Table 9 Robustness evaluation of the multinomial logistic model estimated on the income groups.

From: Tracing long-term commute mode choice shifts in Beijing: four years after the COVID-19 pandemic

Commute mode switch

Sample group

Baseline model

Alternative model 1: without seasonal fixed effect

Alternative model 2: resampled by gender-age

Alternative model 3: resampled by affluence index

\({\rm{Exp}}\left({\hat{\mu }}_{0}\right)\)

P-v.

\({\rm{Exp}}\left({\hat{\mu }}_{0}\right)\)

P-v.

\({\rm{Exp}}\left({\hat{\mu }}_{0}\right)\)

P-v.

\({\rm{Exp}}\left({\hat{\mu }}_{0}\right)\)

P-v.

Private car (base) → Public transit

M

0.677

0.000

0.589

0.000

0.666

0.000

0.680

0.000

H

0.590

0.000

0.515

0.000

0.584

0.000

0.688

0.000

\(\left|1-{\rm{Exp}}\left({\hat{\mu }}_{0}\right)\right|\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

Private car (base) → Active travel

M

1.736

0.000

1.292

0.000

1.598

0.000

1.511

0.021

H

1.832

0.000

1.324

0.000

1.844

0.000

1.876

0.040

\(\left|1-{\rm{Exp}}\left({\hat{\mu }}_{0}\right)\right|\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

Public transit (base) → Private car

M

3.781

0.000

3.290

0.000

3.953

0.000

3.453

0.000

H

6.041

0.000

5.441

0.000

6.230

0.000

6.209

0.000

\(\left|1-{\rm{Exp}}\left({\hat{\mu }}_{0}\right)\right|\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

Public transit (base) → Active travel

M

2.869

0.000

2.357

0.000

2.663

0.000

2.148

0.000

H

4.362

0.000

3.507

0.000

4.862

0.000

3.990

0.000

\(\left|1-{\rm{Exp}}\left({\hat{\mu }}_{0}\right)\right|\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

Active travel (base) → Private car

M

1.322

0.000

0.961

0.492

1.061

0.592

1.102

0.607

H

1.378

0.000

1.068

0.212

1.430

0.000

1.834

0.032

\(\left|1-{\rm{Exp}}\left({\hat{\mu }}_{0}\right)\right|\)

\(H\, >\, M\)

 

\(H\, >\, M\)

\(H\, >\, M\)

Active travel (base) → Public transit

M

1.032

0.542

0.907

0.030

0.901

0.213

1.033

0.802

H

0.777

0.000

0.699

0.000

0.793

0.001

1.059

0.784

\(\left|1-{\rm{Exp}}\left({\hat{\mu }}_{0}\right)\right|\)

\(H\, >\, M\)

\(H\, >\, M\)

\(H\, >\, M\)

 
  1. “M” represents middle-income group, and “H” represents high-income group.