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Complex investment decisions require thorough study. Modern portfolio theory provides
some broad guidelines on diversification within this framework, focusing on financial
instrument categories. A diverse portfolio and favorable economic conditions are the main
factors affecting investor returns. The research used the RIETS portfolio and genetic algo-
rithm to improve investment portfolio Sharpe ratios. Since 2008, when the financial crisis
increased activity, investors and scholars have focused on REITs. REIT investments have
gained popularity in recent years due to their long-term stability and consistent profitability.
Studies that emphasize management perspectives are valuable, but they also have significant
limitations. Asset management’s primary goal is to optimize investor returns. It is imperative
to evaluate asset management strategies in order to guarantee the assets' long-term effi-
ciency. This study examines 456 distinct portfolios in order to rectify this deficiency and
demonstrates how the incorporation of REITs into mixed-asset portfolios enhances them in a
variety of critical financial metrics. The results of the study suggest that utilizing genetic
algorithm optimization outperforms a globally diversified portfolio with the lowest volatility.
The data indicates that investing in REITs is a highly effective strategy for improving the
Sharpe ratio, average returns, and risk profile.
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Introduction

eople have generally agreed for a good length of time on the

need to include real estate in a diversified financial strategy.

Including real estate in a mixed-asset portfolio has several
possible benefits. Historically, the real estate market (Feng and Li,
2014) has shown little relationship with traditional asset classes,
including bonds and equities. Reducing the link between assets in
a portfolio will help improve portfolio variety and, hence, lower
general risk (Li and Wang, 2018). Moreover, the prospect of
making rental income from real estate assets can offer a con-
sistent flow of money, therefore supporting against inflation and
helping to sustain the economy during the recession. Real estate
can also appreciate over time since property values usually
increase (Li and Lei, 2011). Comparing the performance of a large
real estate portfolio to a stock- or bond-based portfolio helps one
assess the added advantages of real estate investment. Previous
research on this comparison has shown data supporting mixed-
asset portfolios, including real estate (Hausler et al. 2018).

According to the research included in the reference, portfolios
with real estate assets produced more risk-adjusted returns than
those devoid of real estate. Furthermore, it underlined the benefits
of adding real estate to a portfolio by stressing the advantages of
more variety and changing returns for risk (Hansz et al. 2017). To
find the best allocation of assets in a mixed-asset portfolio for an
unknown set of tests, however, the study used prior data. One
clear disadvantage of this method is that the test set’s prices could
vary significantly from the training set’s prices (Shen, 2021).
Using weights calculated from the training set instead of the test
set could lead to poor portfolio performance characterized by
higher risk and lower return (Ling and Naranjo, 2015). Another
way to solve the above-described issue is to try to forecast the
values of the test set before doing the portfolio optimization
process, which involves deciding the most favorable weights
inside the test set. This method merely considers the test set,
which is the particular time of data relevance (Hansz et al. 2017).

Thus, since the accurate forecasts will closely match the values
of the test set, the accuracy of portfolio selection will be raised.
Nevertheless, the quality of the results depends much on the
accuracy of the pricing estimations (Loo, 2019). Following price
estimations, we maximize a bond, stock, and real estate portfolio
using a genetic algorithm (GA). We assess the performance of
this portfolio in relation to a portfolio made just of equities and
bonds to guarantee complete research (Conlon et al. 2021). This
study aims to show that, compared to a portfolio with less or no
real estate investment, a portfolio with a considerable real estate
allocation generates higher returns (Deng et al. 2024). We thus
assess these results by contrasting them with the benchmark, a
portfolio free of real estate. Financial markets, including the
Sharpe ratio, returns, and risk (Loo, 2020), form the basis of this
analysis.

Another way to solve the issue is to try to forecast the values of
the test set before doing the portfolio optimization process, which
consists of deciding the most favorable weights inside the test set.
This method emphasizes the test set, which is the particular time
of the relevant data (Hansz et al. 2017). The accurate forecasts
will so closely coincide with the values of the test set, enhancing
the accuracy of portfolio choice (Deng et al. 2024). However, the
quality of the results is much influenced by the accuracy of the
pricing projections (Loo, 2019). Following price estimates (Loo,
2020), we optimize a bond, stock, and real estate portfolio using a
genetic algorithm (GA). We assess the performance of this
portfolio with respect to a portfolio comprising only equities and
bonds to guarantee comprehensive research. We wish to show
that, compared to portfolios with a smaller or no real estate
allocation, portfolios with a significant one produce better returns
on investment. This is achieved by evaluating financial metrics,
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including the Sharpe ratio, returns, and risk, and by matching the
findings to the benchmark, a portfolio devoid of real estate
investments. The novelty and originality of the research relate to
the optimization methodology used in the research and the fact
that previous researchers have mainly focused on the inclusion of
REITS as one of the possible avenues of diversification while
using a REITS-based portfolio as one of the ways of increasing the
overall portfolio returns such as studies by Lee and Stevenson
(2005) and Pandolfo et al. (2019). While the research related to
the optimization of the portfolio has concentrated on using dif-
ferent techniques such as “multi-objective particle swarm opti-
mization” by Kaucic (2019), and multigranularity fuzzy time
series by Li et al. (2019), LSTM by Hu et al. (2019), etc. While we
combined both approaches and executed them by using the
“Genetic Algorithm” approach.

The study incorporates the daily pricing elements of global
financial markets, including those of the US, UK, and Australia.
The financial instruments were categorized into three primary
groups: equity, fixed income, and real estate. The bond prices
were obtained from Investing.com, while the stock and REIT
prices were obtained from Yahoo! Finance. The tariffs will con-
tinue to be in force from January 2017 until January 2024. We
utilized the values of five stocks, bonds, and real estate investment
trusts (REITs) per market. Hence, a grand total of 90 datasets
were utilized in the inquiry. In order to mitigate the effects of
currency fluctuations, we have made the decision to exclusively
use US dollars for all pricing. The next section of this paper
consists of a review of the literature. Followed by the “Data and
research methodology” section. While the next section consists of
results of the study and discussion. The final section consists of
the conclusion of the study.

