028.SH and

600326.SH has a large signal input, while the risk control
costs of the other three are lower.

(3) Control strategy for six key risk nodes in the MLN case

Stocks 600425.SH and 600992.SH belongs to the mineral
products industry in the lower layer, while the other four are the
metal smelting and processing industry stocks in the middle layer.
In terms of the industrial driving effect, metal smelting and
processing in the middle layer has a significant driving effect on
its industry, with considerable risk conduction strength and
range. Therefore, we should strengthen the control of the
midstream stock nodes. From the perspective of the control
signal energy consumption, 600549.SH, 600992.SH and
600231.SH has enormous risk control costs, and it is still
necessary to strengthen the control of midstream stock nodes to
achieve a decrease in the overall risk value (Fig. 7).

Overall, risk control under the two-layer case is considered in three
aspects. First, the upstream stocks have a large industrial driving
coefficient, accounting for a relatively high proportion, especially for
coal enterprises. Therefore, we should pay more attention to large
coal enterprises upstream. Second, midstream stocks play the role of
“connecting the preceding and the following” in the industrial chain
and have large risk conduction intensity and scope. We should
control risk for metal smelting enterprises. The third is to adopt
incentive or tightening policy signals.

Table 1 Top 10 stocks in three dimensions under different cases.

Rank
WICN UMN

Stock code Industry classification Stock code Industry classification

1 600508. SH Coal mining 600508. SH Coal mining

2 600307. SH Ferrous metal manufacturing 600231. SH Ferrous metal manufacturing

3 600231. SH Ferrous metal manufacturing 600307. SH Ferrous metal manufacturing

4 600971. SH Coal mining 600188. SH Coal mining

5 600188. SH Coal mining 601699. SH Coal mining

6 600549. SH Nonferrous metal manufacturing 600971. SH Coal mining

7 600961. SH Nonferrous metal manufacturing 600549. SH Nonferrous metal manufacturing

8 600326. SH Nonmetallic mineral products 600961. SH Nonferrous metal manufacturing

9 600281. SH Nonferrous metal manufacturing 000898. SZ Ferrous metal manufacturing

10 002378. SZ Nonferrous metal manufacturing 002378. SZ Nonferrous metal manufacturing

Rank
ULN MLN

Stock code Industry classification Stock code Industry classification

1 600508. SH Coal mining 600307. SH Ferrous metal manufacturing

2 600971. SH Coal mining 600425. SH Nonmetallic mineral products

3 600188. SH Coal mining 600281. SH Nonferrous metal manufacturing

4 600028. SH Oil and gas mining 600549. SH Nonferrous metal manufacturing

5 600326. SH Nonmetallic mineral products 600231. SH Ferrous metal manufacturing

6 601699. SH Coal mining 600992. SH Metal mineral products

7 600348. SH Coal mining 600326. SH Nonmetallic mineral products

8 600397. SH Coal mining 002378. SZ Nonferrous metal manufacturing

9 600992. SH Metal mineral products 000898. SZ Ferrous metal manufacturing

10 600403. SH Coal mining 600961. SH Nonferrous metal manufacturing

Fig. 3 Controllability ratio of risk control network in a two-layer case.
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Dynamic simulation of risk control in a three-layer case based
on key risk stocks. In Fig. 8, less than 15% of the driver nodes can
control more than 90% of the network nodes; however, to achieve
global control, the proportion of driver nodes must account for
approximately 18%. Approximately 13% of the nodes can be

globally controlled for a two-layer case. The larger the network
scale, the denser the correlation relationship, and the more sub-
systems must be controlled; thus, its difficulty increases suddenly.
This is consistent with the effective global control of the stock and
futures markets in reality and with the findings of previous

Fig. 4 Change of control signal with time in a two-layer case.

Fig. 5 Direction of the node control signal in the UMN case.
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studies. The network size and density in the mining finance
network are large, so more driving nodes are needed to achieve
global control.

After calculation, global controllability can be achieved only
when the number of drive nodes is 11. Finally, when t= 18, the
control signal continues to approach 0, and when t= 20, the total
energy consumption of the control signal increases, as shown in
Fig. 9.

Therefore, t= 18 is set as the final control time, according to
which, the corresponding control strategy is proposed. The figure
shows that at time t= 6, if the overall risk value in the network is
reduced by 10%, the magnitude of the input control signal is in
the tens of thousands. At t= 12, it falls below 10. The energy
consumption of the control signal decreases the fastest with time,

and a small energy consumption can be achieved in the shortest
time, indicating that the control efficiency is greater than that of
the double layer. Through calculation, the cost of risk regulation
in the three-layer case is more significant than that in the upper-
lower and upper-middle layers, and the cost of the number of
control nodes is higher than that in the two-layer case. However,
the control time cost is reduced. This shows that controlling the
risk in the three-layer case is more complicated.

Control strategy for eleven key risk nodes in the WICN case. When
t= 18, the control signal trend of each stock node is shown in Fig.
10. Stocks 600508.SH, 600971.SH, 600188.SH and 600028.SH
belongs to the mining and selection industry in the upper layer,
600307.SH and 600231.SH belongs to the middle layer of the

Fig. 6 Direction of the node control signal in the ULN case.

Fig. 7 Direction of the node control signal in the MLN case.
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ferrous metal smelting industry, 600326.SH is a nonmetallic
mineral product, and the other four stocks are from the non-
ferrous metal smelting and processing industry. This indicates
that more controls should be implemented in the metal smelting
industry in the middle layer. Because they are in the middle layer
of the industrial chain, they connect the upper and lower layers,
which means they are more likely to transmit risk. Therefore,
greater control over the middle layer nodes is more conducive to
reducing global risk.

