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Two-stage polytomous attribute estimation for
cognitive diagnostic models: overcoming
computational challenges in large-scale
assessments with many polytomous attributes
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Cognitive diagnosis models (CDMs) have been advocated as a useful tool in calibrating large-

scale assessments, yet the computational challenges are inevitably amplified when the

modeling complexity (e.g., the number and the levels of attributes) increases. This study

presents a critical scenario, a large-scale national medical certification exam, where CDM

with many polytomous attributes (mpCDM) is of great utility, but poses great computational

challenges to many popular open-source CDM software packages. We developed a novel

two-stage estimation method and assessed its performance through a Monte Carlo simu-

lation study under various conditions of attribute number, item number, item quality, and

sample size. Results indicate that the proposed method maintains high accuracy in handling

large-scale data while effectively overcoming computational capacity limitations, especially in

scenarios with many polytomous attributes, large numbers of items, and substantial sample

sizes. Furthermore, we applied the proposed method to a large-scale health examination

dataset, demonstrating its effectiveness in practice. This study contributes to the field of

psychometrics by offering a simple yet effective solution to the computational challenges

inherent in implementing mpCDMs for large-scale assessments, providing a practical tool for

diagnostic analyses in educational and professional certification contexts.
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Introduction

Learning is a complex process that relies on various factors
for success. Among these factors, receiving feedback plays a
crucial role in any learning process. Learners and educators

often rely on exam scores to assess mastery over a given knowl-
edge space, facilitating a positive feedback loop in teaching and
learning (Haladyna and Kramer, 2004). This aligns well with a
growing trend demanding assessment frameworks to offer more
detailed diagnostic information to facilitate learning (Eva et al.
2012). A deeper understanding of learning outcomes can help
students adjust their strategies and methods in a timely manner
for better long-term academic performance. However, most
exams, particularly high-stakes ones, typically provide only a
composite score by design, which limits the available information
to learners and educators (Lee et al. 2011; Park et al. 2018), while
a more fine-grained way of reporting can offer diagnostic feed-
back that can help learners pinpoint areas for improvement
(Haladyna and Kramer, 2004). Hence, an increasing number of
educational researchers agree that educational assessments should
be more diagnostic, thus making teaching and learning more
effective (Hattie and Timperley, 2007).

The cognitive diagnosis model (CDM) offers a theoretical and
technical solution for the pressing need for personalized feedback
in educational measurement. As a probabilistic model integrating
cognitive variables, CDM analyzes exam data to reveal individual
differences in knowledge structures, cognitive processes, and
skills, thereby providing personalized and detailed diagnostic
feedback (Leighton and Gierl, 2007). Many scholars in educa-
tional measurement, such as Sinharay and colleagues (2011), urge
caution in how we report and use sub-scores from educational
assessments. They point out that current tools such as item
response theory models and CDMs require specific conditions to
yield valid and reliable sub-scores (Schoenherr and Hamstra,
2016; Sinharay, 2010). However, Liu et al. (2018) emphasize the
unique benefits of using cognitive diagnostic score reports in
large-scale assessments. These assessments cover various sub-
domains and aim primarily to determine whether students pass
or fail. CDMs streamline the scoring and categorization process,
offering a comprehensive solution. This approach moves away
from traditional methods of “standard setting”, where cut-off
points are subjectively determined (Cizek, 2012), leading to more
accurate and less error-prone diagnostic results (Robitzsch et al.
2017).

CDMs involve examinees’ response data and the Q-matrix,
which defines the knowledge, strategies, and skills required to
answer specific items, to precisely assess mastery over different
cognitive attributes. Many variants of CDMs have been proposed,
and they vary in theoretical foundations, model assumptions, and
parameter definitions to meet diverse functional and objective
requirements (Leighton and Gierl, 2007). Traditional CDMs—
such as the saturated model represented by the generalized
deterministic input, noisy “and” gate (G-DINA) model (de la
Torre, 2011) and the simplified models like the deterministic
inputs, noisy “and” gate (DINA) model (de la Torre, 2009; Junker
and Sijtsma, 2001) and the deterministic inputs, noisy “or” gate
(DINO) model (Templin and Henson, 2006)—assume binary
attributes, i.e., mastered (“1”) or not mastered (“0”).

In education and assessment, cognitive skills are widely
recognized to develop across multiple levels, as exemplified by
Bloom’s taxonomy (Bloom, 1956) and its later revision by
Krathwohl (2002), which defines a hierarchical progression from
basic skills like remembering to complex abilities such as creating.
This multi-level conceptualization of cognitive development is
reflected in major international assessments—for instance, the
National Assessment of Educational Progress (NAEP) defines
mathematics attributes at multiple levels (National Assessment

Governing Board, 2008), while the TIMSS 2015 science frame-
work distinguishes between knowing, applying, and reasoning
(Jones et al. 2013). These frameworks underscore an important
reality in educational measurement: the assessment of knowledge
and skills requires moving beyond simple dichotomous classifi-
cations of mastery versus non-mastery.

To address this need for more nuanced assessment, researchers
have developed various polytomous cognitive diagnosis models
(pCDM) to evaluate examinees’ attribute mastery at multiple
levels. The development of these models began with Templin’s
(2004) work on extending the reparameterized unified model
(RUM; Hartz, 2002) to handle polytomous attributes through the
RUM-PA model and its constrained version (cRUM-PA). During
the same period, Karelitz (2004) introduced the ordered category
attribute coding (OCAC) framework with the OCAC-DINA
model to define mastery levels as multiple ordered categories.
Von Davier (2008, 2014) subsequently proposed the general
diagnostic model (GDM) that accommodates polytomous attri-
butes through flexible mapping functions. Chen and de la Torre
(2013) made significant contributions with the polytomous gen-
eralized DINA (pG-DINA) model, extending the G-DINA fra-
mework to account for main effects and interactions in
polytomous settings. Sun et al. (2013) further expanded the field
by developing a framework for polytomous attributes through the
generalized distance discriminating method. The evolution of
polytomous CDMs continued with several important develop-
ments. Zhan et al. (2016) proposed the reparameterized poly-
tomous attributes DINA (RPa-DINA) model as a restricted
version of pG-DINA. Chen and de la Torre (2018) introduced the
general polytomous diagnosis model (GPDM) to handle both
polytomous responses and attributes. The field saw further
advances with Wang and Chen’s (2020) response accuracy model
(RAM), Zhan and colleagues’ (2020) the partial mastery DINA
(PM-DINA) model incorporating higher-order latent structures,
and Yakar and colleagues’ (2021) fully additive model (fA-M).
Additional contributions include Bao’s (2019) polytomous diag-
nostic classification model (PDCM), Ma’s (2022) higher-order
general cognitive diagnosis model (HO-PCDM), and Zhan and
colleagues’ (2023) Ordinal-DINA model for longitudinal diag-
nosis. Most recently, de la Torre et al. (2025) proposed the
saturated polytomous cognitive diagnosis model (sp-CDM),
offering a comprehensive framework that subsumes existing
polytomous CDMs while allowing differential attribute level
contributions. These methodological advances have enabled more
refined assessments of cognitive mastery, as demonstrated by
Mohsenpour’s (2019) successful application in assessing mathe-
matical literacy among adolescent students, providing detailed
diagnostic information about varying competency levels.

