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Spatiotemporal evolution and convergence
patterns of urban carbon emission efficiency
in China
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This paper utilizes the super-efficiency SBM-DEA model that accounts for environmentally

detrimental outputs to assess urban carbon emission efficiency (UCEE) across 282 cities in

China. The Dagum Gini coefficient decomposition is utilized for assessing the disparity

among China’s four major regions. Additionally, the non-parametric kernel density estimation

(KDE) is utilized for illustrating the changing patterns of UCEE across different regions. The

coefficient of variation and spatial panel model are utilized for calculating σ-convergence and

β-convergence, respectively. The findings reveal a consistent decrease in UCEE across Chi-

na’s major geographical divisions; this difference is primarily attributed to hypervariable

density. Moreover, significant disparities exist in terms of dynamic evolution characteristics

of UCEE among different regions, with more pronounced urban polarization effects observed

in Western China and Northeastern China. Different regions exhibit distinct convergence

characteristics. The influence of economic level, industrial structure, foreign direct invest-

ment, urbanization rate, and green technology innovation on the rate of variation in UCEE

exhibits notable heterogeneity.
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Introduction

Rapid advancements in industrial technology have posed
significant challenges to the global climate. There has been
a notable enhancement in people’s living standards and the

degree of social modernization. However, this progress comes at
the cost of continuous carbon dioxide emissions resulting from
industrial development’s consumption of fossil energy (Chen et
al. 2022). Consequently, greenhouse gas concentrations in the
atmosphere continue to rise, causing a multitude of detrimental
impacts on both the ecological environment and the global cli-
mate(Liu et al. 2022). To manage and control carbon dioxide
emissions, the UNFCCC was initiated in 1992, serving as a cor-
nerstone for international cooperation in tackling climate change.
The Paris Agreement, reached in 2016, signified a pivotal
achievement in the collective global push to address climate
change (Nisbet et al. 2020). Its goal is to limit global warming to
well below 2 degrees Celsius through aggressive mitigation of
anthropogenic emissions. To achieve this goal, parties have
committed to autonomously develop and implement Nationally
Determined Contributions to contribute to the global goal of
reducing emissions (Liu and Raftery 2021). These collaborative
initiatives reflect the worldwide dedication to addressing climate
change through concrete measures.

As the largest global carbon emitter, China’s escalating
greenhouse gas outputs have drawn significant international
scrutiny in climate policy discourse. With accelerated urbaniza-
tion and rapid economic expansion, China’s urban carbon
emissions are facing serious challenges (Yu 2021). Conducting a
comprehensive analysis of the spatiotemporal dynamics of UCCE
can enhance our comprehension of the carbon emission trends,
evolutionary trends, and potential convergence patterns (Liu et al.
2022). Focusing on China as the research subject, a thorough
examination of the spatiotemporal evolution features of UCCE
plays a vital role in understanding its emission patterns, evolving
trends, and potential convergence patterns. This not only holds
immense academic significance but also offers valuable guidance
for the development and implementation of future carbon-
reduction policies.

The remainder of the paper proceeds as follows: a literature
review is provided in Section 'Literature review', followed by the
research methodology in Section ‘Methods’. Section ‘Measure-
ment results of UCEE’ details the measurement results, while
Section ‘Spatial disparities and source decomposition of UCEE in
China’ examines spatial disparities in UCEE and their determi-
nants. Section ‘Dynamic evolution process of UCEE in China’
traces the temporal dynamics of UCEE, and Section ‘Research on
the convergence of UCEE in China’ assesses its convergence
characteristics. Finally, Section ‘Discussion’ and Section ‘Policy
implications and Conclusion’ summarizes the findings and dis-
cusses policy implications. Figure 1 provides a visual repre-
sentation of the analysis framework developed in this paper.

Literature review
Research on carbon emission efficiency (CEE) can be divided into
three main areas: measurement methods of CEE, spatiotemporal
evolution of CEE, and convergence of CEE.

Measurement methods of CEE. Diverse regions exhibit varia-
tions in carbon-reduction pathways due to diverse economic
development models (Zheng et al. 2019). Relying solely on the
total carbon emission quantity for measuring carbon-reduction
efficiency lacks scientific rigor (Zhang et al. 2020). Certain
research efforts have formulated carbon emission calculations for
energy consumption, drawing upon the 2006 IPCC Guidelines
(Wang et al. 2022; Zhang et al. 2020). In recent academic

research, the analytical approaches of SFA (parametric frontier
estimation) and DEA (non-parametric benchmarking) have
redefined the quantification of sustainability indicators (Dong
et al. 2022). These approaches are frequently utilized in existing
research to assess UCEE. For instance, a three-stage DEA fra-
mework was employed to assess CEE within China’s construction
sector (Zhang et al. 2021). The CEE of 251 Chinese cities from
2003 to 2018 was quantified using a nonconvex Data Envelop-
ment Analysis model (Yu and Zhang 2021). A recent evaluation
of CEE in 32 carbon-neutrality-committed developed economies
applied the super-efficiency Slack-Based Measure (SBM) metho-
dology (Dong et al. 2022). Furthermore, a dual-method approach
combining Data Envelopment Analysis (DEA) and Directional
Distance Function (DDF) frameworks was utilized to assess CEE
(Trinks et al. 2020). Employing an enhanced non-radial direc-
tional distance function (NDDF) approach, a study constructed a
comprehensive CEE index to evaluate total-factor CEE across
China’s 30 provincial-level industrial sectors (Cheng et al. 2018).
The evaluation of provincial CEE in China was conducted using
the slacks-based Malmquist-Luenberger productivity index
methodology. (Huang et al. 2020). These studies demonstrate that
DEA has become an increasingly authoritative technique for
measuring CEE across various contexts.