From the point of view of signal energy consumption, the risk
control cost of stocks is 600508.SH, 600307.SH, 600961.SH, and

600971.SH is higher, indicating that more signal control should
be applied to these stocks. The signal input of each stock is
increasing, suggesting that active monetary policy measures can
be taken to control the risk in the mining financial market. For
example, market managers can inject more capital into stocks,
increase their liquidity in the market, ensure the stability of the
financial market, and then reduce the overall risk value. Among
them, 600508.SH, 600971.SH, 600188.SH, 600307.SH, 600231.SH
stocks appear the most frequently in different situations, most of
which are stock nodes in the middle and upper layers. In the two-
layer case, the upper-layer stock nodes are more critical to risk
reduction, whereas the middle-layer nodes are more critical in the
three-layer case. Therefore, these stocks should be given more
attention and risk control according to different cases.

It is known from the above that the signal input of these stocks
is increasing and approaching the signal trend of 0, which can be
understood as loose monetary policy. The above research shows
that stock price volatility has intensified in the past two years. In
the postepidemic era, the risks in the mining financial market are
relatively significant, which is most likely because the weakness of
the macroeconomy has led to the limited development of the real
economy of the mining industry. Financing difficulties in the
mining financial market increase investor panic and lead to stock
market volatility, resulting in a wide range of stock price
fluctuations and triggering a wide range of risk conduction.
When China suffered a stock market crash in 2015, the
government adopted interest rate and reserve ratio cuts to
promote capital injection and flow in the stock market. The
national team took the initiative to increase capital investment,
buy some essential stocks, and restore liquidity in the stock
market. Therefore, risk control in the mining financial market in

Fig. 9 Change of control signal with time in a three-layer case.

Fig. 8 Proportion of driver nodes and control nodes in a three-layer
network.
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the postepidemic era can also adopt the same loose
monetary means.

Discussion and conclusions
In this work, we conduct risk control in the mining stock of the
industrial chain by synthetically adopting the GARCH, DCC, and
complex network dynamics models. A risk conduction and
control network is constructed, and several risk control strategies
are proposed accordingly. The primary conclusions are as follows:

The conduction range, conduction strength, and conduction
number of nodes show a positive trend. The number of stocks
with high-risk conduction strength in the network is less than
20%, which aligns with the Pareto principle. The stock nodes in
the upper and middle layers of the industrial chain have a higher
probability of bringing risks to the overall situation; thus, more
attention and management should be given to such nodes. For
example, 600508.SH (Shanghai Datun Energy Resources Co.,
Ltd.), 600971.SH (Anhui Hengyuan Coal Industry and Electricity
Power Co., Ltd.) and 600231.SH (Lingyuan Iron & Steel Co., Ltd.)
are stocks of large mining enterprises in China that significantly
impact the development of the entire mining industry. A large
range of strong risk conductions will occur when they have a risk
impact. Key risk points in the network can be controlled
according to different situations. Risk prevention can move from
the traditional “too big to fail” regulatory concept to the “too
connected to fail” regulatory concept.

Approximately 13% of the nodes can achieve global control in the
two-layer case, whereas approximately 18% is required in the three-
layer case. In the two-layer case, the risk control time is t= 24, while
in the three-layer case, it is t= 18. Considering the risk control cost,
time cost, and node number cost comprehensively, the risk control
difficulty and cost are the lowest in the upper–low layer case. In
contrast, the risk control difficulty is more significant in the
upper–mid and middle-low layer cases. The node cost in the three-
layer case is approximately twice that in the two-layer case, and the
regulation cost is also greater. Although the time cost has decreased,
the overall control difficulty is greater than in the two-layer case. This
shows that for a network with a higher average degree, the more

complex the correlation, the more difficult it is to control. Under the
final control strategy, the control signal tends to increase or decrease
over time and approaches 0. Market managers should take incentives
or tightening policy signals to reduce the transmission of risks. In the
postepidemic era, the government should strengthen the control of
key risk stocks, adopt relatively loose monetary policies, increase the
injection of funds in the market, and stabilize the development of the
stock market.

Key risk nodes such as 600508.SH (Shanghai Datun Energy
Resources Co., Ltd.), 600971.SH (Anhui Hengyuan Coal Industry
and Electricity Power Co., Ltd.), 600188.SH (Yankuang Energy
Group Company Limited), 600307.SH (Gansu Jiu Steel Group
Hongxing Iron and Steel Co., Ltd.) and 600231.SH (Lingyuan
Iron & Steel Co., Ltd.) is the most common in different cases,
indicating that these stocks play a more critical role in risk control
and reduction. The coal mining industry is in the upper layer,
while the metal smelting and processing industry is in the middle
layer. They are large mining companies, most of which are
located in the middle stream of the industrial chain and play a
“connecting role”. It is necessary to pay more attention to the
risk-conduction characteristics of these stocks to prevent risks
and ensure timely control. The industry-driving effect plays a
vital role in risk conduction, which is necessary for risk man-
agement from the perspective of the industrial chain.

In summary, this paper provides a clear framework for
studying the risk control of Chinese mining stocks in the
industrial chain. This provides market managers and policy-
makers with a more comprehensive risk control scheme. At
present, the risk control model is constructed on the basis of the
principles of network dynamics and structural control theory
without considering risk supervision concepts and policies in the
actual mining financial market, which will be taken into con-
sideration in the future.

Data availability
All data generated or analyzed during this study are included in
this published article and its supplementary information and

Fig. 10 Direction of the node control signal in the WICN case.
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supplementary data files. The supplementary information is in
Table S1. The supplementary data files include the raw data in
excel called 50 window data, the files of the control data of the
middle and lower layers, the upper and lower layers, the upper
and middle layers, and the whole layer.
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