Literature review

Investment in the context of modern portfolio theory. Financial
investing is expensive, so sensible investors demand a higher
return. A large profit usually comes with a great deal of expense
or risk. The investment is less likely to succeed if the return
surpasses the risk. However, some investors may not adhere
strictly to ports. Different people may prefer high-risk activities.
Some individuals choose assets with a high level of risk because
they expect a big gain, while others prefer a safer risk profile
(Michaud, 1989). In this hypothetical case, a profitable, low-risk
product would be sensible. Because the market is so complex, it
can be challenging to spot a stock with dynamic changes (Vas-
siadou-Zeniou and Zenios, 1996). According to contemporary
portfolio theory, even risk-averse investors would choose assets
with the maximum return potential based on risk tolerance. If
presented with two options with identical projected returns,
invest in assets with a better return at the same risk or a lower risk
(Markowitz, 1952).

To optimize investment portfolios, modern portfolio theory
(MPT) adjusts asset weights (wi) to construct a single-weighted
portfolio that balances risk and utility. When the expected return,
ERp), is 1, the portfolio equation is E(Rp)=>_i = 1nwiE(Ri)
(Michaud, 1998). Modern portfolio theory (MPT) generates
several efficient frontiers with different risk-return ratios for a
given collection of assets. Modern portfolio theory (MPT)
generates several efficient frontiers with different risk-return
ratios for a given collection of assets. Modern portfolio theory
(MPT) uses asset covariance to determine an efficient frontier
(DeMiguel and Nogales, 2009). Alphas of an investor’s portfolio
growth relative to the market is defined by risk and reward ratios
(DeMiguel and Nogales, 2009; Deng et al. 2013; Desmettre et al.
2015; Ding et al. 2018; Doan et al. 2015). Ratios produce MPT-
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efficient boundaries. A portfolio with more autonomy deviates
more from the market. The efficient frontier shows all portfolios’
risk. To find the best portfolio, assess the curve gradient between
the efficient frontier and the market proxy, or hurdle rate. A risk
range’s steeper slope indicates more volatile returns (Elbannan,
2015). Slope demonstrates how sensitive the system is to risk
changes. Adjustments change the market proxy’s slope. Thus,
projected excess returns and systematic risk coefficients fluctuate,
affecting optimum portfolio composition and risk sensitivity
(Scutella and Recchia, 2013). Beta represents the market’s optimal
frontier. Alpha is responsible for portfolio-efficient frontier
geometry changes. Since assets may decrease risk or create higher
returns for the same risk, any portfolio outside an efficiency
frontier is likely inefficient (Dupacova and Kopa, 2014).

There exists a clear relationship between the sorts of assets and
the ratios that generate efficient frontiers and portfolios. The
slopes of the tangent lines elucidate the correlation between risk
and benefits. The ratio’s denominator of perceived risk varies,
making direct comparisons illogical. Any portfolio can yield all
four ratios to compare all models on one platform (Lo, 2002;
Sharpe, 1998). Remember that MPT has many downsides and
inefficiencies. According to Liu and Chen (2020), it provides a
complete picture of an asset’s performance, but it develops a
portfolio using previous data, which may be problematic (Deng
et al. 2013). MPT and the Sharpe ratio assume that historical
performance predicts future returns and investor constancy. The
MPT may not evaluate breaking news. MPT assumes normally
distributed volatility and accurate market sentiment measure-
ment, doubting the Sharpe ratio (Surtee and Alagidede, 2023).
Researchers have extensively studied skew and kurtotic distribu-
tions, revealing differences in their anticipated outcomes. Further
simulations have revealed that high-peakedness distributions with
a propensity to drop values are beneficial (Xidonas et al. 2017).
This is logical since investors can profit from negatively skewed
distributions, which boost returns. It is logical to assume that
expected returns from a distribution with positive kurtosis would
have less variance than expected returns from a normal
distribution. Unique distributions outperform MPT under
normal assumptions (Quaranta and Zaffaroni, 2008).

Role of REITS in portfolio management. Real estate researchers
have long investigated REIT return diversification. Several studies
have studied how REITs affect varied investment portfolios.
Based on REIT return time series analysis (Ling et al. 2000) found
that dynamic asset allocation should include REIT shares. Many
studies have concluded that conditioning on lagged REIT per-
formance helps investors estimate volatility and understand its
relationships with other assets (Chui et al. 2003). Compared to
the S&P 500, US corporate bonds, REITs, and the commercial
mortgage-backed securities (CMBS) index from 1999 to 2008
found that CMBS and REITs had differently volatile and corre-
lated returns (Yang et al. 2012).

Real Estate Investment Trust (REIT) returns are more
asymmetrically volatile than other asset returns. The authors
examine the benefits of diversifying portfolios with corporate
bonds and CMBS, especially for equities and REITs. Lee and
Stevenson (2004) studied REITs. Their research shows that real
estate investment trusts (REITs) have built benefits over time by
serving a variety of asset classes and mixed-asset portfolios. The
authors find that REITS relative performance in a diversified
portfolio influences their benefits. Ling et al. (2000) examined the
association between stock, bond, and REIT returns. After the
1990 structure changes, real estate investment trusts (REITS)
resemble stocks more than bonds, according to their research.
Additional evidence supports this (Lee and Pai, 2010). After 1992,

REITS’ benefits to diverse asset portfolios faded. Cho and
Elshahat (2011) research on REIT diversity might help you grasp
its benefits. European researchers found a strong positive
correlation between REITs and stocks. According to 2005
research by Lee and Stevenson, real estate investment trusts
(REITs) diversify portfolios better as investors hold onto their
shares longer. This study examined REIT performance in mixed-
asset portfolios over time. Loo (2020) examined the benefits of
diversifying with REIT equities, which include preferred and
common shares. The study divided investors by risk tolerance
using a utility-based paradigm. The study found that low-risk
investors can earn higher returns from common REIT stocks,
whereas high-risk investors can reduce risk by investing in
preferred REIT stocks. Assuming that investor risk tolerance
determines REIT diversification benefits.

Real estate investment trusts are considered defensive. To
protect against inflation or worldwide disasters, invest in
defensive assets (Wang et al. 2016). A financial market crisis
could hinder investors’ asset price volatility mitigation efforts.
Investors who want to maximize earnings while minimizing risk
may be risk-averse (Anderson et al. 2015). According to Hansz
et al. (2017), and Olanrele et al. (2014) real estate investment
trusts (REITSs) are sector-specific investment vehicles with similar
characteristics.