Spatiotemporal evolution of CEE. Research investigating the
spatiotemporal evolution of CEE is frequently analyzed across
multiple administrative scales, such as national, provincial, and
urban(Dong et al. 2022; Meng and Yu 2023; Zhang et al. 2020;
Zhang et al. 2023). At the national scale, longitudinal patterns in
CEE across OECD countries were analyzed, with an assessment of
interdependencies between metropolitan developmental trajec-
tories and decarbonization efficacy over time (Wang et al. 2021).
At the provincial level, industrial CEE across 30 Chinese pro-
vincial administrative divisions from 1998 to 2015 was evaluated
applying the min-SBM approach, followed by spatial econometric
techniques to identify convergence patterns and determinants
(Yang et al. 2021). Through the division of China’s 31 provinces
into geospatial clusters, the spatiotemporal dynamics of CEE were
examined, revealing distinct evolutionary characteristics (Cui
et al. 2021). At the urban scale, the spatiotemporal evolution of
UCEE in China was investigated through the construction of
traditional and spatial Markov probability transition matrices
(Wang et al. 2020). A study of 13 cities in China’s Beijing-
Tianjin-Hebei region revealed moderate CEE levels in the area
(Xue et al. 2022). Additional analyses have further explored
regional variations and methodological advancements in CEE
assessment(Liu et al. 2020; Zhang et al. 2020).

Convergence of CEE. Research on the convergence of CEE
typically integrates variables including economic openness,
population size, economic development, industrialization,
urbanization, and green technology as control variables to
examine their effects on the convergence of CEE. (Dong et al.
2021; Zheng et al. 2019). These studies generally believe that
technological progress (Chen et al. 2020), urbanization level (Li
et al. 2022; Zhang et al. 2017; Zhou et al. 2021), green tech-
nological innovation (Dong et al. 2022), and energy con-
sumption structure (Li et al. 2021) have a positive impact on the
convergence of CEE, while industrial structure (Zheng et al.
2019), stock market value, and FDI (Nguyen et al. 2021) have a
weak negative impact on it. Additionally, some studies have
explored the club convergence of CEE. For example, the con-
vergence of demand-side and geography-based carbon emission
intensity across 70 economies was examined (Bhattacharya
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et al. 2020). Three convergence indices were applied to analyze
the convergence characteristics of China’s agricultural CEE
across 30 provinces (Liu and Yang 2021). The club convergence
of CEE was systematically investigated through a methodolo-
gical framework integrating Markov chains, spatial Markov
models, and Moran’s I tests (Tang et al. 2021). Generally
speaking, when conducting analysis related to the convergence
of CEE, economic and social factors such as urbanization level,
green technology innovation, foreign direct investment, and
economic development level will be introduced into the model
analysis as important control variables.

Despite the remarkable progress made by academics in carbon
emission studies, there are still some shortcomings, mainly in the
following areas. Firstly, the challenge lies in the difficulty of achieving

a standardized methodology for calculating CEE. Presently, several
approaches exist for assessing CEE, such as DEA, super-efficiency
DEA, and CFM, among others. However, there is a lack of unified
measurement standards and methods. Secondly, research on the
convergence patterns of CEE remains scarce. Existing studies
generally consider the impact of a single influencing factor on
CEE. Limited research has comprehensively analyzed the conver-
gence of UCEE, both nationally and regionally, while taking into
account various economic and social development factors.

Methods
Super-efficient SBM-DEA model. This paper employs the DEA
model to evaluate the UCEE of 282 Chinese cities. The traditional

Fig. 1 Analysis framework. This figure outlines the overall research process of this paper. Firstly, academic research progress is sorted out through a
literature review. Secondly, the research design is developed using the methods of SBM-DEA, kernel density estimation, Dagum Gini coefficient, and
convergence modeling. Thirdly, the results are presented in four aspects: carbon emission efficiency measurements, spatial differences, dynamic evolution
trends, and convergence analysis. Finally, the research conclusions, discussions, and policy implications of this paper are presented.
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DEA model, initially proposed to assess relative efficiency
through proportional adjustments to inputs or outputs, was later
criticized for its potential misalignment with real-world produc-
tion dynamics (Charnes et al. 1978; Banker et al. 1984). To
overcome these limitations, the SBM model and its super-
efficiency variant were introduced, enabling more nuanced eva-
luations of non-linear and non-directional efficiency attributes
(Tone 2001, 2002). Building on these advancements, this paper
adopts the SBM super-efficiency model with undesirable outputs
(Tone 2004) to assess UCEE. This approach improves measure-
ment accuracy by incorporating real-world production con-
straints, such as undesirable outputs like carbon emissions. The
model is expressed as follows:

ρ ¼ min
1� 1

m∑
m
i¼1

s�i
xik

1þ 1
s1þs2

∑s1
r¼1

sgr
ygrk

þ∑s2
r¼1

sbr
ybrk

� � ð1Þ

s:t:

xk ¼ Xλþ s�

ygk ¼ Ygλ� sg

ybk ¼ Ybλþ sb

λ; s�; sg ; sb ≥ 0

8>>><
>>>:

ð2Þ

Where ρ denotes the UCEE metric, m signifies the count of input
indicators, while s1 and s2 represent the respective counts of
desirable and undesirable output indicators. xik, ygrk, andybrk
respectively represent the input vector, expected, and undesired
output vectors. X, Yg , and Yb are the input, desired output, and
undesired output matrices, respectively, λ is the weight vector; s�,
sg , and sb are the slack variables of the input, desired output, and
undesired output, respectively.