Large-scale educational assessments often involve multiple
attributes that need to be evaluated at different cognitive levels,
making polytomous cognitive diagnosis particularly valuable for
providing comprehensive diagnostic feedback. However, the
application of CDM with many polytomous attributes (mpCDM)
to large-scale assessments faces significant practical challenges.
The primary concern is model complexity and computational
demands. As the number of items and attributes increases, the
number of model parameters grows rapidly, making parameter
estimation and interpretation increasingly challenging (Bradshaw
et al. 2014). This computational burden is evident in commonly
used CDM software packages like GDINA (Ma and de la Torre,
2020) and CDM (George et al. 2016), which often struggle to
efficiently handle CDMs with more than eight polytomous
attributes. While more advanced software solutions employing
parallel algorithms exist for estimating high-dimensional diag-
nostic models with polytomous attributes (Khorramdel et al.
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2019; von Davier, 2016), these tools are often developed by major
testing organizations and may not be readily accessible to all
practitioners. The complexity of implementing and using such
software poses additional challenges for widespread adoption.
Furthermore, as the number of skills or attributes increases,
model identifiability issues may arise (von Davier, 2008).

Beyond computational issues, the calibration process itself
presents significant challenges. The detailed calibration required
for each attribute in polytomous settings creates a substantial
workload and financial burden (Birenbaum et al. 1993), parti-
cularly in large-scale assessments that typically measure a range
of complex, interrelated skills and knowledge (Tatsuoka, 2009).
Resource constraints often limit practitioners to calibrating cog-
nitive levels only at the item level, as conducting multi-level
calibrations for each cognitive attribute across all items proves
impractical. The effectiveness of this simplified approach in
producing satisfactory estimates of examinees’ polytomous attri-
butes requires further investigation.

To fully leverage the potential of large-scale educational assess-
ments, this research aims to develop novel polytomous attribute
estimation methods. These methods are designed to serve as effective
estimation techniques for mpCDMs. The primary objective is to
achieve precise estimations of examinees’ polytomous attribute mas-
tery under these complex conditions. We will further show that the
proposed methods work well for conditions with large sample sizes,
high item volumes, and multiple attributes with hierarchical cognitive
levels defined at the item level, which is precisely when traditional
estimation methods become infeasible in practice.

The remainder of the article is structured as follows: we start by
introducing the G-DINA model with dichotomous and poly-
tomous attributes, along with the basic idea of the two-stage
polytomous attribute estimation method. Then, a Monte Carlo
simulation study is conducted to assess the accuracy of the
parameter estimates of these two-stage approaches and compare
their consistency with the estimates derived from mpCDM. This
is followed by an empirical study that validates the practicality of
these new methods in real-world settings. The study concludes
with some recommendations.

Methods
The G-DINA model with dichotomous and polytomous attri-
butes. This study employs the pG-DINAmodel for assessing multiple
levels of attribute mastery.We begin with its predecessor, the G-DINA
model, which provides the essential framework.

CDMs can be classified as simplified or saturated types based
on their scope of application (Junker and Sijtsma, 2001; see also
Hou, 2013 for a more recent discussion). Simplified CDMs have
more restrictive assumptions in item response function construc-
tion, offering narrower applicability, simpler structures, and
higher parameter estimation precision. Conversely, saturated
CDMs, such as the G-DINA model, which considers all potential
main effects and interactions, are characterized by fewer
limitations and broader applicability but entail more complex
structures and demand large sample sizes for accurate and stable
parameter estimation (Jiang and Carter, 2019). The G-DINA
model incorporates three link functions: identity, logit, and log
link functions (de la Torre, 2011). The identity link function
within the G-DINA model is formulated as follows:

P Xj ¼ 1jα�lj
� �

¼ δj0 þ ∑
K�

j

k¼1
δjkα

�
lk þ ∑

K�
j

k0¼kþ1
∑

K�
j �1

k¼1
δjkk0α

�
lkα

�
lk0

þ¼ þ δj12¼K�
j

YK�
j

k¼1

α�lk

ð1Þ

In this formula, δj0 is the intercept for the item j, representing
the probability of an examinee answering item j correctly without
mastering any of its measured attributes. δjk is the main effect of
attribute k, indicating the increase in probability of correctly
answering item j as a result of mastering attribute k. And δjkk0

represents the interaction effect between attributes k and k' in
item j, while δj12¼K�

j
accounts for the interaction effects among

all attributes measured by item j. Elements of the Q matrix, qjk,
are binary variables (0 or 1), where qjk ¼ 1 indicates that item j

measures attribute k, and otherwise not. K�
j ¼ ∑K

k¼1qjk denotes
the total number of attributes measured by item j. α�lj ¼
ðα�l1; ¼ ; α�lK�

j
Þ0 is the reduced attribute vector based on item j,

where l ¼ 1; ¼ ;K�
j .α

�
lk is also a binary variable, where α�lk ¼ 1

indicates mastery of attribute k for pattern l. The formula
describes the probability of an examinee with an attribute mastery
pattern α�lj correctly answering item j. Notably, saturated CDMs
can transform into simplified models under certain conditions. By
constraining some parameters in Eq. (1) to zero, reparameteriz-
ing, and selecting suitable link functions, various submodels
within the G-DINA model framework can be obtained. However,
these models assume binary attributes, signifying mastery (“1”) or
non-mastery (“0”).

While the G-DINA model provides a comprehensive frame-
work for dichotomous attributes, many educational assessments
require evaluating knowledge and skills at multiple levels. Chen
and de la Torre (2013) extended the G-DINA framework to
accommodate polytomous attributes through the pG-DINA
model, which maintains the model’s flexibility while enabling a
more nuanced assessment of attribute mastery. The item response
function (IRF) of this model is formulated as follows:

P Xj ¼ 1jα��lj
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Here, α��lj ¼ ðα��l1 ; ¼ ; α��lK�
j
Þ0 is defined as the collapsed attribute

vector, and α��lk ¼ Iðαlk ≥ qjkÞ is the collapsed dichotomous

attribute, where αlk refers to the P-level attribute. K�
j ¼

∑K
k¼1 Iðqjk > 0Þ is still used to denote the number of required

attributes for item j, while other parameters follow the same
definitions as in the G-DINA model (Chen and de la Torre,
2013). Similar to the G-DINA model, by applying various
constraints, the pG-DINA model can be transformed into
different polytomous cognitive diagnosis models. In the sub-
sequent sections of this paper, we will primarily focus on the pG-
DINA model. This choice of the pG-DINA model as our
methodological foundation is motivated by two key considera-
tions: its theoretical comprehensiveness in handling polytomous
attributes and the wide availability of software packages
implementing the G-DINA framework.

The two-stage polytomous attribute estimation method. While
the pG-DINA model provides a comprehensive framework for
polytomous cognitive diagnosis, its practical implementation
becomes particularly challenging in large-scale assessments with
many polytomous attributes and hundreds of items, even when
adopting a simplified item-level calibration approach where all
attributes within an item share the same cognitive level. To
address these computational challenges while preserving
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diagnostic capabilities, we propose a novel two-stage polytomous
attribute estimation method, designed specifically for contexts
where cognitive levels are uniformly defined at the item level.