Negative shocks cause economic downturns that boost REIT
returns. Energy market fluctuations can predict gold price
volatility (Shen, 2021). More research by Bonato et al. (2022)
found that stock and REIT markets are more or less susceptible to
gold market volatility. Cici et al. (2011) revealed that REITs
perform better during economic contractions induced by supply
interruptions because investors desire these assets. This increases
REIT trading volume and volatility. The authors note that when
people buy traditional assets instead of REITs during economic
success, their returns decline (Shen et al. 2021). REIT earnings fall
when transactions fall, reducing market volatility. Although
REITs and gold as investment instruments have not been
extensively studied, the literature has shown promising results.
REITs are long-term investments that allow investors to shift cash
for other financial operations (Loo, 2019). REITs, like gold, can be
easily converted into the currency of the economy to hedge
against economic instability. Gold is durable and exchangeable,
according to Block (2012), Cheng and Roulac (2007) and Sirmans
et al. (2006) classify REITs as mortgage-based, equity-based, or
hybrid. REITs might focus on equity or mortgages. The former
collects rental payments from tenants to make money, while the
latter lends to developers at market rates (Block, 2012). In 2011,
the SEC stated that all hybrid REITs have equity and mortgage
REITs in their portfolios. Real estate investment trusts are
popular worldwide. Global REIT market capitalization rose from
$1.7 trillion in 2016 to $35 trillion in 2020. In addition, developed
market real estate, including residential and non-residential
developments, contributed 217 trillion US dollars. According to
Shen (2021), this amount represents almost 60% of global assets.
Global gold extraction is rising alongside REITs, though not
as fast.

Application of genetic algorithms in portfolio management.
Evolutionary computing uses genetic algorithms. Evolutionary
computation is known for handling combinatorial optimization
challenges in computer intelligence. Their goal is to follow natural
evolution principles, which state that only well-adapted creatures
may survive (Daniusis and Vaitkus, 2009). The first computers in
the 1950s sparked substantial research in this sector. R.M.
Friedberg studied automated programming to create programs
that use input and output data to perform tasks (Hastings and
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Woaner, 1985). Fraser modeled genetic systems with a computer in
1957. Later, H.J. Bremermann presented evolutionary algorithms
and used the evolutionary model to solve equation systems,
strengthening evolutionary computation (Katoch et al. 2021).

Genetic algorithms are currently appearing in finance text-
books after a rapid rise, according to Sivanandam and Deepa
(2007). The author describes genetic algorithms as a feasible
solution to many complex financial problems that demand
reliable and effective optimization. People have used genetic
algorithms to predict returns, optimize portfolios, identify trading
rules, and optimize trading rules (Kumar and Sharma, 2021).
Genetic algorithm portfolio optimization works. The best
portfolio using GAs was chosen. The genetic algorithm (GA)
allocated stocks in a risk-minimizing portfolio to balance
projected return and risk. The study’s findings, which examined
various equilibria, proved the effectiveness of the technique
(Chou et al. 2017; Wang et al. 2022). To improve the stock
portfolio, we used genetic algorithms and a dynamic portfolio
optimization method. GA has a higher return and lower risk than
the other techniques studied (Yang et al. 2014).

Genetic algorithms use iteration to find the best way to change
a population in response to change. Chromosomes may be in this
population. This algorithm causes chromosomal competition.
Each chromosome has genes that may solve the problem. Each
iteration, or generation, creates a new population of the same size
(Kumar and Sharma, 2021). Choosing this generation indicates
that its chromosomes are more “adapted” to their environment.
Finally, the chromosomes will converge at the optimal selection
function. Genetic operators such as selection, crossover, and
mutation generate new populations (Lertwachara, 2007).

Genetic algorithms (GAs) often solve optimization problems.
Many financial scenarios employ this method due to its unique
features(Huang, 2012). Due to low-order serial correlation, stock
index returns do not routinely beat buy and hold. Yu et al. (2012)
propose a genetic algorithm (GA)-based portfolio management
investment plan discovery method. In stock market analysis,
moving averages of closing prices exhibit correlations (Yaman
and Dalkulig, 2021). Wang et al. (2022) used GA to optimize index
fund portfolios. The Markowitz model is a classic portfolio
management theory. It predicts asset return and risk by
calculating the historical return average and variability (Faridi
et al. 2023; Swinkels, 2023). To manage multi-objective portfolio
selection, researchers use goal and multiple-objective
programming.

Genetic algorithms (GA) often solve portfolio optimization
problems. A genetic algorithm (GA) optimizes an unconstrained
portfolio with risk (Aithal et al. 2023; Deliktas and Ustun, 2023).
We provide a distributed genetic algorithm (GA) for portfolio
selection that is based on a parallel virtual machine (PVM). We
discovered that a genetic algorithm (GA) for Markowitz portfolio
selection outperformed quadratic programming in time complex-
ity, with an approximate time complexity of O(nlogn) (Gunjan
and Bhattacharyya, 2023). Most techniques ignore minimum
transaction volumes. Evaluate three strategies for portfolio
selection based on minimal transaction volumes. The goal of
genetic algorithms is to enhance problem-solving skills. Accord-
ing to Dallagnol et al. (2009), the suggested algorithms build
portfolios close to the efficient frontier. We optimize portfolios
using a genetic algorithm (GA) as a heuristic based on risk
factors.

To summarize prior research has examined the effectiveness of
multi-asset portfolios that include REITs using the efficient
frontier approach. Nevertheless, there is a lack of knowledge
regarding the advantages of incorporating both domestic and
international REITs into diversified portfolios or thoroughly
studying all potential combinations of asset classes.

4

Data and research methodology

Data preprocessing. We apply scaling and differencing methods
to each time series dataset before using it to predict prices. For
this project, we employ a first-order differencing method to
modify the data. Time series researchers often use first-order
differencing to eliminate the trend component of the data.
Making an unstable time series stable is the goal. If you have a
stationary time series, its statistical features stay the same over a
certain amount of time. People like to use stationarity because it
makes it easier to look at and describe the underlying patterns.
The difference between two consecutive observations, denoted as
D, is what makes the new time series. We create it by subtracting
the earlier observation, P,_;, from the current observation, P;.
Equation (1) shows how the scaling equation adjusts Dt numbers
to stay within 0 to 1.

This implies that genetic algorithms (GA) could potentially
address issues related to portfolio optimization, taking into
account various risk factors. There are references that say a
smaller portfolio size may improve the performance of assets
while still keeping the pace at a satisfactory level. Several things
affect how well a portfolio does. We must consider risk and
connection in the stock market.