Capital investments, workforce allocation, and energy utilization
serve as crucial input factors, significantly contributing to the
production process. Applying the DEA framework to evaluate UCEE
demands the construction of a multidimensional indicator system.
The specific indicators for calculating CEE are detailed in Table 1.

Dagum Gini coefficient decomposition. This paper adopts the
Dagum Gini coefficient (DG coefficient) methodology to quantify
and dissect the disparities in UCEE across regions. This metho-
dology comprehensively takes into account the spatial nuances of
each region, offering an enhanced version of the traditional Gini
coefficient approach. The DG coefficient and its decomposition
method break down the total Gini coefficient into three parts
(Dagum 1997). The intra-group disparity highlights the level
variations within a region, whereas the inter-group disparity
underscores the gaps between regions. Additionally, the hyper-
variable density captures the cross-sectional overlap among
regions, mirroring the relative disparity. The methodology for
calculating the DG coefficient involves the following steps:

G ¼
∑k

i¼1∑
k
h¼1∑

nj
j¼1∑

nh
r¼1jyji � yhrj

2n2y
ð3Þ

Where G is the total Gini coefficient of UCEE of Chinese cities, nj
and nh represent the number of cities in region j and region h,

respectively, n represents the number of cities, k represents the
number of divided regions, y represents the average UCEE of all
cities, yji and yhr respectively denote the UCEE of the ith city in
region j and the rth city in hth region, respectively. In addition,
the total Gini coefficient can be further decomposed into three
parts: intra-group difference contribution Gw, inter-group net
value difference contribution Gnb and hypervariable density
contribution Gt (Dagum 1997).

G ¼ Gw þ Gnb þ Gt ð4Þ

Kernel density estimation. Employing the KDE curve to explore
the dynamic shifts in UCEE across Chinese cities serves as a
valuable complement to the DG coefficient decomposition,
enhancing our understanding of the intricate regional dynamics
and evolutionary patterns that the latter might overlook. The
KDE curve representing the UCEE of region j is defined by a
specific functional form, as outlined below:

f ðyjÞ ¼
1

Njh
∑
Nj

i¼1
K

yji � yj
h

� �
ð5Þ

Where Nj represents the number of cities in region j, yji represents
the UCEE of the ith city in region j, yj represents the average UCEE
of cities in region j; K(·) is the kernel function, and h is the bandwidth.

Convergence model. The convergence model fundamentally
operates through two methodological paradigms: σ-convergence
analysis and β-convergence analysis. σ-convergence refers to the
trend where the deviation of UCEE in various regions from the
mean gradually decreases over time. This paper operationalizes
σ-convergence assessment through the relative dispersion metric,
and the calculation formula is as follows:

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

Nj

i¼1ðyij � yijÞ2=Nj

q
yij

ð6Þ

Where Nj represents the number of cities in region j, yij repre-
sents the UCEE of the ith city in region j, and yij represents the
mean UCEE of cities in region j.

β-convergence test is a method based on the perspective of
growth rates. Considering the significant spatial correlation features
of UCEE in different regions, this paper simultaneously introduces
spatial econometric models for β-convergence analysis. Common
spatial econometric models include the Spatial Error Model (SEM),
Spatial Durbin Model (SDM), etc. SEM offers the advantage of a
simple and intuitive model specification, which is easy to under-
stand and estimate, and it effectively addresses spatial dependencies
that are not captured by the dependent or independent variables.
However, a limitation of SEM is that it only accounts for spatial
dependence in the error term, neglecting potential spatial lag effects
in the dependent or independent variables, which may result in
model specification bias. SDM has the advantage of simultaneously
incorporating spatial lag effects in both the dependent and
independent variables, allowing for a more comprehensive capture

Table 1 UCEE accounting framework for 282 cities in China.

Type Primary indicators Secondary indicators

Input Capital input Capital investment
Labor input Year-end urban workforce
Energy input Urban energy consumption

Output Desirable output Economic output Regional gross product
Undesirable output Pollution output Total carbon dioxide emissions
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of spatial dependence. Nonetheless, the disadvantages of SDM are
that the model contains more parameters, which makes it more
complicated to estimate and interpret.

Absolute β-convergence refers to judging whether there is a
convergence trend in UCEE without considering factors that
significantly affect UCEE. The formal representation of absolute
β-convergence is expressed through the following econometric
specification:

OLS : ln
yi;tþ1

yi;t

 !
¼ αþ β ln yi;t þ μi þ ηt þ εi;t ð7Þ

SEM : ln
yi;tþ1

yi;t

� �
¼ αþ β ln yi;t þ μi þ ηt þ ui;t ui;t ¼ λ ∑

n

j¼1
wij ln

yi;tþ1

yi;t

 !