The general idea of the proposed two-stage polytomous
attribute estimation method involves two steps. Specifically:

Step 1: We decompose the polytomous estimation problem
into P separate dichotomous estimation problems by grouping
items according to their cognitive levels. This decomposition
significantly reduces computational complexity since each group
only requires estimating binary attribute patterns using the
G-DINA model. For each cognitive level pðp ¼ 1; ¼ ; PÞ, we treat
each level as an independent dichotomous CDM analysis. The
Expectation-Maximization algorithm with marginal maximum-
likelihood estimation (MMLE/EM) can be used for model
parameter estimation (de la Torre, 2009, 2011), and maximum
a posteriori estimation (MAP) for attribute mastery patterns.

Step 2: To obtain the examinees’ polytomous attribute
patterns, we propose two methods of merging the dichotomous
attribute patterns:

Maximal merging method (denoted as P_max). The maximal
merging method assigns an examinee’s mastery level based solely
on the highest cognitive level achieved, regardless of performance
at lower levels. For each attribute of the same examinee, the
highest cognitive level at which the attribute is estimated to be
mastered is taken as the mastery level of that attribute. To illus-
trate, consider an examinee who masters an attribute at level 3
but not at levels 1 or 2. P max would assign level 3 mastery,
focusing exclusively on the highest level of demonstrated cap-
ability while disregarding performance at lower levels. Mathe-
matically, the cognitive level of attribute k for examinee i can be
estimated using the following formula:

α̂ik ¼ argmax
p2½1;P�

½p ´ Iðαikp ¼ 1Þ�; i ¼ 1; ¼ ;N; k ¼ 1; ¼ ;K; p ¼ 1; ¼ ; P

ð3Þ
where αikp represents the dichotomous mastery status of attribute
k for examinee i in level p. The term Iðαikp ¼ 1Þ is an indicator
function, where its value is 1 if αikp equals 1, and 0 otherwise.
Therefore, p ´ Iðαikp ¼ 1Þ is not zero only when αikp equals 1, and
the argmax function will return the index of the maximum value,
i.e., the largest p value (attribute level) where αikp equals 1.

Linear conditional merging method (denoted as P_linear). Cog-
nitive development often exhibits hierarchical patterns in learning
processes, as reflected in several influential educational theories.
Bloom’s Taxonomy (1956) systematically organizes cognitive
processes from basic to complex levels, progressing from
knowledge and comprehension through application to higher-
order processes. Anderson and Krathwohl’s (2001) revision fur-
ther emphasized that mastery of higher-level cognitive processes
typically requires proficiency in lower-level abilities. This hier-
archical progression is reflected in measurement frameworks such
as the OCAC (Karelitz, 2004), which explicitly posits that
achieving higher mastery levels necessitates the attainment of
more fundamental levels. While cognitive diagnostic models like
pG-DINA do not explicitly mandate such hierarchical relation-
ships, they can accommodate structural patterns where mastery
of certain levels serves as a prerequisite for achieving higher levels
(de la Torre and Douglas, 2004).

Drawing from these theoretical frameworks and building upon
the P_max method, we propose the linear conditional merging
method. This approach posits that an examinee can only master a
higher-level attribute if all lower-level attributes are mastered.

This can be represented by the following equation:

α̂ ik ¼ argmax
p2½1;P�

½p ´ Ið
Yv¼p

v¼1

αikv ¼ 1Þ�; i ¼ 1; ¼ ;N;

k ¼ 1; ¼ ;K; p ¼ 1; ¼ ; P

ð4Þ

where IðQv¼p
v¼1αikv ¼ 1Þ is an indicator function that is equal to 1

only when the mastery status of the attribute k equals 1 for all
levels from the first to the pth level and 0 otherwise.

P_linear enforces hierarchical mastery requirements where
higher levels depend on mastery of lower levels, while P_max
determines mastery based solely on the highest level achieved
regardless of performance at lower levels. Consider an example
with three attributes where the maximum cognitive level is 2.
When an examinee’s dichotomous attribute patterns are α̂1 ¼
1; 1; 0ð Þ and α̂2 ¼ 0; 1; 1ð Þ, P max yields a polytomous attribute
pattern of α̂ ¼ 1; 2; 2ð Þ, while P_linear produces α̂ ¼ 1; 2; 0ð Þ.
This difference arises from P_linear’s enforcement of hierarchical
mastery requirements: although the third attribute shows mastery
at level 2, the lack of mastery at level 1 results in an overall
mastery level of 0 under P_linear, whereas P_max assigns level 2
based solely on the highest demonstrated capability.

Moreover, the item parameters estimated from each cognitive
level group using G-DINA can be directly used without additional
merging because they are estimated within their respective
cognitive levels. The resulting item parameters maintain their
interpretability within each cognitive level while significantly
reducing computational complexity.

Simulation study
To evaluate the accuracy of the polytomous attribute mastery
patterns obtained using the two-stage estimation methods
(P_max and P_linear) under various conditions and to verify the
consistency of these results with those directly derived from the
polytomous CDM (pG-DINA), a Monte Carlo simulation study
was conducted.

Simulation design. A 3 × 3 × 3 × 2 design was employed, with the
following specific factors:

(1) Number of attributes (K), set at three levels: 3, 5, and 8
attributes.

(2) Number of items, set based on multiples of the number of
attributes, at three levels: 10, 20, and 50 times. For instance,
if the number of attributes is 8, then the number of items
would be 80, 160, and 400.

(3) Number of examinees (N), set at three levels: 500, 1000,
and 2000.

(4) Item quality. Two levels were considered: high and low. For
high-quality items, both guessing and slipping parameters
were set to 0.1 across all items. For low-quality items, these
parameters were set to 0.3.

Additionally, the maximum level for all attributes was fixed at 4
(P ¼ 4), and a constraint was imposed to ensure that each item
measured no more than four attributes.

Simulation process. The simulation experiment was conducted
according to the following procedure:

(1) Simulation of true attribute mastery patterns: A multi-
dimensional normal distribution was specified for the
attributes. The mean vector was set to zero, and the
correlation coefficients between attributes were randomly
selected from the range of 0.5–0.8, consistent with typical
inter-attribute correlations reported in the literature
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(Kunina-Habenicht et al. 2012; Sinharay et al. 2011). The
resulting attribute vectors were then discretized into values
of 0, 1, 2, 3, and 4.

(2) Simulation of the Q-matrix: A polytomous reachability
matrix (Rp) was first constructed, followed by generating a
simplified polytomous Q (denoted as Qp) matrix using an
expansion algorithm (Sun et al. 2013). For instance, for
three attributes with the highest attribute level of 4, the
corresponding Rp matrix and simplified Qp matrix are
shown in Table 1. The reachability matrix is key in
cognitive diagnostic analysis for diagnosing each attribute
(Sun et al. 2013), and the number of reachability matrices
included in the test Q-matrix can affect the accuracy rates.
In a polytomous attribute circumstance, even if each item
only assesses one attribute level, the potential number of
attribute assessment patterns P ´ ð2K � 1Þ might exceed the
number of items to be tested. Therefore, each Qp matrix in
this study included one Rp matrix, with the remaining rows
randomly drawn (with replacement) from the simplified Qp

matrix (outside the Rp matrix).
(3) Simulation of item parameters: The guessing and slipping

parameters were generated according to the specified
simulation conditions.

