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Monitoring changes in nighttime lights and
anthropogenic CO, emissions during geopolitical
conflicts from a remote sensing perspective

Zhenjie Liu"™ Jun Li"™ Haonan Chen?™ Lizhe Wang1M & Antonio Plaza3™

Monitoring spatiotemporal changes in anthropogenic CO, is crucial for informing interna-
tional climate change policy initiatives, but also challenging due to the absence of national
inventories and statistical data during such conflicts. Currently, nighttime light (NTL) remote
sensing data is often used for spatial disaggregation of CO, emission statistics, while the
construction of existing anthropogenic CO, emission datasets relies on ground observation
data, which are difficult to apply rapidly and accurately in the context of a geopolitical conflict.
This study introduces a novel model for monitoring monthly changes in anthropogenic CO,
emissions based on NTL data collected by the Visible Infrared Imaging Radiometer Suite
(VIIRS) and the Global Gridded Daily CO, Emission Dataset (GRACED). The proposed model
integrates the monthly changes in NTL caused by the conflict with the monthly mean CO,
emissions of various sectors before the conflict for near-real-time monitoring through spatial
aggregation and statistical analysis using Google Earth Engine (GEE) and ArcGIS software. As
a case study, we consider the Russia-Ukraine war to analyze the monthly CO, emission
changes in Ukraine, across various scales. The results demonstrate that the residential
consumption, ground transport, and industry sectors respectively have CO, emission chan-
ges of 413 kt, 106 kt, and 324 kt (six months after the war began), and of 136 kt, 33 kt, and
139 kt (one year after the war began) in Ukraine. Significant consistency between the esti-
mated and reference CO, emission changes can be observed for each month during the war,
with the R? ranging from 0.61-0.87, 0.51-0.74, and 0.69-0.93 for the residential con-
sumption, ground transport, and industry sectors, respectively. Overall, this study contributes
new insights into the monitoring of near-real-time changes in anthropogenic CO, emissions
under geopolitical conflicts, and help to enhance the understanding of the environmental
governance and climate accountability.
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Introduction

reenhouse gas emissions from human activities con-

tribute to global warming (Guan et al. 2018; Han et al.

2024; Li et al. 2022). Greenhouse gases listed by the
Kyoto Protocol include carbon dioxide (CO,), methane (CHy),
nitrous oxide (N,O), hydrofluorocarbons (HFCs), per-
fluorocarbons (PFCs), and sulfur hexafluoride (SF4) (Telesetsky,
1999). CO, is an important indicator in global climate change
simulation research and international climate policy (Valjarevi¢
et al. 2022). The natural carbon cycle maintains a relative bal-
ance in carbon revenue and expenditure, but human activities
(such as burning fossil fuels and land use changes) increase CO,
emissions, upsetting this equilibrium and influencing climate
feedback mechanisms (Falkowski et al. 2000). According to
measurements by the NOAA Global Monitoring Laboratory,
CO, concentrations has risen from 336.85 ppm in 1979 to
422.77 ppm in 2024 (Lan et al. 2025). Nowadays, anthropogenic
CO, is acknowledged as one of the primary sources of climate
change (Hu et al. 2024; Rahman and Kashem, 2017). It is crucial
to create national inventories to track anthropogenic CO,
emissions in order to lessen the adverse effects of climate
change (Shi et al. 2021). Under the Paris Agreement, Parties are
required to determine and report their anthropogenic CO,
emissions at the national level (Klein, 2017). Understanding the
global carbon cycle and guaranteeing the effective execution of
the United Nations Framework Convention on Climate Change
(UNFCCC) depend on monitoring the spatiotemporal changes
in anthropogenic CO, emissions (Hegglin et al. 2022; Li et al.
2022). This is also crucial for informing international climate
change policy initiatives for sustainable development (Figueres
et al. 2018; Hua et al. 2023).