ð8Þ
SDM : ln

yi;tþ1

yi;t

� �
¼ αþ β ln yi;t þ ρ ∑

n

j¼1
wij ln

yi;tþ1

yi;t

� �

þ γ ∑
n

j¼1
wijln yi;t þ μi þ ηt þ εi;t

ð9Þ

Where yi;t and yi;tþ1 represent the UCEE of city i in periods t and
t+ 1, respectively. β is the convergence coefficient. The
convergence rate is given by � lnð1� jβjÞ=T. ρ stands as the
coefficient of spatial autocorrelation, λ serves as the spatial error
coefficient, γ represents the spatial autocorrelation coefficient of
the independent variable, wij is the spatial weight matrix, μi, ηt ,
and εi;t represent region effects, time effects, and the error term,
respectively.

Conditional β-convergence integrates variables that drive
variations in UCEE into the convergence framework, allowing
for an assessment of whether a convergence trend emerges when
accounting for these influencing factors. Xi;tþ1 represents the set
of control variables, and the model is as follows:

OLS : ln
yi;tþ1

yi;t

 !
¼ αþ β ln yi;t þ δXi;tþ1 þ μi þ ηt þ εi;t ð10Þ

SEM : ln
yi;tþ1

yi;t

� �
¼ αþ β ln yi;t þ δXi;tþ1 þ μi

þ ηt þ ui;tui;t ¼ λ ∑
n

j¼1
wijln

yi;tþ1

yi;t

� � ð11Þ

SDM : ln
yi;tþ1

yi;t

� �
¼ αþ β ln yi;t þ ρ ∑

n

j¼1
wij ln

yi;tþ1

yi;t

� �

þ γ ∑
n

j¼1
wijln yi;t þ δXi;tþ1 þ μi þ ηt þ εi;t

ð12Þ
Combined with existing studies in academia (Dong et al. 2021;

Wang et al. 2021; Xie et al. 2021), this paper uses economic level,
industrial structure, foreign direct investment level, urbanization
rate and green technology innovation as control variables in the
conditional β-convergence test. Economic level (EL), measured by
per capita GDP; industrial structure (IS), measured by the level of
industrial rationalization; foreign direct investment (FDI),
calculated as the proportion of annual utilized foreign capital
relative to a region’s gross domestic product; urbanization rate
(UR), calculated as the share of urban population relative to the
total population within a region; green technology innovation
(GTI) is quantified through the ratio of eco-friendly inventions to
the annual total patents filed within the city.

Selection of study objects. The division of the four major regions
is primarily based on the China Statistical Yearbook. According
to this source, Eastern China includes 10 provinces, Central

China comprises 6 provinces, Western China encompasses
12 provinces, and Northeastern China consists of 3 provinces
(Fig. 2).

Data sources. In this study, carbon emission data were obtained
from the China City Statistical Yearbook and the China Urban
Construction Statistical Yearbook for various years. Energy con-
sumption data were sourced from the China Energy Statistical
Yearbook for the corresponding years. The remaining data were
collected from the Chinese Research Data Services Platform
(CNRDS).

Measurement results of UCEE
This research employed ArcGIS to produce spatial maps illus-
trating the distribution of UCEE among 282 cities, employing the
natural breaks classification technique to categorize the efficiency
scores of these cities into five distinct groups. Figure 3 portrays
the geographical variation of UCEE over the years 2011, 2014,
2016, and 2019 among 282 cities in China, revealing the following
insights:

(1) Chinese UCEE exhibits a noticeable “club convergence”
characteristic. During the observation period, cities with
high UCEE are mainly situated within high-growth
economic corridors, notably the eastern coastal industrial
belt, the Guangdong-Hong Kong-Macao Greater Bay Area,
the central Yangtze River urban cluster, and the Chengdu-
Chongqing economic circle. Cities displaying lower UCEE
are predominantly situated in Northeastern China and
Western China, as well as the Inner Mongolia Autonomous
Region. This “club convergence” phenomenon is primarily
attributed to the spatial progression of China’s economic
development, gradually advancing from the eastern coastal
regions towards the central and western inland areas. The
eastern coastal regions exhibit significantly higher levels of
openness to international trade and faster advancement in
new industrialization compared to the Central China and
Western China.

(2) This concentration of talent, capital, and technological
advancements in the eastern coastal regions has fueled a
swift enhancement in UCEE of these cities. Eastern cities
consistently demonstrate superior UCEE levels, averaging
at 0.407 over the observed timeframe. There are consider-
able variations in UCEE between the Central China and
Western China. The Northeastern China consistently
records lower UCEE levels, averaging at 0.336 over the
entire observation period. The rapid economic growth in
Eastern China since the reform and opening-up, fueled by
advanced manufacturing and service sectors, likely accounts
for its consistently higher UCEE. Inland regions of the
Central China and Western China might experience a lag in
the application of green carbon-reduction technologies, but
the evolution of regional integration strategies allows these
areas to quickly adopt and apply advanced production
technologies from more developed regions. Therefore, the
Central China and Western China exhibit noticeable trends
in UCEE variation. The Northeastern China, possibly
influenced by the transformation of its industrial base in
the past, has seen a reduction in industrial capacity, leading
to a relatively lower UCEE.