(4) Simulation of response matrix: Based on steps (1)–(3), and
the pG-DINA model’s item response function, the

probability Pij of an examinee answering an item correctly
was calculated. A random number rij was generated from
Uð0; 1Þ; if Pij < rij, the examinee i scored 0 on item j,
otherwise 1. The score matrix for all examinees was
simulated.

(5) Parameter estimation using the cognitive diagnosis model
(pG-DINA) and the two-stage methods. The MMLE/EM
was used for model parameter estimation (de la Torre,
2009, 2011), and MAP for attribute mastery patterns.
Additionally, the accuracy of different models, parameter
estimation precision, and the consistency between the two-
stage methods and the pG-DINA model were computed.

Each condition was repeated 50 times to reduce experimental
error. The Monte Carlo simulation process was implemented
using custom R scripts, with the data simulation and parameter
estimation using the GDINA package (Ma and de la Torre, 2020).
The code used for this study is available at https://osf.io/jd9hx/?
view_only=51f7d62dee1e4fcdaf039a0fe0000b9d. All simulations
and analyses were performed on a computer with an Intel(R)
Core(TM) i9-13900K (3.00 GHz) processor and 128 GB RAM.

Evaluation indices. The following metrics were used to evaluate
the precision of parameter estimates and the consistency between
different models:

Table 1 The Rp and simplified Qp matrices for assessing three attributes with the highest attribute level of 4.

No. α α α No. α α α

1 1 0 0 15 0 1 1

2 0 1 0 16 1 1 1

3 0 0 1 17 2 2 0

4 2 0 0 18 2 0 2

5 0 2 0 19 0 2 2

6 0 0 2 20 2 2 2

7 3 0 0 21 3 3 0

8 0 3 0 22 3 0 3

9 0 0 3 23 0 3 3

10 4 0 0 24 3 3 3

11 0 4 0 25 4 4 0

12 0 0 4 26 4 0 4

13 1 1 0 27 0 4 4

14 1 0 1 28 4 4 4

The entire Qp matrix for the test is listed in the table, with the Rp matrix highlighted in gray.
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(1) For evaluating the accuracy of estimated attribute profiles,
the average attribute correct classification rate (ACCR) and
the average pattern correct classification rate (PCCR) were
used, calculated as follows:

ACCR ¼ ∑R
r¼1∑

N
i¼1∑

K
k¼1Wik

R ´N ´K
ð5Þ

PCCR ¼ ∑R
r¼1∑

N
i¼1

QK
k¼1Wik

R ´N
ð6Þ

Here, N represents the sample size. K is the number of
attributes and R is the number of repetitions. And
Wik ¼ Iðα̂ik ¼ αikÞ, where α̂ik and αik are the estimated
and true attribute mastery levels of the ith examinee,
respectively. I is an indicator function, where Wik ¼ 1 if
α̂ik ¼ αik, else Wik ¼ 0. ACCR and PCCR reflect the
accuracy of individual attributes and overall attribute
pattern classification, respectively; higher values indicate
better veracity of model parameter estimation.

(2) The mean absolute bias (MAB) is used to evaluate the
precision of item parameter estimation, calculated as
follows:

MAB ¼ ∑
R

r¼1

dτ̂ � τe
R

ð7Þ

Here, τ̂ and τ are the estimated and true values of the model
parameters, respectively. MAB reflects the average deviation
between the true and estimated item parameters; lower
MAB values indicate higher precision in item parameter
estimation.

(3) Attribute-matching rates and pattern-matching rates were
used to assess the consistency between pG-DINA and the
two-stage estimation methods. The calculations for these
rates are the same as ACCR and PCCR, but α̂ik and αik in
Eqs. (5) and (6) were replaced by the attribute mastery
levels obtained from the two-stage methods and the pG-
DINA model, respectively.

(4) Computational time was measured to evaluate the efficiency
of each method. The time was recorded from the start of the
estimation process to its completion.

Results. The following section primarily presents the parameter
estimation results for high-quality items, while results for low-
quality items are provided in Appendix B. This focus on high-
quality items allows for a clearer presentation of the methods’
performance under optimal conditions, which is typically of
greater interest in practical applications. The comprehensive
results, including those for low-quality items, are available for
readers seeking a more in-depth analysis.

The accuracy of estimated attribute profiles. Table 2 presents the
average ACCR for both the pG-DINA model and the two-stage
polytomous attribute estimation methods under various condi-
tions. The pG-DINA model exhibited high average ACCR values
exceeding 0.8 across all conditions, indicating accurate estimation
of examinees’ attribute mastery levels even when cognitive levels
of attributes are marked at the item level. In comparable condi-
tions, the average ACCR of the two-stage polytomous attribute
estimation methods slightly trailed behind the pG-DINA model
but with negligible differences, all-surpassing 0.75, where the
P_max method slightly outperformed the P_linear method. This
suggests a marginal superiority of the P_max method in esti-
mating examinees’ attribute mastery levels. Notably, the average
ACCR increased with a decrease in the number of attributes and
an increase in the number of items. In particular, when the
number of items was 50 times the number of attributes, even with
eight attributes, all three methods achieved average ACCRs above
0.9. Furthermore, the average ACCR improved with larger sample
sizes, indicating that with sufficient items (e.g., 50 times the
number of attributes) and large sample sizes, all three methods
could achieve highly accurate estimations of examinees’ attribute
mastery levels.

Table 3 presents the average PCCR for the pG-DINA model
and the two-stage estimation methods under various conditions.
The average PCCR was significantly affected by the number of
attributes and the length of items. For instance, with a sample size
of 2000, the attribute number set to 8, and item length at 80 (10
times the number of attributes), the average PCCR for the pG-
DINA model was only 0.286, indicating that only about a quarter
of examinees’ attribute profiles could be accurately determined
under these conditions. However, extending the item length to
400 (50 times the number of attributes) significantly improved
the pG-DINA model’s average PCCR to 0.815, which means pG-
DINA can accurately determine around 80% of examinees’
attribute profiles. The two-stage estimation methods, although
close in average PCCR values, generally performed slightly lower
than the pG-DINA model. Among them, the P_max method
showed a slight advantage in estimating attribute patterns over
the P_linear method. It’s noteworthy that in scenarios with large
item quantities and ample sample sizes, all methods achieved
average PCCR values meeting practical measurement needs, even
in the face of high attribute numbers. For instance, in scenarios
with a large sample size of 2000, eight attributes, and 400 items,
both two-stage estimation methods achieved an average PCCR of
around 0.7. This observation underscores the significant impact
of item quantity and sample size on estimation accuracy,
especially in tests with high attribute numbers.

Item parameter estimation precision. Table 4 illustrates the pre-
cision of item parameter estimation for both the pG-DINA model

Table 2 The average ACCR under various conditions for the pG-DINA model and the two-stage methods.