(D —D, min) (1)
(D —D min)

Dpin and Dy, represent D’s lowest and highest values,
respectively, among all datasets. The standardized value of each
variable, specifically the difference in price (D), is denoted by N,.

N, =

max

Features. TA indicators and past observations of a certain time
series, which we will call N, are the two types of features we're
using to solve the regression problem. We use the Akaike
Information Criteria (AIC) for optimization to find the lag time
and the historical readings (Ny, Ny, Nis, and N,7) as features.
People often use the Akaike Information Criterion, or AIC, as a
measure to select models. The number of features in a file can
change when the lag time is different. We also use five technical
analysis (TA) indicators: the Bollinger bands, the exponential
moving average (EMA), the simple moving average (SMA), and
the moving average convergence/divergence (MACD).

There is evidence to support the use of these indicators to
improve the accuracy of REIT price projections, and they are
useful for noticing patterns. The exponential moving average
(EMA) gives more weight to recent data than the simple moving
average (SMA), which finds the average of past prices. The
MACD measures changes in the short- and long-term exponen-
tial moving averages (EMAs). The simple moving average (SMA)
is the center of the Bollinger bands. Price movement refers to the
rapid changes in prices over time. For forecasting future price
changes, these factors provide useful information.

Loss function. We used one-day forecasts instead of out-of-
sample predictions to test this LSTM model. Following in the
footsteps of Li et al. (2021), who utilized LSTM to predict the
property prices in Hong Kong and discover that properties with
mostly English nomenclature are often more expensive. Thus
proving that the LSTM approach provides prospective real estate
buyers with a fresh perspective on managing the real estate brand.
Knowing the value at the moment (¢1) lets you guess it in the
future (£2). While it is true that predicting the value of an asset
two days in advance is difficult, it is important to note that
tomorrow’s worth alone is not sufficient for accurate forecasting
(Faridi et al. 2023). The process begins with an estimate of the
value at time step 1. We then use this estimate to determine the
value at subsequent time steps. Most of the time, analysts use
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today’s known price to make their predictions about tomorrow’s
price. Analysts use the real price for the next day and beyond to
predict the price at time point 2. We think that this different
approach, which uses real values as features instead of projec-
tions, will give us more accurate results. Using out-of-sample
predictions instead of one-day-ahead forecasts would be smarter
when it comes to optimizing a portfolio. Rebalancing the port-
folio every day for about 150 days based on predictions made one
day ahead of time could result in significant management fees.
Equation (2) illustrates the use of the root mean square error
(RMSE) as the loss function in this case.

The process begins with an estimate of the value at time step 1.
We then use this estimate to determine the value at subsequent
time steps. Most of the time, analysts use today’s known price to
make their predictions about tomorrow’s price. Analysts use the
real price for the next day and beyond to predict the price at time
point 2. We think that this different approach, which uses real
values as features instead of projections, will give us more
accurate results. Using out-of-sample predictions instead of one-
day-ahead forecasts would be smarter when it comes to
optimizing a portfolio. Over a period of approximately 150 days,
rebalancing the portfolio daily based on predictions made one day
in advance could result in significant management fees. In this
situation, the use of the root mean square error (RMSE) as the
loss function is demonstrated in Eq. 2.

j A2
Z!Jil(Pt_Pt)

i @

RMSE =

where |j|, denotes the quantity of observations for each dataset j,
P, denotes the actual price value, and P, indicates the prediction
value. It should be noted that, as mentioned, the scaled and
differentiated values are converted back to their original price
values (P,) for the purpose of calculating the loss function.

LSTM. We constructed this LSTM algorithm using the keras
function. We developed the Keras sequential technique step-by-
step to enhance the algorithm’s optimization for the training data.
Grid search determined the trainable hyperparameters as stated
by (Li et al. 2021). We trained the algorithms on suitable models
using the training data. We then applied the algorithms to the test
set using the predict function (Faridi et al. 2023). The holdouts
provided the test data. “Holdout data” in machine learning refers
to data collection elements not used for training. This will eval-
uate the model’s performance and its ability to generalize based
on unfamiliar data. This allows for a more clear assessment of the
model’s viability in practical settings. We investigated the gen-
eralizability and efficacy of the trained models by using holdout
data as a supplementary evaluation set. The algorithms trained on
the dataset can make predictions about unobserved holdout data
(Rather, 2021). By comparing the model’s predictions to the
known outcomes of the holdout set, we can use recall, accuracy,
and precision to judge how well the models work on new data.
The use of a specific holdout set for testing is critical since it
allows an objective assessment of the models’ real performance.
When you look at the models with the same training data, there is
a greater chance of overfitting and drawing too many conclusions
from the training cases, which can lead to results that are too
good (Nafia et al. 2023). When the models are not yet ready for
live deployment, the holdout set can compensate for the addi-
tional data. Once the algorithms were fit to the training data, they
were then applied to the test set by using the predicted attribute of
the relevant model.

Genetic algorithm. A genetic algorithm iteratively adjusts a
fixed-size population to find the best answer. The chromosomes,
or candidate points, in this example, indicate potential stock
weight combinations within the portfolio. This strategy creates
chromosome competition. Each chromosome has a set of
instructions known as genes, which may solve the problem. The
values of these genes may vary considerably (Katoch et al. 2021).
The population’s size remains steady over numerous generations.
The selection function implies that the superior chromosomes of
this generation “adapted” to their surroundings. The chromoso-
mal structures will realign throughout time in order to optimize
the selection function’s peak (Chou et al. 2017). Mutation,
selection, and recombination are all genetic mechanisms that
contribute to the emergence of a population.

Subsequently, we will assess the new hire’s suitability by
evaluating their fitness level.

__fi
STELT v

A fitness function is essential to assess whether a prospective
solution meets the challenge. n represents the population size.
The new population consistently receives one chromosome.
Generating a random integer r within the range of 0 to 1 does
this. If r is less than r, select the first chromosome; otherwise,
select the ith chromosome, such that r< P,_; < P;.