Spatial disparities and source decomposition of UCEE
in China
Disparities in UCEE within each region. Table 2 presents the
intra-group Gini coefficients calculated using the DG coefficient
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for UCEE across 282 cities nationwide and the four regions. The
national average intra-group Gini coefficient pertaining to UCEE
stood at 0.178 over the study’s duration. Except for minor
increases in individual years, it exhibited an overall trend of
fluctuating decline. This suggests that the disparities in UCEE
among cities nationwide are gradually diminishing, indicating a
decreasing level of imbalance. From a regional perspective, the
average intra-group Gini coefficient in the Eastern China and
Central China falls below the national average, suggesting a
relatively lower degree of imbalance within these areas. The
Western China’s average intra-group Gini coefficient, standing at
0.182 and topping all regions, continues to show an upward
trajectory since 2016. The primary factor contributing to this
trend stems from accelerated growth within the Chengdu-
Chongqing economic circle, which has made the disparities
between cities in the Western China. The gap in development
quality has further widened, and the pace of urban industrial
transformation and the strides in urban carbon emission reduc-
tion are becoming increasingly inconsistent.

Disparities in UCEE among regions. Figure 4 depicts the inter-
group disparities in UCEE among cities in the four regions, as
quantified by the DG coefficient. Regarding the overall development
trend, the shaded area in Fig. 4 exhibits a consistent decline. This
indicates that over time, the differentiation features among regions
are gradually diminishing. Some regions can rapidly improve UCEE
through the development of green technologies and adjustments in
industrial structure. Although certain areas experience a slower
improvement in UCEE due to regional policies, the overall differ-
ences in UCEE among regions are consistently decreasing.

Sources and contributions of disparities in UCEE across
regions. The overall variation in the sample data can be seg-
mented into three components. Figure 5 illustrates the absolute

values and relative proportions of each of these components.
Analysis of the variations in contribution rates among the three
components reveals that hypervariable density becomes the pri-
mary source of contribution. As urban industries transition
towards a low-carbon paradigm, the widening disparities in
UCEE among cities contribute to the polarization of efficiency
within respective regions. Areas with superior UCEE encompass
cities with relatively lower efficiency, whereas regions with
inferior UCEE include cities that exhibit higher efficiency. This
phenomenon of overlapping UCEE contributes to the spatial
imbalance of UCEE.

Dynamic evolution process of UCEE in China
The use of the DG coefficient decomposition is helpful in iden-
tifying regional disparities and specific sources of UCEE in both
the nationwide and the four regions. Nevertheless, it falls short in
capturing the dynamic evolution traits of carbon UCEE within
individual regions. To overcome this limitation, this paper adopts
the KDE approach, leveraging attributes like distribution position,
peak shape, ductility, and peak count in the KDE curve to unravel
the dynamic evolution of UCEE among Chinese cities.

Figure 6 shows the specific kernel density estimation results,
and Table 3 reports the corresponding dynamic evolution
characteristics.

(1) Distribution Location. The nationwide KDE curve for
UCEE nationwide shows a rightward shift, indicating
continuous improvement in UCEE across most Chinese
cities, reflecting the success of China’s “dual carbon” policy.
Regionally, the Eastern China and Central China exhibit
significant rightward shifts, while Western China initially
shifts leftward before trending right. In contrast, the
Northeastern China’s curve shifts leftward, highlighting
the carbon-reduction challenges faced by the Western

Fig. 2 Regional division map of China’s four major regions. This figure outlines the selection of study objects. The division of the four major regions is
primarily based on the China Statistical Yearbook. According to this source, Eastern China includes 10 provinces—Beijing, Tianjin, Hebei, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan, Central China comprises 6 provinces—Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan; Western
China encompasses 12 provinces—Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang,
and Northeastern China consists of 3 provinces—Liaoning, Jilin, and Heilongjiang.
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China and Northeastern China, which require further
UCEE enhancements.

(2) Main Peak Shape. At the nationwide level, as well as in the
Eastern China and Central China, the main peak of the
KDE curve shows a significant upward trend and increased
width, indicating reduced variation in UCEE among cities
and a convergence of disparities. The Western China
experienced a downward trend and increased width but
rebounded after 2015, ultimately showing an upward trend.
In the Northeastern China, the main peak exhibits a

downward slope and increased breadth, reflecting rising
disparities in UCEE and significant differences in energy-
saving and carbon-reduction achievements among cities.

(3) Ductility. The KDE curves for the nationwide level and the
four regions display right-skewed tails, indicating the
presence of cities with significantly higher UCEE within
each region. Nationally, as well as in the Eastern China and
Central China, the ductility shows a converging trend,
suggesting a narrowing gap between extreme and average
values. In contrast, the Western China and Northeastern
China exhibit divergent ductility, with certain cities
consistently maintaining lower UCEE levels and persistent
disparities compared to the regional average.

(4) Number of Peaks. Nationally, as well as in the Eastern China
and Central China, the KDE curves maintain a unimodal
shape, indicating low levels of differentiation and the
absence of polarization. In Western China, the curve
transitions from a dual-peak to a multi-peak configuration,
reflecting a shift from polarization to diverse UCEE levels.
In the Northeastern China, the curve evolves from a single
peak to a dual-peak pattern, with a clear separation between
peaks, underscoring significant spatial polarization.

Research on the convergence of UCEE in China
σ-convergence test. UCEE exhibits significant disparities among
different cities and regions. This paper utilizes the coefficient of

Fig. 3 Spatiotemporal distribution map of UCEE in China. This picture reports the characteristics of the spatial distribution of UCEE in China. The four
subplots (a–d) illustrate the spatial distribution of UCEE across 282 Chinese cities in the years 2011, 2014, 2016, and 2019, respectively. Utilizing the
Natural Breaks Classification, the UCEE values of these cities are categorized into five distinct groups: [0.025–0.138], [0.139–0.239], [0.240–0.315],
[0.316–0.400], and [0.401–1.024]. Blank areas denote missing data.

