Table 2 Mixed Strategy Game Matrix for High, Medium, and Low-skilled firms.

From: Spatial sorting and selection within urban agglomerations: a tripartite evolutionary game model approach

 

Low-skilled firms

Medium-skilled firms

enter central city \(P\left({\beta }_{1}\right)=y\)

do not enter central city \(P\left({\beta }_{2}\right)=1-y\)

High-skilled firms

enter central city \(P\left({\alpha }_{1}\right)=\,x\)

enter central city \({\rm{P}}\left({{\rm{\gamma }}}_{1}\right)={\rm{z}}\)

â‘ \({{\mathbb{A}}Q}_{\alpha }+F-C\)

â‘ \({{\mathbb{A}}Q}_{\alpha }+F-C\)

②\({{\mathbb{A}}Q}_{\beta }+F-C\)

②\({Q}_{\beta }-D\)

③\({\mathbb{A}}{Q}_{\gamma }+F-C\)

③\({\mathbb{A}}{Q}_{\gamma }+F-C\)

do not enter central city \({\rm{P}}\left({{\rm{\gamma }}}_{2}\right)=1-{\rm{z}}\)

â‘ \({{\mathbb{A}}Q}_{\alpha }+F-C\)

â‘ \({Q}_{\alpha }+F\)

②\({{\mathbb{A}}Q}_{\beta }+F-C\)

②\({Q}_{\beta }-D\)

③\({Q}_{\gamma }-D\)

③\({Q}_{\gamma }-D\)

do not enter central city \(P\left({\alpha }_{2}\right)=1-x\)

enter central city \(P\left({\gamma }_{1}\right)=z\)

â‘ \({Q}_{\alpha }-D\)

â‘ \({Q}_{\alpha }-D\)

②\({{\mathbb{A}}Q}_{\beta }+F-C\)

②\({Q}_{\beta }-D\)

③\({\mathbb{A}}{Q}_{\gamma }+F-C\)

③\({Q}_{\gamma }+F\)

do not enter central city \(P\left({\gamma }_{2}\right)=1-z\)

â‘ \({Q}_{\alpha }-D\)

â‘ \({Q}_{\alpha }-D\)

②\({Q}_{\beta }+F\)

②\({Q}_{\beta }-D\)

③\({Q}_{\gamma }-D\)

③\({Q}_{\gamma }-D\)