Number of
attributes

Test length
(multiple of the number of
attributes)

N= 500 N= 1000 N= 2000

pG-DINA P_max P_linear pG-DINA P_max P_linear pG-DINA P_max P_linear

3 10 0.850 0.798 0.792 0.857 0.804 0.801 0.862 0.807 0.805
20 0.925 0.901 0.897 0.930 0.906 0.903 0.933 0.908 0.906
50 0.990 0.986 0.985 0.991 0.987 0.986 0.992 0.988 0.987

5 10 0.847 0.788 0.784 0.849 0.800 0.794 0.851 0.811 0.802
20 0.909 0.885 0.876 0.914 0.894 0.887 0.919 0.901 0.895
50 0.980 0.976 0.973 0.983 0.979 0.976 0.985 0.981 0.979

8 10 0.840 0.791 0.766 0.844 0.806 0.779 0.848 0.815 0.791
20 0.894 0.864 0.838 0.903 0.880 0.861 0.908 0.888 0.873
50 0.951 0.947 0.935 0.967 0.962 0.954 0.973 0.968 0.962
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and the two-stage polytomous attribute estimation methods
under various experimental conditions. When the number of
items was relatively small, the average MAB values of the two-
stage methods were marginally higher than those of the pG-
DINA model. However, as the number of items increased, the
accuracy of item parameter estimation across different methods
converged. Furthermore, the average MAB for item parameter
estimation increased with the number of attributes and decreased
with longer item lengths and larger sample sizes. The accuracy of
item parameter estimation is expected to further improve with
increased sample sizes.

Consistency in estimated profiles between pG-DINA model and the
two-stage estimation methods. Table 5 presents the consistency in
estimating examinees’ attribute mastery levels between the pG-
DINA model and the two proposed two-stage methods. Overall,
both two-stage methods demonstrated high consistency with the

pG-DINA model, exhibiting attribute matching rates exceeding
0.8. The P_max method marginally outperformed the P_linear
method in this regard. The analysis revealed that the consistency
in attribute level estimation improved with larger sample sizes
and an increased number of items. However, a declining trend
was observed as the number of attributes increased. When the
number of attributes was 3 or 5, and the number of items was at
least 20 times the number of attributes, both two-stage methods
achieved attribute estimation consistency exceeding 0.9 with the
pG-DINA model. For scenarios with a higher number of attri-
butes (i.e., 8), a similar level of consistency (>0.9) was achieved
when the number of items was at least 50 times the number of
attributes. A notable example illustrates the methods’ perfor-
mance under optimal conditions: with 8 attributes, 400 items (50
times the number of attributes), and a sample size of 2000, the
consistency in attribute level estimation between the P_max
method and the pG-DINA model reached 0.976, while the

Table 3 The average PCCR under various conditions for the pG-DINA model and the two-stage methods.

Number of
attributes

Test length
(multiple of the number of
attributes)

N= 500 N= 1000 N= 2000

pG-DINA P_max P_linear pG-DINA P_max P_linear pG-DINA P_max P_linear

3 10 0.623 0.516 0.505 0.637 0.527 0.524 0.649 0.534 0.531
20 0.802 0.741 0.731 0.814 0.751 0.744 0.822 0.758 0.752
50 0.972 0.962 0.960 0.976 0.964 0.963 0.977 0.967 0.965

5 10 0.449 0.317 0.314 0.455 0.344 0.338 0.463 0.368 0.355
20 0.639 0.556 0.533 0.653 0.588 0.571 0.670 0.610 0.593
50 0.909 0.890 0.877 0.921 0.903 0.892 0.929 0.913 0.902

8 10 0.261 0.168 0.160 0.274 0.201 0.174 0.286 0.220 0.192
20 0.428 0.335 0.282 0.465 0.384 0.346 0.486 0.413 0.379
50 0.668 0.646 0.597 0.771 0.740 0.704 0.815 0.779 0.746

Table 4 The average MAB of item parameter estimation under various conditions for the pG-DINA model and the two-stage
methods.

Number of attributes Test length
(multiple of the number of attributes)

N= 500 N= 1000 N= 2000

pG-DINA Two-stage pG-DINA Two-stage pG-DINA Two-stage

3 10 0.089 0.115 0.061 0.085 0.040 0.058
20 0.077 0.084 0.052 0.057 0.036 0.040
50 0.069 0.069 0.048 0.049 0.034 0.034

5 10 0.162 0.212 0.118 0.155 0.084 0.102
20 0.148 0.170 0.099 0.110 0.069 0.074
50 0.129 0.131 0.090 0.091 0.062 0.063

8 10 0.198 0.255 0.148 0.189 0.114 0.133
20 0.192 0.218 0.133 0.148 0.093 0.101
50 0.175 0.175 0.116 0.116 0.079 0.079

Table 5 The average attribute matching rates between the two-stage methods and the pG-DINA model under various conditions.

Number of attributes Test length
(multiple of the number of attributes)

N= 500 N= 1000 N= 2000

P_max P_linear P_max P_linear P_max P_linear

3 10 0.852 0.845 0.863 0.859 0.871 0.868
20 0.933 0.929 0.940 0.937 0.944 0.941
50 0.991 0.990 0.992 0.992 0.993 0.992

5 10 0.839 0.835 0.850 0.845 0.864 0.856
20 0.910 0.901 0.921 0.915 0.928 0.922
50 0.982 0.979 0.985 0.982 0.987 0.985

8 10 0.851 0.824 0.860 0.834 0.864 0.841
20 0.888 0.860 0.902 0.884 0.910 0.897
50 0.955 0.940 0.970 0.962 0.976 0.970
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P_linear method achieved 0.970. These results indicate that in
scenarios characterized by large sample sizes and high item
volumes, both P_max and P_linear methods can produce attri-
bute mastery level estimations highly consistent with the pG-
DINA model, even when dealing with a substantial number of
attributes.

Table 6 presents the consistency in estimating examinees’
attribute profiles between the two methods and the pG-DINA
model. Similarly, the consistency in attribute pattern estimation
decreased with more attributes but increased with larger sample
sizes and more items. Notably, the consistency in attribute
mastery pattern estimation between the P_max method and the
pG-DINA model was higher than that between the P_linear
method and the pG-DINA model. With 8 attributes, 400 items
(50 times the number of attributes), and a sample size of 2000, the
consistency in attribute mastery pattern estimation between the
P_max method and the pG-DINA model reached 0.828,
indicating that over 80% of examinees’ attribute profiles estimated
by these two methods were completely consistent. This
consistency is expected to further improve with larger sample
sizes.

Parameter estimation time. The computational efficiency of the
pG-DINA model and the proposed two-stage methods was
evaluated under various conditions, with the results presented in
Table 7. The findings reveal a consistent pattern across all
experimental conditions: the two-stage methods demonstrate
markedly superior computational efficiency compared to the pG-
DINA model. This efficiency advantage becomes increasingly
pronounced as model complexity increases. For models with
three attributes, both methods exhibit relatively low computation
times, with the two-stage methods showing a slight edge.

However, as the number of attributes increases to five and eight, a
substantial disparity in computation time emerges. For instance,
in the most complex scenario examined (8 attributes, 400 items
(50 times the number of attributes), 2000 examinees), the pG-
DINA model required approximately 81,619 s (about 22.7 h),
while the two-stage methods completed the task in merely 27.2 s.

The impact of test length and sample size on computation time
is evident for both methods, with longer tests and larger samples
generally requiring more processing time. However, the rate of
increase is considerably steeper for the pG-DINA model.

Notably, the two-stage methods exhibit remarkable scalability.
Even as model complexity increases dramatically, their computa-
tion time remains relatively manageable. In contrast, the pG-
DINA model shows exponential growth in computation time as
the number of attributes increases, particularly evident in the
transition from 5 to 8 attributes.