Table 2 Changes in the Gini coefficient across the country
and four regions.

Area Nationwide Eastern
China

Central
China

Western
China

Northeastern
China

2011 0.195 0.189 0.174 0.197 0.148
2012 0.196 0.184 0.177 0.203 0.154
2013 0.169 0.150 0.154 0.179 0.137
2014 0.173 0.157 0.159 0.181 0.137
2015 0.172 0.152 0.161 0.179 0.139
2016 0.180 0.162 0.164 0.191 0.140
2017 0.161 0.158 0.144 0.162 0.122
2018 0.177 0.180 0.159 0.169 0.128
2019 0.175 0.169 0.157 0.177 0.135
Mean 0.178 0.167 0.161 0.182 0.138
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variation as a metric to quantify σ-convergence, enabling an
analysis of the spatial convergence patterns of UCEE from a
stock-based perspective. Table 4 reports the σ-convergence results
of UCEE for 282 cities nationwide and the four major regions.
Nationally, the coefficient of variation for UCEE fluctuates
between 0.313 and 0.392, showing an overall downward trend
and σ-convergence characteristics. Regionally, the Eastern China
has the lowest average coefficient of variation (0.289), reflecting
rapid economic development and reduced disparities in UCEE.
The Central China (averaging 0.306) exhibits a declining trend in
most years, indicating σ-convergence and improved UCEE. In
contrast, the Western China has the highest average coefficient
(0.458), with values rising from 0.287 in 2011 to 0.637 in 2018,
highlighting increasing internal disparities and the absence of σ-
convergence. The Northeastern China shows a fluctuating trend,

ultimately achieving σ-convergence with a lower final coefficient
compared to the initial value.

β-convergence test. (a) Absolute β-convergence. Table 5 reports
the spatial absolute β-convergence results for 282 cities across the
country and four regions. There may be disparities in the spatial
effect patterns of UCEE in different parts. Firstly, the presence of
spatial effects on the absolute β-convergence of UCEE at the
nationwide level and within the four regions is assessed through
LM tests. Secondly, the final spatial econometric model specifi-
cation was selected through rigorous LR tests and Wald tests.
Subsequently, random effects or fixed effects are selected
according to the results of the Hausman test. Finally, the specific
form of the fixed effects is chosen based on the tests.

Fig. 4 Changes in the inter-group Gini coefficient among the four regions in China. This figure depicts the inter-group disparities in UCEE among cities in
the four regions, as quantified by the Dagum Gini coefficient. The decrease in the area of the shaded portion of the graph indicates that the value of the
inter-group Dagum Gini coefficient between the two regions is decreasing, which suggests that the disparities between the regions are getting smaller.

Fig. 5 Sources of spatial disparities in UCEE in China. By using the Dagum Gini coefficient and its decomposition, the overall variation in the sample data
can be divided into three components: intra-group disparity, inter-group disparity, and hypervariable density. This figure illustrates the absolute values and
relative proportions of each component. Panel a presents the absolute magnitudes of each components, while Panel b illustrates their corresponding
proportional distributions.
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The results from Table 5 indicate:

(1) Absolute β-convergence in UCEE is observed at both
national and regional scales, and all coefficients remain
statistically negative. This implies that, without considering
other significant factors, there is a convergent trend in
UCEE at both the nationwide and regional perspectives.
Consistent with β-convergence theory, initially disadvan-
taged cities exhibit accelerated catch-up rates in UCEE,
ultimately leading to long-term equilibrium alignment
across urban systems.

(2) In terms of convergent rates, the UCEE convergence varies
between the nationwide and the four regions. The nation-
wide convergent rate is 0.102, with the rates in the Eastern,
Central, and Northeastern China being below the nation-
wide mean at 0.079, 0.100, and 0.049, respectively.
Conversely, the Western China exhibits a higher conver-
gent rate, surpassing the nationwide average at 0.158.

(3) The nationwide and four regions exhibit distinct spatial
effects. The spatial autocorrelation coefficients for the
nationwide, Eastern China, and Central China are sig-
nificantly positive, indicating that changes in UCEE in one
city are positively influenced by changes in neighboring
cities within the same region.

(b) Conditional β-convergence. The aforementioned analyses
assume constant economic, social, and natural factors, which
deviate from real-world conditions. Therefore, further investiga-
tion into conditional β-convergence is warranted, considering
the dynamic interplay of economic, social, and natural factors.
Table 6 reports the results of spatial conditional β-convergence
for 282 cities nationwide and four regions. According to the
results in Table 6:

(1) The conditional β-convergence analysis reveals statistically
significant negative coefficients (p < 0.01) for UCEE at both
national and regional scales. This implies that, even when
accounting for economic level, foreign investment intensity,
industrial structure, urbanization rate, and the level of green
technological innovation, empirical results confirm persis-
tent UCEE convergence toward equilibrium states across
national and regional scales.

(2) The convergence rates across all regions have shown
improvement compared to those under absolute β-conver-
gence. This empirically validates the theoretical appropri-
ateness of the selected control variables in capturing
conditional convergence dynamics. Specifically, the Wes-
tern China exhibits the fastest convergence speed at 0.171,
exceeding the national mean (0.108). The Central China’s

Fig. 6 Dynamic evolution trend chart of UCEE in China. This figure shows the specific kernel density estimation results. The five subplots (a–e) in the
figure depict the dynamic evolution trend of UCEE for the nationwide, Eastern China, Central China, Western China, and Northeastern China, respectively.
In the three-dimensional surface plot, the x-axis represents UCEE, the y-axis denotes the chronological progression (year), and the z-axis quantifies the
kernel density values.
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convergence speed is slightly below the national average, at
0.107. Meanwhile, the Eastern China and Northeastern
China display convergence speeds of 0.084 and 0.06,
respectively.