National inventories focus on detailed information on CO,
emissions from various human activities in peacetime (IPCC,
2006). In recent years, geopolitical conflicts have occurred fre-
quently, and sociopolitical tensions have been rising in many
parts of the world (Mortoja and Yigitcanlar, 2022; S6der, 2023).
In this context, anthropogenic CO, and other greenhouse gas
emissions are highly sensitive to abrupt disruptions in human
activities. Geopolitical conflicts, for example, often result in the
mass displacement of populations from urban and industrial
centers, leading to substantial reductions or redistributions of
emissions associated with residential activities and transporta-
tion (Gao et al. 2021). Simultaneously, conflicts inflict severe
damage on power plants, industrial facilities, and fuel supply
chains, causing profound disturbances in energy production
and consumption patterns, which in turn significantly alter
greenhouse gas emissions (Sasmoko et al. 2023). Nevertheless,
monitoring and quantifying these emission changes remain a
considerable challenge. Geopolitical conflicts often cause
countries and regions to fall into political, economic, and social
chaos, and government resources and attention are forced to
turn to emergency and security affairs, thus weakening the
ability to monitor and collect CO, emission data (Bun et al.
2023). In addition, during conflicts, infrastructure may be
damaged, information transmission is interrupted or data
management systems are paralyzed, resulting in the inability to
determine and report anthropogenic CO, emissions (Bun et al.
2024). The lack of timely and reliable data makes it difficult to
formulate and implement effective emission reduction strate-
gies, posing serious challenges to fulfilling the emission reduc-
tion obligations under the Paris Agreement. Near-real-time
monitoring techniques enable the timely detection of abnormal
fluctuations in CO, and other greenhouse gas emissions during
geopolitical conflicts, thereby providing robust data support for
the periodic reporting obligations under the UNFCCC. Such
datasets facilitate the quantitative assessment of emission
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variabilities during conflict periods, which is essential for
ensuring the equitable allocation of carbon credits and the
effective operation of compensation mechanisms within carbon
trading schemes (Adediran and Swaray, 2023). Furthermore,
these data lay the foundation for developing an accountability
framework for conflict-related emissions (e.g., environmental
damage compensation), thus informing decision-making pro-
cesses for post-conflict carbon emission responsibility and
advancing climate justice practices (Mubarik et al. 2024).

Global information on human activity can be visualized
through Earth observations using nighttime light (NTL) satel-
lites (Elvidge et al. 2009; Li and Cao, 2024; Zou et al. 2024).
Common data sources include the Defense Meteorological
Satellite Program Operational Linescan System (DMSP-OLS)
(Huang et al. 2014) and the Suomi National Polar-Orbiting
Partnership Visible Infrared Imaging Radiometer Suite (NPP-
VIIRS) (Elvidge et al. 2017). On the one hand, NTL data have
been considered as an effective tool for detecting geopolitical
conflicts, such as the Iranian, Syrian, and Yemeni crises, among
others (Jiang et al. 2017; Li et al. 2015, 2021). For example, the
research in (Li and Li, 2014) revealed the national and pro-
vincial losses during the Syrian Civil War using monthly
composites of data from DMSP-OLS. On the other hand, since
NTL data can accurately depict the fine-grained spatial patterns
of human activities, it has also been used to quantify anthro-
pogenic CO, emissions at various administrative scales by
spatially disaggregating statistical data (Gao et al. 2023; Guo
and Wang, 2023). Some studies have put forward global CO,
emission datasets by combining NTL data with ground obser-
vations (Gaughan et al. 2019). For instance, Oda and Mak-
syutov disaggregated national fuel estimates and created the
Open Source Data Inventory for Anthropogenic CO, (ODIAC)
using a point source database and NTL data (Oda et al. 2018).
In a similar fashion, another widely used dataset that reports
emissions as national totals and global gridmaps is the Emission
Database for Global Atmospheric Research (EDGAR) (Crippa
et al. 2020). There is typically a lag of more than a year or two
in the generation of these datasets. Recently, the Global Gridded
Daily CO, Emission Dataset (GRACED) was developed for
near-real-time monitoring of anthropogenic CO, emissions by
integrating several data streams, including point sources,
national fossil fuel and cement, and country-level sectoral
emissions (Dou et al. 2022; Liu et al. 2020a). Despite its ability
to monitor changes in anthropogenic CO, emissions during
geopolitical conflicts in a timely manner, GRACED is still
constrained by the availability of statistical data and ground
observations in conflict zones. Estimates of anthropogenic CO,
emissions are obtained using data from other regions when
relevant data in conflict zones is not available, which could lead
to significant errors and uncertainty.