There has been a lot of use of evolutionary algorithms in
finance, especially for things like optimizing portfolios. The
genetic algorithm (GA) is a new way to use evolution to help us
solve the portfolio planning problem. The text that follows is a
shortened version of this GA usage guide. We give each of the N
assets in the portfolio a weight based on one of the N genes on a
person’s GA chromosome. To get a real number between 0 and 1,
add up all the weights. This number is one. Take a look at a
genetic algorithm user whose genotype is 0.5, 0.2, and 0.3. This
user has three assets, and each one has a weight of 0.5, 0.2, and
0.3. We give each gene a value (W; = 1/N for each asset i) before
we use a set of operators to change the weights. This version has
elitism, one-point mutation, and one-point crossover as suggested
by (Li et al. 2022). We normalize each individual to ensure that
the total weight remains constant after the genetic program
performs mutations and crossovers. Modern algorithms for
optimizing portfolios take a number of indicators into account
as a measure of fitness as suggested by Swinkels (2023) and Yeo
et al. (2023). Here, we find the Sharpe ratio by dividing the return
standard deviation by the gap between the risk-free rate and the
average return.

r— rf
S=—— 4)
The equation specifies the following variables: r stands for the
average investment return, ¢ for the risk-free rate, and r for the
standard deviation of the returns.

Oy

Results and discussion

Genetic algorithm. The research we conducted on genetic algo-
rithms will serve as the foundation for this new study. After these
three sections, we will scrutinize these results more closely,
focusing specifically on the expected Sharpe ratio, risk, and
return. To show the extra benefits that REITs offer investors, we
look at and contrast the success of portfolios that only contain
bonds or stocks with those that contain REITs. There are 399
portfolios that have real estate investment trusts (REITs) and 57
portfolios that do not. To get rid of this difference and make the
comparisons better, we added data from under-sampling the
REITs pool, with and without replacements. As quantitative
analysts, we look at different risk measures to figure out how
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diversified real estate assets are. The measures encompass the
expected average risk, the range of lowest and highest values, the
maximum potential loss, the standard deviation, and the down-
side variation. It is compared between portfolios that only have
stocks and bonds and portfolios that also have real estate
investments (Tables 1-4).

Expected portfolio returns. Table 6 displays the mean returns for
two types of portfolios: those that incorporate real estate invest-
ment trusts (REITs) and those that do not. Regardless of whether
we sample the return distribution or not for portfolios that
include real estate, it is evident that compared to portfolios
consisting solely of stocks and bonds, those that incorporate real
estate investment trusts (REITs) exhibit a higher average expected
return. The increase is 5.15% in the absence of replacement in the
sample, 4.94% when replacement is employed, and 5.25% when
replacement is not employed. We examined a variety of metrics
beyond just the mean, such as the standard deviation, downside
deviation, maximum drawdown, minimum-maximum range,
and other distribution moments, in order to assess the volatility of
the distributions. According to the data, there has been a sig-
nificant decrease of over 40% in the standard deviation and
downward deviation of return distributions for all combinations,
including real estate. Without a sample, the standard deviation
for combinations related to real estate decreases by 37.21%. When
using replacement sampling, it decreases by 37.03%, and without
replacement sampling, it decreases by 39.60%.

When we sample, we observe a decrease of 36.41% (without
replacement), 36.75% (with replacement), and 39.24% (with
downward deviation). Due to the increased variety of real estate-
related combinations, the maximum drawdown values increase
by 7.32 percent when sampling is not conducted, decrease by
17.25% when sampling is done with replacement, and decrease by

6

Table 1 Mean, SD, and Sharpe ratio for different classes of assets.
S&P 500 FTSE 100 S&P/ASX 200 US bond UK bond AU bond US REIT UK REIT AU REIT
X return (%) 0.04 0.00 0.10 0.04 0.01 0.01 0.01 0.01 0.02
o (%) 0.79 1.05 1.07 0.85 1.06 1.09 0.95 1.29 116
Sharpe ratio (%) 4.49 0.29 0.79 4.29 0.39 0.89 119 0.25 1.39
Table 2 Coefficients of correlation amongst different asset classes.
S&P 500 FTSE 100 S&P/ASX 200 Bond USA Bond UK Bond Aus REIT USA REIT UK REIT Aus
S&P 500 1 0.541072 0.342504 1.049574 0.504300 0.272m2 0.568388 0.357213 0.261606
FTSE 100 0.541072 1 0.487490 0.547376 0.993891 0.471731 0.280517 0.764855 0.350909
S&P/ASX 200 0.342504 0.487490 1 0.345656 0.465427 0.986537 0.222733 0.345656 0.766956
Bond USA 1.049574 0.547376 0.345656 1 0.512705 0.276314 0.574692 0.364567 0.262656
Bond UK 0.504300 0.993891 0.465427 0.512705 1 0.513756 0.261606 0.762754 0.325694
Bond Aus 0.272m2 0.471731 0.986537 0.276314 0.513756 1 0.178606 0.314137 0.701818
REIT USA 0.568388 0.280517 0.222733 0.574692 0.261606 0.178606 1 0.285907 0.297327
REIT UK 0.357213 0.764855 0.345656 0.364567 0.762754 0.314137 0.285907 1
REIT Aus 0.261606 0.350909 0.766956 0.262656 0.325694 0.701818 0.245846 0.297327 1
18.5% when sampling is done without replacement. Regarding
Table 3 Results of the race parameter tuning. real estate-related combinations, the upper end of the data range
may account for the observed 24.80% rise in the minimum-
Parameter Value | maximum ranges without the need for sampling. Conversely,
Tournament size 3 when sampling with replacement, there is a decrease of 11.67%,
Population size 299 and sampling without replacement leads to a reduction of 12.95%.
Crossover rate 1 The results indicate that combinations including real estate had
Mutation rate 0.01 lower volatility compared to combinations without real estate.
Number of generations n This suggests that real estate can offer diversification benefits for

portfolios that include many asset classes, the findings are in line
with earlier conclusions of Nafia et al. (2023) and those of Chou
et al. (2017).