(3) From a spatial perspective, the spatial autocorrelation
coefficients for the nationwide level, Eastern China, Central
China, and Western China are 0.645, 0.408, 0.774, and
0.295, respectively. The results demonstrate the presence of
positive spatial spillover effects in these regions, which can
drive improvements in UCEE in neighboring areas. In
contrast, the spatial autocorrelation coefficient for the
Northeastern China is −0.525, indicating a negative spatial
spillover effect. This suggests significant disparities in
development levels within the Northeastern China, poten-
tially reflecting a “Matthew effect” where stronger areas
become stronger and weaker areas become weaker.

Discussion
This paper employs an integrated analytical framework combining
the super-efficiency DEA model, the DG coefficient, the kernel
density estimation, and the spatial convergence model to system-
atically examine UCEE patterns across 282 Chinese cities during
2011–2019, uncovering critical insights into spatial disparities,
temporal trends, and regional convergence mechanisms of UCEE.

Discussion of regional differences. This paper found that the
UCEE in China shows a decreasing trend of “East—Center—West
—Northeast,” which aligns with established literature in the field
(Liu et al. 2023; Shen et al. 2024). The Eastern China has a sig-
nificant lead in UCEE due to its developed economy and high
technological level, while the Western China has a lower efficiency
and prominent intra-group differences due to its lagging economic
advancement and dependence on resource-intensive industries
(Yang et al. 2022). The intra-group differences in the Central China
widened after 2016, which may be related to the lack of green
technology upgrading in industrial transfer(Shi et al. 2022), while
the Northeastern China has low efficiency and smaller differences
due to its single economic structure(Liu et al. 2023). The observed
convergence across regions likely reflects the implementation of
China’s coordinated regional development strategy, demonstrating
its measurable impact on reducing spatial inequalities. The hyper-
variable density suggests that the spatial distribution of UCEE has a
cross-over phenomenon, reflecting the influence of inter-city eco-
nomic linkages and technology diffusion(Wen et al. 2018).

Discussion of dynamic evolution. In terms of dynamic evolu-
tion, the UCEE of the nationwide, Eastern China and Central
China all increased across the examined timeframe, and the intra-
regional disparities gradually narrowed, which was closely related
to industrial upgrading, technological innovation, and regional

coordinated development policies (Wang et al. 2024). The UCEE
of the Western China declined first and then increased, which
may be rooted in the foundational economic structure privileging
energy-demanding production (Yao et al. 2023), whereas the
UCEE of the Northeastern China fluctuated and declined,
reflecting the difficulty of economic transformation and the rea-
lity of a large proportion of traditional industries (Wen et al.
2018). The phenomenon of spatial polarization in both regions
may be related to the uneven distribution of resources and dif-
ferences in policy support (Xu et al. 2022).

Discussion of dynamic evolution. In terms of convergence
characteristics, σ-convergence, absolute β-convergence, and con-
ditional β-convergence exist in the nationwide, Eastern China,
Central China, and Northeastern China, while only absolute
β-convergence and conditional β-convergence exist in the Wes-
tern China, which is closely associated with significant regional
disparities in economic advancement and resource distribution
(Wu and Zhao 2025). The Western China and Central China
converge faster, which may be related to the narrowing of the
technology gap (Cai et al. 2025), while the Northeastern China
has the slowest rate of convergence, reflecting its economic
transformation and deficiencies in innovation capacity (Li and
Wang 2022). The impacts of EL, IS, FDI, UR, and GTI on UCEE
are significantly heterogeneous, consistent with previous studies
(Lu and Wu 2025; Wan et al. 2025).

Policy implications and conclusion
Policy implications. Building on the empirical evidence, this
paper proposes targeted governance recommendations informed
by three strategic dimensions:

(1) Promote comprehensive and coordinated carbon-reduction
policies. The government should adopt differentiated carbon
mitigation strategies that account for heterogeneous urban

Table 3 Distribution characteristics of KDE curves of UCEE across the country and four regions.

Type Distribution location Main peak shape Ductility Number of peaks

Nationwide move right height increases
width increases

right-skewed tail convergent ductility unimodal

Eastern China move right height increases
width increases

right-skewed tail convergent ductility unimodal

Central China move right height increases
width increases

right-skewed tail convergent ductility unimodal

Western China move right height increases
width increases

right-skewed tail divergent ductility bimodal multimodal

Northeastern China move left height decreases
width increases

right-skewed tail divergent ductility unimodal bimodal

Table 4 σ-convergence test results across the country and
four regions.

Year Nationwide Eastern
China

Central
China

Western
China

Northeastern
China

2011 0.392 0.385 0.357 0.287 0.377
2012 0.383 0.345 0.316 0.467 0.423
2013 0.313 0.264 0.298 0.361 0.342
2014 0.338 0.255 0.293 0.453 0.374
2015 0.329 0.232 0.289 0.474 0.347
2016 0.356 0.234 0.299 0.530 0.370
2017 0.330 0.259 0.330 0.405 0.341
2018 0.378 0.312 0.277 0.636 0.366
2019 0.351 0.316 0.295 0.513 0.348
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characteristics and developmental priorities across cities.
Clear carbon trading rules should be established to encourage
nationwide participation, fostering a market-driven mechan-
ism for emission reduction. Enhanced inter-departmental and
inter-group collaboration is essential to integrate resources
effectively and create a unified policy framework.