Appendix A presents parameter estimation results for various
methods under conditions of lower item quality, where both
guessing and slipping parameters were fixed at 0.3. Analysis of
these results reveals that all methods, including the MMLE/EM
estimation under the pG-DINA model and the proposed two-
stage approaches, exhibited diminished accuracy in estimating
examinees’ attribute profiles under these suboptimal conditions.
Notably, while computation times increased for all methods
under low item quality conditions, the proposed two-stage
methods maintained their substantial efficiency advantage, out-
performing the traditional MMLE/EM estimation under the pG-
DINA model by several orders of magnitude in computation
speed. These observations underscore two crucial points: First,
the importance of item quality—irrespective of the chosen
estimation method, high-quality items are essential for accurate
attribute estimation. Second, even under suboptimal item quality

Table 6 The average pattern matching rates between the two-stage methods and the pG-DINA model under various conditions.

Number of attributes Test length
(multiple of the number of attributes)

N= 500 N= 1000 N= 2000

P_max P_linear P_max P_linear P_max P_linear

3 10 0.627 0.611 0.649 0.645 0.667 0.661
20 0.819 0.810 0.836 0.829 0.847 0.840
50 0.975 0.973 0.979 0.977 0.980 0.978

5 10 0.424 0.418 0.462 0.451 0.502 0.482
20 0.638 0.611 0.679 0.657 0.703 0.683
50 0.919 0.903 0.931 0.919 0.939 0.928

8 10 0.285 0.229 0.311 0.254 0.326 0.275
20 0.401 0.318 0.459 0.406 0.493 0.453
50 0.694 0.62 0.787 0.744 0.828 0.792

Table 7 The average computation time (in seconds) under various conditions for the pG-DINA model and the two-stage
methods.

Number of attributes Test length
(multiple of the number of attributes)

N= 500 N= 1000 N= 2000

pG-DINA Two-stage pG-DINA Two-stage pG-DINA Two-stage

3 10 0.6 0.3 0.8 0.3 1.4 0.5
20 1.2 0.4 1.3 0.4 2.0 0.6
50 1.5 0.5 2.1 0.7 3.4 1.1

5 10 28.0 1.7 92.2 1.9 183.2 3.8
20 64.9 2.5 118.7 2.2 267.7 4.0
50 112.2 3.2 199.8 4.2 333.9 6.8

8 10 3353.3 5.8 11,948.6 11.6 37,816.5 17.6
20 5445.7 6.2 23,242.5 12.5 45,507.4 26.5
50 11,078.3 6.8 28,535.8 14.7 81,619.0 27.2
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conditions, the proposed two-stage methods demonstrate
remarkable computational efficiency compared to traditional
methods.

Empirical study
An empirical study was conducted using data from the National
Medical Licensing Examination of China, a large-scale health-
related certification exam, to validate the feasibility of the new
methods in practice. The test comprised approximately 600
multiple-choice items, with each correctly answered item awarded
one point, totaling a maximum score of 600. The passing
threshold was set at 360 points, with a recent 5-year pass rate
fluctuating between 40% and 50%. The test score reports only
included the total score, lacking detailed feedback on individual
knowledge mastery. The application of cognitive diagnostic
assessment (CDA; Leighton and Gierl, 2007) in such large-scale
exams could provide more detailed feedback, enhancing educa-
tional effectiveness and enabling more accurate individual ability
assessment.

Method
Determining attributes and cognitive levels. This study employed a
rigorous process for calibrating the polytomous Q-matrix for the
examination, using a panel of experts assembled by the China
National Medical Examination Center. The panel comprised
professionals from the nation’s leading medical schools and
hospitals, each possessing over a decade of experience in teaching
and item development. The calibration process involved a colla-
borative effort between domain experts and psychometricians.
They analyzed each test item to identify the examination key
points and cognitive levels assessed, ensuring alignment with the
test specifications outlined in the examination syllabus. Through
this comprehensive review, the expert panel identified 12 distinct
examination key points. Each test item was subsequently mapped
to at least one of these key points, establishing a clear link
between item content and the broader examination objectives. In
addition to key point mapping, each item was classified according
to its cognitive demand. The panel employed a four-level hier-
archical framework to categorize the cognitive processes required
by each item, ranging from lower to higher-order thinking skills:
memory, understanding, simple application, and comprehensive
application. In constructing the Q-matrix, we treated examination
points as attributes, with cognitive levels serving as multiple
levels, forming a complete polytomous Q-matrix. The attributes
were coded from A1 to A12. Each cognitive level in this study was
assessed by over 100 items. Except for attributes A9 and A12,
which were not assessed at the comprehensive application level by
any item, all other attributes were measured across various cog-
nitive levels. Additionally, the Q-matrix for this study exhibits a
complex structure, as over a third of the items simultaneously
assessed multiple attributes. The item that assessed the most
attributes measured five attributes concurrently. For more
detailed statistical information about the polytomous Q-matrix
used in this study, please refer to Appendix B.

Data description. The data, provided by the China National
Medical Examination Center, included 225,044 samples, with
scores ranging from 82 to 531, an average of 346.03, a standard
deviation of 82 points, and a median of 357. ~48.55% of exam-
inees passed the 360-point threshold.

Analysis. Drawing from the findings of the simulation study, we
opted for the two-stage P_max estimation method to analyze the
test data. The 600 items were divided into four sets according to
their cognitive levels, and each set was analyzed using the GDINA

model (de la Torre, 2011), with parameter estimation conducted
using the GDINA package in R (Ma and de la Torre, 2020). We
used the MMLE/EM algorithm to estimate model parameters and
the MAP method to determine attribute mastery status. The
P_max method then integrated the results from the four item sets,
yielding the final parameter estimates. The entire analysis process
for this empirical study took approximately 143.55 h to complete
on a computer with an Intel(R) Core(TM) i9-13900K (3.00 GHz)
processor and 128 GB RAM.

Evaluation indicators
Model Fit: The goodness of fit (GOF) between the empirical data
and the chosen CDM was evaluated by the M2 statistic (Hansen
et al. 2016). However, with increasing sample sizes, M2 becomes
overly sensitive to model misfit (Xu et al. 2017). Therefore, the
root mean square error of approximation (RMSEA) was further
employed to assess the effect size of model-data mismatch, with a
recommended upper limit of 0.04 (Steiger, 1980).

Classification accuracy: The test-level and attribute-level classifi-
cation accuracy indicators (Iaconangelo, 2017; Wang et al. 2015)
were used to assess the reliability of diagnostics at both the test
and attribute levels. Higher values of these indicators indicate
higher precision in model classifications.

Item discrimination under CDM: In CDM analysis, an item’s
overall discrimination can be defined as the probability of
examinees who have mastered all attributes of an item [pjð1Þ]
minus the probability of those who have not mastered any
attributes of the item [pjð0Þ], expressed as:

dj ¼ pj 1ð Þ � pjð0Þ ð8Þ

Score application: Based on the estimation of examinees’ attribute
profiles, we presented a comprehensive view of cognitive mastery
situations. This encompassed the overall examinee population,
various groups, and individuals with typical scores.

Results. Table 8 shows the goodness of fit (GOF) results for the
four sets of items. Although the M2 statistics for all four sets were
significant, considering the large sample size, RMSEA was chosen
as the measure of model-data misfit. The RMSEA for all four sets
of items was below 0.04, indicating negligible misfit between the
data and the model.