Based on the above research and potential deficiencies, this
study integrates NTL data and GRACED to highlight spatio-
temporal changes in anthropogenic CO, emissions during geo-
political conflicts. This study not only provides unique insights
into how geopolitical conflicts rapidly change anthropogenic CO,
emissions, but also helps to understand the broader environ-
mental impacts of geopolitical conflicts. To achieve these goals,
we choose Ukraine as the study domain, as it is experiencing
drastic changes in anthropogenic CO, emissions during the
Russia-Ukraine war. The main contributions of this work are
summarized as follows: (1) The monthly changes in anthro-
pogenic CO, of different sectors in Ukraine during the Russia-
Ukraine war are estimated. (2) The spatial heterogeneity of the
changes in anthropogenic CO, of different sectors in Ukraine
during the Russia-Ukraine war is also analyzed.
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Fig. 1 Spatial distribution of sectoral CO: emissions. A Study domain and B-D CO, emissions of residential consumption, ground transport, and industry

sectors across Ukraine in January 2022.

Materials and methods

This section introduces the study case, datasets, and our newly
proposed model for monitoring changes in anthropogenic CO,
emissions.

Study case. Since February 2022, Russia has invaded Ukraine on
several fronts, with attacks on both military and civilian targets
seriously affecting Ukraine’s population displacement, national
economy, and ecological environment (Rawtani et al. 2022). The
impact of the Russia-Ukraine war goes far beyond the heavily
industrialized area of fighting, as civilians in the hinterland and
close to the front lines are constantly in danger from drone
attacks, airstrikes, and indiscriminate shelling. The Armed Con-
flict Location & Event Data Project (ACLED) has recorded
approximately 40,000 incidents of political violence in Ukraine,
one year after the war began (Raleigh et al. 2010). Over 5 million
Ukrainians have been internally displaced, and another 8 million
have been compelled to apply for asylum outside. In this study,
Ukraine (currently experiencing a Russian invasion) is chosen as
a study domain to examine changes in anthropogenic CO,
emissions (Fig. 1A).

Located in the East European Plain, Ukraine is the second
largest country in Europe, with an area of approximately 603,500
square kilometers. The country presents a landscape consisting of
fertile farmland, vast green areas, and highly urbanized and
industrialized built-up areas (Fig. S1). Industrial activities are
mainly concentrated in the regions of Donetsk, Luhansk, Dnipro,
and Zaporizhia, while large green areas, including nature reserves,
forests, meadows, and farmlands, serve as important buffers to
mitigate urban heat islands and improve ecological services
(Morar et al. 2022).

Ukraine experiences a temperate continental climate charac-
terized by cold winters and warm summers, with pronounced
temporal and spatial variability. Utilizing the Terra Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Surface
Temperature/Emissivity Daily (MOD11A1) product, we derive
the spatial distribution of average annual land surface tempera-
tures in Ukraine for the years 2000, 2010, and 2020 (Fig. S2A-C),
along with the temperature changes observed in 2020 relative to
2000 (Fig. S2D). Higher temperatures and significant warming

trends are most evident in the southern and eastern regions,
where industrial activities are heavily concentrated. These
temperature shifts are closely linked to changes in vegetation
phenology, extended growing seasons, and alterations in regional
carbon cycles (Piao et al. 2007).

Data

VIIRS NTL imagery. A global daily measuring system for Earth
system science and applications is provided by the Day-Night
Band (DNB) sensor included in the VIIRS. The atmospheric and
Lunar bidirectional reflectance (BRDF)-corrected Black Marble
NTL product (VNP46A2) provides daily DNB data at 500 m
spatial resolution, with operational correction for surface reflected
lunar radiance (Roman et al. 2018). We acquired daily NTL
imagery over the study domain between January 1, 2021, and
February 28, 2023, from the VNP46A2, which is publicly avail-
able from the National Centers for Environmental Information
(NCEI) of the National Oceanic and Atmospheric Administration
(NOAA). Then, we down-sample the collected NTL imagery to a
spatial resolution of 10 km by grid summing.

GRACED. GRACED has been tracking the spatiotemporal fluc-
tuation features of global anthropogenic CO, emissions from
various sectors around the world since January 1, 2019, thus
supporting adjustments of various climate policy measures. Spe-
cifically, GRACED is produced with a temporal resolution of one
day and a global spatial resolution of 10 km. Here, we collect daily
anthropogenic CO, emission data of residential consumption,
ground transport, and industry sectors between January 1, 2021,
and February 28, 2023, from GRACED. Figure 1B-D present the
spatial distribution of anthropogenic CO, emissions from dif-
ferent sectors in Ukraine before the Russia-Ukraine war (i.e.,
January 2022).

