Table 10 Results of principal component analysis and multiple regression analysis of household energy equipment carbon emissions.
From: Carbon factor inventory and weight in rural communities: a case study of Linpan in western Sichuan
 |  | D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|---|---|
Principal component | 1 | 0.021 | −0.094 | −0.031 | 0.956 | 0.957 |
2 | 0.928 | 0.909 | −0.103 | −0.076 | 0.005 | |
3 | −0.011 | −0.138 | 0.993 | −0.031 | −0.009 | |
Initial eigenvalue | 1 | 0.04 | −0.181 | −0.06 | 1.842 | 1.844 |
2 | 1.576 | 1.543 | −0.175 | −0.129 | 0.008 | |
3 | −0.01 | −0.128 | 0.918 | −0.029 | −0.008 | |
Principal component standardization coefficient | 1 | 1.304 | ||||
2 | 1.275 | |||||
3 | 0.885 | |||||
Standardized coefficients of final regression analysis | 2.053 | 1.619 | 0.511 | 2.212 | 2.408 | |
Standardized regression coefficient ranking | 3 | 4 | 5 | 2 | 1 | |
Mean value | 0.07 | 0.017 | 0.001 | 0.00009 | 0.002 | |
Standard deviation | 0.068 | 0.011 | 0.003 | 0.001 | 0.015 | |
Final coefficient of multiple regression analysis | 30.092 | 153.067 | 159.501 | 4139.427 | 159.969 | |
Original variable regression coefficient ranking | 2 | 1 | 4 | 1 | 3 |