Table 9 displays the classification accuracy indicators at both
the test and attribute levels. These indicators are used to evaluate
the CDM model’s diagnostic precision across the entire test and
for individual attributes. Among the cognitive levels, items
assessing “memorizing” had the highest test accuracy at 0.77,
while those assessing “simple application” had the lowest at 0.56.
At the attribute level, classification accuracy indicators for all
attributes in the four groups exceeded 0.8, indicating high
attribute classification precision of the G-DINA model. It is worth
noting that since attributes A9 and A12 were not involved in
items assessing the “comprehensive application” level, these
attributes had no classification accuracy indicators at this level.

Table 8 The GOF results for the four sets of items.

Cognitive levels M2 df p RMSEA

Memorizing 385,031 1764 0 0.031
Understanding 828,224 5271 0 0.026
Simple application 3,448,290 23571 0 0.035
Comprehensive application 578,734 4563 0 0.024

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-025-04959-w ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2025) 12:716 | https://doi.org/10.1057/s41599-025-04959-w 9



Figure 1 presents the cognitive diagnostic discrimination
distribution of all items. Most items had discrimination above
0, effectively distinguishing examinees who had fully mastered the
cognitive attributes assessed by the items from those who had not.
However, a few items, particularly those assessing “simple
application”, had negative discrimination, with the lowest reach-
ing −0.85, suggesting a need to focus on improving the quality of
these items.

Table 10 displays the proportion of mastery of each cognitive
attribute at different levels among all examinees, those who
passed the exam, and those who did not. Candidates who passed
the exam demonstrated more mastery of attributes at higher
cognitive levels (“simple application” and “comprehensive
application”) compared to those who did not pass, confirming
the reasonableness of the attribute mastery estimation results.

In total, 5606 different attribute mastery profiles emerged
among all candidates. Table 11 shows the frequency distribution

of attribute mastery profiles that occurred in more than 1% of the
examinees. The most frequent pattern, occurring in over 10% of
candidates, was 444444443443, indicating mastery at the highest
level for all attributes except A9 and A12.

Examinees’ attribute mastery profiles can be visualized using
radar charts. Figure 2 shows the polytomous attribute mastery
profiles, represented in different colors, of two examinees who
both scored 360. Although they achieved the same total score,
their attribute mastery profiles were not identical, demonstrating
that cognitive diagnostic assessment can provide richer, perso-
nalized feedback compared to traditional test scores.

Conclusion and discussion
In large-scale examinations, the use of CDMs with many poly-
tomous attributes (mpCDM) addresses a critical need for a more
nuanced and detailed assessment of examinees’ knowledge and

Table 9 The classification accuracy indicators at test and attribute levels.

Cognitive levels Test A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Memorizing 0.77 1.00 0.95 1.00 1.00 0.96 0.90 0.99 0.91 0.92 0.91 1.00 0.99
Understanding 0.65 0.92 1.00 0.92 1.00 1.00 1.00 0.94 0.97 0.99 0.89 0.95 0.91
Simple application 0.56 0.91 0.91 0.94 1.00 0.98 1.00 0.93 0.91 0.92 1.00 1.00 0.83
Comprehensive application 0.64 0.88 0.85 0.88 1.00 0.92 1.00 0.91 0.94 – 0.94 1.00 –

Fig. 1 Discrimination distribution of item groups by cognitive levels. The
histograms display the cognitive diagnostic discrimination values for test
items across four cognitive levels: memorizing (top left), understanding
(top right), simple application (bottom left), and comprehensive
application (bottom right). Each panel shows the frequency distribution of

discrimination indices, with the x-axis representing CDM discrimination
values and the y-axis representing the frequency of items. Mean, standard
deviation (SD), minimum, and maximum values are provided in the top-left
corner of each panel.
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skills. This granular approach enables educators and policymakers
to move beyond mere pass/fail determinations or overall score
categorizations, diving deeper into the complex fabric of learners’
cognitive profiles. It is especially valuable in contexts like national
educational assessments, professional certification exams, or large-
scale academic surveys, where understanding specific strengths and
weaknesses is crucial for tailored educational strategies, targeted
interventions, and informed decision-making.

Our study introduces two novel two-stage polytomous attri-
bute estimation methods (P_max and P_linear) that address
several critical challenges in implementing mpCDM for large-
scale assessments. Through extensive Monte Carlo simulations
and empirical application, we validated the effectiveness and
scalability of these methods across various scenarios with high
numbers of attributes, extensive item pools, and large sample
sizes. The results demonstrate unprecedented capability in
handling numerous polytomous attributes, with successful
application to 12 four-level attributes in our empirical study.
Most notably, these methods achieve remarkable computational
efficiency, reducing processing time from hours to seconds
compared to traditional approaches, while maintaining accurate
and reliable cognitive calibration.

Our methods are particularly well-suited for large-scale
assessment contexts where multiple complex skills need to be

evaluated simultaneously, such as national certification exam-
inations, professional licensure tests, and comprehensive educa-
tional assessments. The approach is most effective when
implemented with high-quality items, sufficient test length rela-
tive to the number of attributes being measured, and adequate
sample sizes. These conditions are typically met in large-scale
testing programs where rigorous item development processes are
standard practice, comprehensive content coverage is required,
and large candidate populations are available. To ensure optimal
performance in high-stakes contexts, we recommend supple-
menting our methods with traditional psychometric indices and
conducting thorough item quality control. The empirical success
of the national medical licensing examination, which involved

Table 11 Frequency distribution of attribute mastery profiles
(frequency > 2250).

Profile Frequency Percentage

444444443443 30120 13.4
444444443441 17215 7.6
000000000003 12138 5.4
444444443442 10372 4.6
444434443443 8789 3.9
433434443441 7467 3.3
444434443441 7367 3.3
433444443441 4853 2.2
433434443443 4349 1.9
444434443442 4119 1.8
423434443441 3610 1.6
433434443442 3533 1.6
141434142341 3390 1.5
433444443443 3316 1.5
141434143341 2657 1.2
433444443442 2317 1.0
141434142343 2270 1.0

Fig. 2 The radar chart of polytomous attribute mastery profiles for two
examinees scoring 360. This visualization compares cognitive attribute
mastery across 12 attributes (A1–A12) for two examinees with identical
total scores. Different colors represent each examinee, with concentric
circles indicating mastery levels from “not mastered” (center) to
“comprehensive application” (outermost). Despite equal scores, the
examinees exhibit distinct mastery profiles, demonstrating how cognitive
diagnostic assessment provides more detailed information than traditional
scoring methods.

Table 10 The mastery percentages of each attribute at each cognitive level for different groups of examinees (%).

Group of examinees Cognitive levels A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

All Not mastered 6 6 7 6 6 6 11 6 7 6 6 3
Memorizing 19 0 23 0 0 0 14 0 0 0 0 39
Understanding 6 9 5 0 2 0 9 2 16 0 0 20
Simple application 5 15 22 0 52 1 8 3 77 24 0 37
Comprehensive application 63 70 44 93 39 93 58 89 0 70 94 0

Passed Not mastered 0 0 0 0 0 0 0 0 0 0 0 1
Memorizing 0 0 1 0 0 0 0 0 0 0 0 35
Understanding 1 4 1 0 0 0 1 0 1 0 0 20
Simple application 3 22 25 0 37 0 7 1 99 2 0 45
Comprehensive application 96 75 72 100 63 100 92 99 0 98 100 0

Failed Not mastered 12 12 13 12 12 12 21 12 13 12 12 6
Memorizing 37 0 45 0 0 0 28 0 0 0 0 43
Understanding 11 14 7 0 4 0 16 3 31 0 0 21
Simple application 6 8 18 1 66 1 10 5 56 44 0 30
Comprehensive application 33 66 17 87 17 87 26 79 0 43 87 0
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multiple polytomous attributes, hundreds of test items, and over
200,000 examinees, exemplifies the ideal application scenario for
these methods.