Methods. Figure 2 presents a schematic overview of the proposed
model for monitoring monthly changes in anthropogenic CO,
emissions of different sectors using VIIRS NTL data and
GRACED. We first aggregate the daily NTL data for each month
during the war period using a minimum composite technique,
and then calculate the monthly NTL changes relative to a
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Fig. 2 Workflow for monitoring monthly changes in anthropogenic CO, emissions of different sectors using VIIRS NTL data and GRACED.

reference period. Meanwhile, the monthly mean composite NTL
data and the monthly mean composite GRACED data from the
year before the Russia-Ukraine war are used as baseline data for
determining CO, emissions per unit of NTL. On this basis, the
monthly changes in anthropogenic CO, emissions of different
sectors during the war period are estimated and then validated by
the monthly changes derived from the GRACED data during the
war period and the reference period.

Monthly changes in the NTL composite. The monthly changes in
NTL caused by the Russia-Ukraine war are reflected based on
the difference between the NTL during the war period and

the NTL during the reference period. Let NTLm,.,yj =

{NTL}ﬂhy}, e NTan, %} be a set of daily NTL data, where # is the

number of days for month i of year j. Given that NTL data are easily
disturbed by abnormal factors such as fire and explosions during
the war period (Ialongo et al. 2023; Wang et al. 2021), we generate
the monthly minimum composite of NTL data (from January 2022
to February 2023) by using the minimum function of Google Earth
Engine (GEE) to reduce data uncertainty as follows:

NTL%T}J = argminNTL,, e 1)

Then, the monthly minimum composite of NTL data is
imported into the ArcGIS 10.7 software for spatial analysis.
Taking January 2022 as a reference period before the war, the
monthly changes in the NTL minimum composite during the war
period are calculated using the raster calculator tool:

DNTL,, , = NTLﬁf;} — NTL/" 05 )

Considering the extensive destruction of civilian infrastructure
and the resulting population relocation during the Russia-

4

Ukraine war (Rawtani et al. 2022), we assume that the war
period will not have a higher NTL value than the non-war period.
As a result, these observations will not be included for subsequent
estimation of the changes in CO, emissions when DNTme‘yj is

larger than zero.

Estimation of monthly CO, emission changes. Here, we develop a
spatial model to estimate the monthly changes in anthropogenic
CO, emissions across several sectors. Based on the daily NTL data
and daily anthropogenic CO, emission data from GRACED, the
monthly mean composite NTL data and the monthly mean
composite anthropogenic CO, emission data during the baseline
period (from January 2021 to December 2021) are first generated
via the mean function of GEE:

NTL'rzi‘;:’ = argmean NTLm,-,y]7 (3)
GRACEDzi‘;;Sk = argmean GRACEDm”yJ_’Sk, 4)

_ 1 n .
GRACED,,, = {GRACED], , _. ..., GRACED}, , b is a set

of daily GRACED data of sector k, and # is the number of days
for month i of year j (ie., 2021).

Then, the monthly mean composite is imported into the
ArcGIS 10.7 software. The subsequent formulas are all numeri-
cally calculated using the raster calculator tool of the software.
The monthly CO, emissions per unit of NTL of different sectors

during the baseline period are calculated by:
GRACED; "
M;)j»Sk
= NTLmean : (5 )

m;,);

CEPN

mM;YjsSk

Based on the monthly changes in the NTL minimum
composite during the war period (Eq. (2)) and the monthly

| (2025)12:1004 | https://doi.org/10.1057/s41599-025-05151-w



ARTICLE

CO, emissions per unit of NTL during the baseline period
(Eq. (5)), we estimate the monthly changes in anthropogenic CO,
emissions of different sectors. Specifically, the monthly changes in
CO, emissions in the residential consumption sector (relative to
the reference period) are estimated as follows:

MCCE TAF >< CEPNm 5 Jresidential
x DNTL,, .

m;.y; residential —

(6)

where TAF,, is a temperature adjustment factor for compensat-

ing the variations in air temperature that are considered in
GRACED. The TAF,, is calculated according to the monthly

mean composite of GRACED data during the baseline period:

GRACED"™"
TAF, = _——— =t ?)