Skewness is a statistical term that quantifies the asymmetry of a
distribution, providing information about data dispersion.
Kurtosis, another statistical metric, describes the form of a
distribution, particularly its tails, and indicates the degree of
“peakedness” or “tailedness” in comparison to a normal
distribution. Skewness and kurtosis both characterize a distribu-
tion’s shape, stressing different features of it (Hedges and Olkin,
1985). The results indicate that values of skewness and kurtosis
for real estate-related combinations increase by 82.10% (without
sampling), 56.37% (with replacement sampling), and 60.69%
(with sampling without replacement). Furthermore, there is an
increase of 236.20% in the absence of sample collection, 168.20%
when replacement is employed, and 179.43% when replacement is
not utilized. The results indicate that portfolios containing real
estate exhibit a return distribution that is tilted to the left, with
heavier tails. Therefore, we increase the probability of observing
returns that are higher than the average (Mueller and Mueller,
2019). We conducted a Kolmogorov-Smirnov (KS) test to
compare each set of distributions, with a significance threshold
of 5% as suggested by Adiguzel Mercangoz (2019). We conducted
the trials under three conditions: no sampling, sampling with
replacement, and sampling without replacement. None of these
dividend comparisons mentioned real estate. The null hypothesis
is the first assumption in every test, asserting that the two
distributions under consideration have a common origin. In
order to account for multiple comparisons, we applied the
Bonferroni correction to reduce the p-values to 0.0166. Three
distinct tests yielded identical results: a p-value of 3.5376e—04 for
the first test, 5.5466e—10 for the second test, and 5.5466e—10 for
the third test. The three results are statistically significant at the
5% level, as they are noticeably smaller than the adjusted p-value
of 0.0166. This genetic algorithm has determined that mixed-asset
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Table 4 Genetic Algorithm's average return for different portfolios.
Metrics Sample With REIT  Comparative Inclusive of REIT Comparative Including real Comparative
without (no difference (with replacement) difference estate (w/o difference
REIT sampling) replacement)

Mean (%) 0.03 0.04 5.15 0.04 4.94 0.04 5.25

SD (%) 0.01 0.00 —37.21 0.00 —37.03 0.00 —39.60

Downside 0.01 0.00 —36.41 0.00 -36.75 0.00 —39.20

deviation (%)

Drawdown 0.6051 0.6494 7.32% 0.5007 —17.25% 0.4931 —18.51%

(Max)

Min—max 0.02% 0.03% 24.80% 0.02% -11.67% 0.02% —12.95%

range

Skewness —1.5834 —2.8833 82.10% —2.4759 56.37% —2.5444 60.69%

Kurtosis 3.9957 13.4336 236.20% 10.7165 168.20% 111653 179.43%

Table 5 The average risk of the genetic algorithm for various portfolios.

Metrics Sample With REIT Comparative Inclusive of REIT Comparative Including real Comparative
without (ho difference (with difference estate (w/o difference
REIT sampling) replacement) replacement)

Mean (%) 0.93 0.89 —4.27 0.89 —4.42 0.89 —4.44

Standard 0.07 0.10 43.97 0.10 44.56 0.10 4538

deviation (%)

Downside 0.06 0.09 45.48 0.09 4535 0.09 46.01

deviation (%)

Max 0.2434 0.4249 74.57% 0.3671 50.80% 0.3683 51.30%

drawdown

Min—max 0.25 0.47 88.11 0.39 54.49 0.39 5411

range (%)

Skewness —1.1555 -1.1738 1.59% —1.1649 0.82% —1.156 0.05%

Kurtosis 3.4051 3.3498 —1.62% 3.4161 0.32% 3.3745 —-0.90%

portfolios that incorporate real estate exhibit decreased volatility
in the distribution of returns and increased overall returns.

Expected portfolio risk. In this section, we examine the expected
risk distributions for combinations that include or exclude real
estate, considering whether sampling is done with or without
replacement. Table 5 shows that the average estimated risk for the
combinations involving real estate drops by 4.27%, 4.42%, and
4.44% when sampling is done without replacement, with repla-
cement, or in another way. There are big differences in the risk
metrics between the different combinations. For example, the
standard deviation, downside deviation, maximum drawdown,
and minimum—maximum range all go up a lot when you com-
pare combinations that do not include real estate to those that do.
Specifically, we observe that the standard deviations for real
estate-related combinations are 43.97% (no sampling), 44.56%
(sampling with replacement), and 45.38% (sampling without
replacement). Without sampling, the downward deviation
increases by 45.48%. With replacement sampling, it rises by
45.35%. Without replacement sampling, it climbs by 46.01%. At
maximum drawdown, we see a 74.57% surge in the absence of
sample collection, a 50.80% surge when replacement is employed
in sampling, and a 51.30% surge when replacement is not
employed. This analysis reveals that the minimum and maximum
values increase by 88.11% in the absence of sampling, by 54.49%
when sampling is conducted with replacement, and by 54.11%
when sampling is conducted without replacement.

The two risk distributions have similar shapes; however, there
are some variations in skewness and kurtosis. For instance, in the
absence of the sample, the skewness values exhibit a 1.59% rise.
When the sample is included with replacement, the increase is

0.82%; without replacement, the increase is 0.05%. When
sampling with replacement is considered, the Kurtosis value
increases by 0.32%. Conversely, when sampling without replace-
ment is considered, the Kurtosis value decreases by 0.90%.
Finally, when no sampling is considered, the Kurtosis value
decreases by 1.62%. These data indicate that the distribution of
returns includes real estate and has smaller tails and a slightly
higher degree of negative asymmetry. This implies that there is an
increased probability of obtaining values that are significantly
beyond the norm. The same Kolmogorov-Smirnov (KS) test
round was applied to all three sets of distributions. We adjusted
the p-value using the Bonferroni correction, and the KS test
revealed significant changes at the 5% level of significance. This
finding contradicts the null hypothesis by showing significant
differences between the two distributions under comparison. The
p-value for the initial test was 3.2473e—09. The third and second
tests yielded results with p-values of 5.3961E—10. Including real
estate in a diversified portfolio generally helps to lower the overall
level of risk.

Expected Sharpe ratio. This section presents the analysis
results of the risk and expected return distributions discussed
in the previous sections (Table 6), specifically focusing on
expected Sharpe ratios. Displaying skewness, kurtosis, max
drawdown, downside deviation, standard deviation, and min-
max range is unnecessary because the Sharpe ratio may be
derived simply by dividing returns by risk. Instead, we display
the standard Sharpe ratio numbers. Additionally, this analysis
includes the various combinations of assets based on the
number of assets in a specific portfolio, ranging from two to
five.
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Table 6 The mean Sharpe ratio for the portfolios.

Metrics Sample With REIT Comparative Inclusive of REIT Comparative Including real Comparative
without (no sampling) difference (with replacement) difference estate (w/o difference
REIT replacement)

Overall (%)  3.60 4.02 1.72 4.02 11.66 4.02 11.70

2 assets 3.28 4.02 2234 3.72 13.31 3.75 14.06

portfolio

(%)

3 assets 3.61 3.97 9.87 3.96 9.75 3.97 10

portfolio

(%)

4 assets 3.77 4.05 7.29 4.03 6.82 4.03 6.69

portfolio

(%)

5 assets 3.88 4.06 4.63 4.04 4.02 4.06 4.62

portfolio

(%)

Table 7 P-values for the ks test on Sharpe ratio distributions.