By implementing these methods in R and providing open-
source code, we have enhanced the accessibility and reproduci-
bility of complex cognitive diagnostic modeling for a wider range
of researchers and practitioners. This approach facilitates further
development and application of mpCDM in diverse educational
and professional assessment contexts.

Our work paves the way for more precise and comprehensive
cognitive diagnostic assessments in large-scale national exams
and other high-stakes testing environments, potentially trans-
forming the landscape of educational and professional assess-
ment. The computational efficiency and robust performance of
these methods across various conditions significantly enhance the
feasibility and effectiveness of implementing complex cognitive
diagnostic models in large-scale assessments.

Further discussions from this study include:
Firstly, while our simulation study found high attribute-level

classification rates, the pattern-level classification rates were
relatively lower, aligning with previous research (Chen and de la
Torre, 2013). This reflects an inherent challenge: the expansion of
attribute levels from binary to polytomous significantly increases
the number of possible attribute mastery patterns (from 2K to
ðP þ 1ÞK ), making pattern-level classification more demanding.
Our simulation results demonstrated that with high-quality items,
sufficient test length, and adequate sample sizes, the two-stage
method can achieve excellent pattern-level classification rates
comparable to traditional approaches. To ensure optimal per-
formance in assessment contexts, we recommend maintaining
high item quality through thorough quality control, ensuring
adequate test length relative to the number of attributes, and
working with sufficient sample sizes. These conditions, combined
with the use of P_max rather than P_linear, can help maintain
high assessment quality while leveraging the substantial compu-
tational advantages of the two-stage approach.

Secondly, our results from the two-stage estimation methods
suggest that the P_linear method, which constructs polytomous
attributes based on a strictly linear relationship, is less accurate
and consistent with the pG-DINA model compared to the P_max
method. This strict linear relationship assumption may over-
simplify the actual cognitive development process. In reality,
cognitive development could be more complex, with different
levels of cognitive abilities potentially having more intricate
interactions with each other. Therefore, we recommend using the
P_max method in actual data analysis.

Thirdly, although we only set guessing and slipping parameters
in our study, the GDINA package can automatically convert these
to the δ coefficients used in the G-DINA model. This conversion
process ensures compatibility with the broader G-DINA frame-
work while maintaining the interpretability of the more intuitive
guessing and slipping parameters. Furthermore, our research
found that the pG-DINA model and the proposed two-stage
methods demonstrated suboptimal accuracy in estimating
examinees’ attribute mastery levels under conditions of low item
quality. This observation underscores the important role that item
quality plays in ensuring accurate diagnostic feedback. While
advanced modeling techniques such as pG-DINA and the pro-
posed two-stage methods offer powerful tools for attribute esti-
mation, their efficacy is fundamentally dependent on the quality
of the input data. The pursuit of methodological refinement must
be balanced with a continued focus on the foundational aspects of
test design and development to ensure high item quality.

Lastly, although we cannot directly determine the actual clas-
sification rate of the P_max method for attribute mastery in the

empirical study, the simulation study results indicate that rela-
tively accurate estimates can still be achieved even with a large
number of attributes, provided that there are a large number of
items and samples. It is important to note that due to compu-
tational constraints, specifically limitations in the GDINA pack-
age, the conditions of the simulation study and empirical study
are not entirely consistent. The empirical study incorporated 12
attributes, whereas the simulation study was limited to a max-
imum of 8 attributes. This limitation stems from the GDINA
package’s inability to generate simulation data for 12 four-level
attributes, not from any inherent limitation in our proposed
method. Our proposed method is capable of handling 12 poly-
tomous attributes, as demonstrated in the empirical study.
However, for the simulation study, we were constrained by the
capabilities of existing software used for comparison. Notwith-
standing this disparity, it is noteworthy that both the number of
items and the sample size in the empirical study significantly
exceeded those in the simulation study. This augmentation in
both test length and sample size may potentially mitigate the
increased complexity introduced by the additional attributes,
allowing our method to perform well even with 12 attributes in
the empirical study.

Future research could focus on the following ideas:
Adapt the two-stage polytomous attribute estimation method

for attribute-level calibration. While the two-stage polytomous
attribute estimation method proposed in this study primarily
applies to cognitive level calibration at the item level, it could be
adapted for attribute-level calibration, where different attributes
assessed in the same item may have different cognitive levels. The
concept of dividing attributes into groups, estimating them
independently, and then combining them can be further refined
and applied to more complex calibration scenarios.

Handle imbalance in item coverage of attributes. In the
simulation study, each attribute was measured by a relatively
balanced number of items. However, in the empirical study, there
was significant variance in the number of items measuring each
attribute, with some attributes having as few as four related items.
Future research should consider scenarios where the distribution
of items measuring each attribute is unequal. This might involve
adjusting the simulation conditions or even excluding attributes
with insufficient item coverage to ensure more robust and rea-
listic results.

Use mixed models in test data analysis. Instead of relying on a
single model, future studies might consider employing mixed
models for test data analysis, where different CDMs are selected
for different test items (de la Torre and Lee, 2013; de la Torre
et al. 2018; Ma et al. 2016; Tu et al. 2017). When the fit of
saturated and simplified models is similar, researchers should
prefer simplified models based on the Principle of Parsimony (Ma
et al. 2016). However, using a single simplified cognitive diag-
nostic model for the entire test may lead to misfit, affecting the
accuracy and reliability of the assessment results (Hou, 2013).
While this study exclusively utilized the saturated G-DINA
model, considering the model parsimony principle, future
research could opt for more simplified models for different items
where model fit allows. Additionally, the feasibility of directly
combining attribute mastery patterns estimated using different
models at different attribute levels within the two-stage method
remains an area for further exploration.

Verify polytomous Q-matrix based on data-driven methods. In
our empirical study, we directly used expert-calibrated poly-
tomous Q-matrix. However, accurately calibrating cognitive
attributes and levels becomes increasingly challenging as the
granularity of cognitive attributes increases and the test structure
becomes more complex. Existing research suggests using data-
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driven methods for Q-matrix calibration and validation (Ma et al.
2016). Future studies could explore developing polytomous Q-
matrix verification methods based on the two-stage polytomous
attribute estimation method to enhance the precision of Q-matrix
calibration.

Data availability
The datasets generated during the simulation study are accessible at
https://osf.io/jd9hx/?view_only=51f7d62dee1e4fcdaf039a0fe0000b9d.
The data analyzed during the empirical study are available from the
China National Medical Examination Center, but restrictions apply
to the availability of these data, which were used under license for the
current study, and so are not publicly available. However, we have
provided the R code used in the empirical study, along with a
simulated dataset generated based on the settings of the empirical
data for reader reference. These resources can be accessed at https://
osf.io/jd9hx/?view_only=51f7d62dee1e4fcdaf039a0fe0000b9d.
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