(2) Implement region-specific carbon-reduction strategies.
Tailored policies should be designed to address regional
disparities. For less developed regions, support for indus-
trial upgrades and clean technology adoption is crucial to
improve carbon efficiency without hindering economic
growth. In developed regions, stricter emission controls
should target energy-intensive industries, complemented by
a “dual control” strategy to manage energy consumption
and optimize energy structures.

(3) Leverage diverse policy tools for carbon reduction. The
government should prioritize industrial restructuring,
promoting green transitions in traditional sectors, and
fostering high-tech, eco-friendly industries. Attracting
foreign investment into clean technologies and advancing
green urbanization are also key. Additionally, increased
support for eco-innovation initiatives will stimulate
greater corporate investment in research and develop-
ment, driving sustainable progress.

Conclusion. This paper arrives at three fundamental conclusions:

(1) UCEE follows a descending pattern from “East—Center—
West—Northeast”, with the Eastern China consistently

outperforming the nationwide average. Intra-regional
disparities are narrowing in the Eastern China but rising
in the Central China since 2016, while the Northeast China
shows low UCEE and minimal disparities. Inter-group
disparities are decreasing, with hypervariable density being
the primary source of overall differences due to overlapping
UCEE patterns across regions.

(2) Nationwide, the Eastern China and Central China show
improving UCEE with narrowing intra-regional disparities,
while the Western China and Northeast China exhibit
complex trends, including spatial polarization and fluctuat-
ing UCEE levels.

(3) σ-convergence, absolute β-convergence, and conditional
β-convergence are observed in most regions except the
Western China, which lacks σ-convergence. Convergence
rates vary, with Western China and Central China converging
fastest, followed by the Eastern China and Northeast China.
Economic, industrial, and technological factors significantly
influence UCEE changes, showing regional heterogeneity.

Although this paper has made a series of explorations in
studying the UCEE in China, it has some noteworthy limitations
that should be considered:

(1) Limitations in research data: This study performed a
spatiotemporal analysis of carbon emissions across Chinese
cities, albeit with a limited timeframe due to constraints in
data availability. A study with a longer time span could
uncover more stable patterns and causal relationships,
offering greater analytical depth and comprehensiveness.

Table 5 Absolute β-convergence test results across the country and four regions.

Type Nationwide Eastern China Central China Western China Northeastern China

Model SDM SDM SAC SDM SDM
β −0.559*** (0.018) −0.469*** (0.027) −0.552*** (0.035) −0.717*** (0.035) −0.324*** (0.051)
Convergent Rate 0.102 0.079 0.100 0.158 0.049
θ 0.845*** (0.197) 0.494*** (0.163) 0.725*** (0.083) 0.927*** (0.247) 0.770** (0.313)
ρ/λ 0.733*** (0.083) 0.512*** (0.114) 0.496*** (0.132) 0.251 (0.178) 0.048 (0.221)
Time Effect YES YES YES YES YES
Region Effect YES YES YES YES YES
R2 0.1581 0.2407 0.2584 0.3450 0.0970

Robust standard errors in parentheses.
Note: ***p < 0.01, **p < 0.05, *p < 0.1.

Table 6 Conditional β-convergence test results across the country and four regions.

Type Nationwide Eastern China Central China Western China Northeastern China

Model SDM SEM SEM SEM SDM
β −0.580*** (0.017) −0.490*** (0.026) −0.575*** (0.035) −0.745*** (0.035) −0.383*** (0.047)
Convergent Rate 0.108 0.084 0.107 0.171 0.060
ρ\λ 0.645*** (0.104) 0.408*** (0.129) 0.774*** (0.074) 0.295* (0.171) −0.525* (0.291)
θ 0.945*** (0.211) — — — 0.402 (0.361)
FDI −0.435*** (0.123) 0.133 (0.200) −0.526*** (0.201) −0.303 (0.620) −0.684*** (0.187)
IS −0.000 (0.000) −0.048 (0.032) 0.009 (0.024) 0.091*** (0.031) 0.000 (0.000)
EL 0.183*** (0.018) 0.196*** (0.024) 0.108*** (0.035) 0.192*** (0.036) 0.300*** (0.047)
UR −0.087** (0.043) −0.067 (0.073) −0.084 (0.078) −0.075 (0.120) 0.003 (0.069)
GTI 0.070** (0.029) −0.032 (0.079) 0.145*** (0.055) 0.067 (0.047) 0.081 (0.068)
Time Effect YES YES YES YES YES
Region Effect YES YES YES YES YES
R2 0.132 0.384 0.324 0.387 0.234

Robust standard errors in parentheses.
.Note: ***p < 0.01, **p < 0.05, *p < 0.1.
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(2) The depth of research could be expanded: While this paper
examined the influence of various factors on conditional
β-convergence of UCEE, it did not delve into the specific
mechanisms or pathways through which these factors exert
their effects. A systematic examination of the distinct
mechanisms through which various factors influence UCEE
would contribute to providing more practical policy
implications for enhancing UCEE.

Data availability
The empirical data associated with this study have been deposited
in the Figshare repository, accessible at: https://doi.org/10.6084/
m9.figshare.28738676.v1.
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