With zero sampling

With replacement sampling

Without replacement sampling

Overall 5.5466E—10 5.5466E—-10 5.5466E—10
2 assets portfolio 5.5466E—10 5.5466E—10 5.5466E—10
3 assets portfolio 5.5466E—10 5.5466E—10 5.5466E—10
4 assets portfolio 5.5466E—10 5.5466E—-10 5.5466E—10
5 assets portfolio 5.5466E—10 5.5466E—-10 5.5466E—10

Table 8 Best GA run vs. GMV results.

Metrics Best genetic algorithm run GMV Relative
Sharpe ratio (%) 4.99 4.69 7.01
Risk (%) 0.69 0
Return (%) 0.0410 0.04 6.96

When it comes to real estate, the facts on the Sharpe ratio
absolutely always point to progress. When it comes to real estate
combos, we see an 11% increase if we don’t sample, an 11.55%
increase if we sample with replacement, and an 11.69% increase if
we sample without replacement. In two of the asset pairs we
looked at, adding real estate raised the Sharpe ratio by 22.34%
(without sampling), 13.31% (with replacement sampling), and
14.06% (with replacement sampling). When you mix real estate
into three different types of assets, the Sharpe ratios get better:
10.87% (without sampling), 9.75% (with replacement sampling),
and 10% (without replacement sampling). With real estate (not
including a sample), replacement (sampling with a rate of 4.02%),
and real estate (sampling without a reference), five different asset
pairs give a Sharpe ratio of 4.63%. In each of these groups, mix
real estate assets (not including samples) with replacement assets
(sampled at a rate of 4.02%) and real estate assets (sampled
without replacement).

We conducted multiple Kolmogorov-Smirnov tests to compare
each pair of distributions: one comparing everything excluding
real estate to everything else, another comparing everything
excluding real estate to everything else (without sampling), and a
third comparing everything excluding real estate to everything
else (with replacement). The p-values that came out of the KS
tests are shown in Table 7. Evidently, in each experiment, the p-
value, which was 5.3961E—10, remained virtually unchanged. The
Bonferroni correction was used to adjust the p-value. Therefore,

8

at the 5% level of significance, these data show changes (p-
value = 0.01666). Based on this research, it seems that a mixed-
asset portfolio including real estate holdings tends to have better
risk-adjusted returns. If the overall number of assets in the
portfolio is small, then these results become more apparent; the
gains for the two asset pairs appear to be greater.

Comparing results with GMV. We utilized a genetic algorithm
to enhance the portfolio thresholds for many portfolios. Fur-
thermore, for the lower-risk portfolio, we determined the weights
utilizing the global minimum variance approach. The Sharpe
ratio, risk, and return are synonymous owing to the process’s
predictability. Upon completing 20 iterations, we have identified
the optimal results for all viable portfolio combinations via the
genetic algorithm (GA). The results are displayed in Table 8 to
contrast the global minimum variance (GMV) method with the
GA method. The financial indicators for the designated period
(2020-2021) were computed utilizing the testing dataset follow-
ing the use of optimization methods on the training dataset. The
return exhibited a 7.28% increase, however the Sharpe ratio
demonstrated a 6.99% enhancement, which is apparent. This is
due to the fact that this GA utilizes Sharpe ratio optimization,
which reduces risk and enhances profit.

Table 9 presents the computed portfolio weights derived from
the global minimum variance (GMV) approach and the optimal
execution of the genetic algorithm (GA). The leading GA
portfolios exhibit the subsequent allocations: A contribution of
0.22% influenced the UK index, whereas a contribution of 33.29%
impacted the cent index. A contribution of 0.07% influenced the
bond indices in Australia and the S&P/ASX 200. A notable 44.5%
contribution influenced the FTSE/EPRA NAREIT Australia
index. The S&P 500 yielded a return of 47.59% via the GMV
technique, while the UK and Australian aggregate bond indices
produced returns of 5.91%, 16.52%, 22.48%, and 7.50%,
respectively, for the FTSE/EPRA NAREIT US and FTSE/EPRA
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Table 9 Weights of GMV vs. Best run of Genetic Algorithm.
Asset Best GA run GMV
S&P 500 (%) 0 50.00
FTSE 100 0 0
S&P/ASX 200 (%) 0.069 0
Dow Jones aggregate bond UK 0 0
Dow Jones aggregate bond UK (%) 0 6.21
Dow Jones aggregate bond AU (%) 15.49 16.93
FTSE/EPRA NAREIT US (%) 40.19 23.04
FTSE/EPRA NAREIT UK (%) 0.23 0
FTSE/EPRA NAREIT AU (%) 44.66 7.69

NAREIT US indices. We have intentionally allocated real estate
investment trusts among the premier GA portfolios. Table 8
indicates that this portfolio surpassed the GMV technique in
terms of predicted return and Sharpe ratio while adhering to the
identical minimum risk level. When optimizing the portfolio,
employing diverse combinations of asset classes is more beneficial
than selecting a singular global 9-asset solution. These results
align with the literature on efficient portfolio management, which
advocates for maximizing portfolio returns relative to a specified
amount of risk.

The objective of these experiments was to illustrate how REITs
diversify mixed-asset portfolios. Our GA methodology demon-
strates that combinations incorporating REITs have superior
return distribution compared to those lacking REITSs, evidenced
by an enhancement in the Sharpe ratio and average value. This
was observed from several perspectives. The risk distributions of
REIT combinations resemble those of non-REIT combinations,
albeit with a reduced average value. Secondly, we aimed to
demonstrate that genetic algorithms can surpass portfolio
optimization techniques based on global minimum variance.
Our genetic algorithm attained a peak Sharpe ratio of 4.99%,
surpassing the 4.69% of a global minimum variance approach.
This represents an improvement of 6.4%. Justification: enhanced
GA vyield. The outcomes of GA optimization indicate a more
substantial distribution of real estate relative to benchmarking.

Conclusion

The objective of the research was to demonstrate that including
real estate investment trusts (REITs) in a mixed-asset portfolio
can enhance its diversification potential. This GA technique
yields several outcomes when real estate investment trusts
(REITs) are included in a portfolio: Compared to its absence, the
inclusion of real estate investment trusts significantly improves
the visual representation of the return distribution. The projected
risk is characterized by a lower average value and forms that
resemble distributions without REITs. Furthermore, the inclusion
of real estate investment trusts resulted in an increase in the
Sharpe ratio. The return distribution’s volatility reduces the
standard deviation, minimum-maximum range, maximum
drawdown, and downside deviation. This research also sought to
demonstrate the superiority of genetic algorithms (GAs) over the
current global minimum variance (GMV) technique in optimiz-
ing portfolios. Based on this research, this Genetic Algorithm
(GA) might be able to get a maximum Sharpe ratio of 5.05%. This
is a big improvement of 6.99% compared to the 4.72% that a
global minimum variance (GMV) approach was able to get. The
reason is that the return on GA is 7.28 percentage points higher
than that on GMV. Furthermore, GA optimization demonstrates
a fairer allocation of space in comparison to the benchmark
approach. The main objective of this genetic algorithm develop-
ment was to improve the performance of REIT portfolios. This

experimental research indicates that investing in real estate
enhances the risk-adjusted return by reducing risk and increasing
the total return. The observed weak correlation between real
estate and other assets may account for most of this phenomenon.
Real estate-heavy portfolios tend to have higher Sharpe ratios
than non-real estate-heavy portfolios. Combinations that do not
include real estate have a higher likelihood of generating returns
that exceed the average because their expected returns are more
negatively skewed than combinations that do. This phenomenon
occurs because real estate combinations exhibit higher kurtosis
and lower volatility. Further study is required in the application of
genetic algorithms to improve investment portfolios that heavily
involve real estate. However, this study indicates that diversifying
investments in real estate might provide favorable outcomes. By
carefully analyzing historical data, we have successfully identified
the optimal weights for this activity. Another approach that has
the potential to enhance portfolio performance is the utilization
of perspective data, specifically price estimates.

The creation of an advanced multicriteria optimization model
that assists stakeholders in identifying the optimal combination of
conventional and non-traditional investment options represents a
significant advance in this research. This study uniquely examines
the non-normal distribution of variables, offering a more precise
representation of real-world investing scenarios. This study
addresses a gap in the literature by incorporating alternative
investments, such as REITs, alongside traditional assets to
enhance portfolio performance and deepen understanding of risk
management and diversification in the global financial landscape.
Individuals in the financial sector and scholars rely on this study
due to its comprehensive analysis and valuable implications.
Research indicates that incorporating alternative assets notably
enhances portfolio efficiency, as evidenced by the Sharpe ratio
across the majority of the analyzed combinations. This diversi-
fication benefit highlights the importance of incorporating mul-
tiple investments. Investors holding substantial stock and bond
portfolios can mitigate interest rate risks by modifying their bond
and equity ratios or incorporating managed futures of particular
maturities and hedge funds. The findings indicate that a portfolio
comprising both conventional and alternative investments yields
superior performance compared to a portfolio consisting solely of
conventional investments. This project is primarily focused on
employing a genetic algorithm to optimize portfolios that include
REITs.

Our experimental study demonstrates that by decreasing total
returns while increasing return amounts and thereby reducing
risk, real estate investment enhances risk-adjusted returns. This
primarily results from the lack of correlation between real estate
and other asset types. Typically, portfolios that include real estate
demonstrate a superior Sharpe ratio compared to those that do
not incorporate such assets. Adding real estate-related assets to a
portfolio makes the expected returns more concentrated around
the mean and the negative skew stands out more than in port-
folios that do not include real estate. This is likely associated with
the decreased volatility and increased kurtosis, suggesting a
greater probability of achieving returns that exceed the mean.
While our findings indicate that real estate can enhance invest-
ment portfolio diversification, further research is necessary to
thoroughly investigate the potential of employing genetic algo-
rithms to optimize real estate portfolios. This study primarily
derived the optimal weights from historical data. Utilizing pro-
spective data, commonly referred to as price projections, is an
effective way to enhance portfolio performance.

Limitations and future research directions. This work makes it
easier for people to find the best mix of traditional and non-
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traditional investment opportunities, which is a big step toward
creating a complex multicriteria optimization model. This study
offers a refined understanding of investment performance in real-
world scenarios by analyzing how variables can sometimes
diverge from typical patterns, which is in contrast to earlier
research. This study addresses a gap in the existing literature by
optimizing portfolios through the integration of traditional and
non-traditional investments, such as real estate investment trusts
(REITs). It provides insights into the challenges of risk manage-
ment and diversification within the global financial landscape.

This research is essential for both academics and financial
sector experts due to its comprehensive examination and
actionable suggestions. The inclusion of alternative assets
significantly enhances portfolio efficiency, as evidenced by the
Sharpe ratio in most of the combinations analyzed.

Making multiple investments is crucial to leveraging the
benefits of diversification. Investors with substantial bond and
stock portfolios can manage interest rate risk by recalibrating
their equity and bond ratios, which may include hedge funds, and
by monitoring futures with designated maturities. The findings
indicate that a portfolio incorporating unconventional assets
outperformed one composed exclusively of traditional invest-
ments. The main aim of this initiative was to enhance real estate
investment trust (REIT) portfolios through the application of a
genetic algorithm. By minimizing overall returns and increasing
return amounts thereby mitigating risk our experimental analysis
indicates that real estate investment elevates risk-adjusted returns.
The primary explanation for this phenomenon lies in the lack of
correlation between various asset types and real estate. Real
estate-heavy portfolios may exhibit a higher Sharpe ratio in
comparison to those lacking such assets.

Merging real estate-related assets results in a greater degree of
negative skewness and a more concentrated return around the
mean compared to not combining them. This situation likely
stems from the reduction in volatility and the rise in kurtosis,
which indicate a higher probability of returns exceeding
the mean.

Even though our results show that real estate could help make
investment portfolios more diverse, more research needs to be
done to fully assess how useful it would be to use genetic
algorithms to optimize real estate portfolios. This study primarily
utilized historical data to determine the optimal weights. By
utilizing prospective data, commonly referred to as price
projections, it is possible to improve portfolio performance to a
certain degree. In future researchers can include the impact taxes
while calculating the overall returns of the portfolio and can also
apply other portfolio performance measures as well.

Data availability
Provided in Supplementary file.
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