GRACED ;%0

Given that the frequent movement, displacement, and
humanitarian assistance of Ukrainian civilians during the war
will lead to intensive transport activities and CO, emissions, the
monthly changes in CO, emissions ofthe ground transport sector
relative to the reference period are estimated as follows:

MCCEmi,yJAtmnsport = (_1) X CEPNmi,yj,tmnsport

®)
x DNTL,, ,

Concerning the industry sector, the monthly changes in CO,
emissions relative to the reference period are estimated by
multiplying the monthly changes in the NTL minimum
composite during the war period and the monthly CO, emissions
per unit of NTL during the baseline period:

MCCE = CEPN xDNTL,, .. (9)
i1/

m;.y; industry m,,yj.industry

Note that the geographic coordinate system of all the input and
output data mentioned above is the World Geodetic System 1984
(WGS84). The spatial distribution of resultant CO, emissions
across different sectors is extracted according to the extent of
Ukraine using the clip tool of ArcGIS 10.7 software and exported.

Validation of monthly CO, emission changes. Here, we generate
monthly mean composites of GRACED data by aggregating the
daily GRACED data (Eq. (4)) during the war period (from Feb-
ruary 2022 to February 2023) and the reference period (ie.,
January 2022). Then, the monthly changes in the GRACED mean
composite of different sectors relative to the reference period are
calculated by:

DGRACED,,, ; = GRACED", — GRACED/=%,, .. (10)
DGRACED,, Ve is used as the ground truth for validating the

monthly CO, ermission changes estimated from VIIRS NTL data.
In particular, we use linear regression to compare the estimated
and ground truth values. According to the R? and slope fitting
metrics, we examine the effectiveness of the proposed spatial
model for estimating monthly changes in CO, emissions of
different sectors.

Results

In this section, we first analyze the NTL changes in Ukraine
across various scales. Then, the estimation of changes in CO,
emissions of different sectors is performed.

NTL changes in Ukraine across various scales. Figure 3 A-C
present the monthly NTL minimum composite in January 2022
(one month before the war began), August 2022 (six months after
the war began), and February 2023 (one year after the war began).
With the war going on, Ukraine has suffered a precipitous

decrease in NTL, with many illuminated areas becoming dark.
For quantitative analysis, we first assess NTL changes at the oblast
(administrative division or region) scale (Fig. 3D). Compared
with the western region in the hinterland, the central and eastern
regions close to the front lines exhibit relatively more NTL
reduction. Six months on from the invasion, 63% of oblasts show
a reduction of more than 50% in NTL. One year on from the
invasion, the NTL in oblasts of Lviv, Kiev, Poltava, Dniprope-
trovsk, and Kharkiv decreased by 41%, 78%, 67%, 75%, and 69%,
respectively.

In addition, we select seven cities severely affected by the war
for further analysis, including Lviv City, Kiev City, Kherson City,
Dnipropetrovsk City, Zaporizhia City, Kharkiv City, and Donetsk
City (Fig. 3E). The NTL in the cities of Kiev, Dnipropetrovsk,
Zaporizhia, and Kharkiv has a reduction of more than 60% six
months after the war began. And the cities of Kiev, Kherson,
Dnipropetrovsk, Zaporizhia, and Kharkiv show a reduction in
NTL of more than 80% one year after the war began. In contrast,
while being threatened and attacked by drone attacks and
airstrikes, Lviv City in eastern Ukraine exhibits a relatively lower
drop in NTL. It can also be found that the NTL of Donetsk City
has not changed significantly. On the one hand, this may be due
to the fact that this city has been in conflict since 2014, resulting
in a small difference between the NTL during the war and during
the reference period. On the other hand, as the main conflict area
between Russia and Ukraine, the frequent explosions and flames
in Donetsk City may also lead to abnormalities and uncertainty in
the NTL.

Estimation of changes in CO, emissions of different sectors.
Based on the aforementioned NTL changes in Ukraine, we esti-
mate the changes in CO, emissions of residential consumption,
ground transport, and industry sectors, respectively (Figs. 4-6).
The spatial distribution of residential consumption CO, emission
declines in Ukraine is presented in the Fig. 4A and D. Relative to
the reference period, a total of 413 kt and 136 kt declines in
residential consumption CO, emissions are observed six months
and one year after the war began, respectively. The CO, emissions
in the residential consumption sector are counted at the oblast
scale (Fig. 4C and F). Six months after the war began, the top five
oblasts with the largest decline in monthly CO, emissions are
Kiev (59 kt), Dnipropetrovsk (47 kt), Kharkiv (43 kt), Lviv (33
kt), and Donetsk (32 kt). One year after the war began, the top
five oblasts with the largest decline in monthly CO, emissions are
Kiev (19 kt), Kharkiv (17 kt), Dnipropetrovsk (14 kt), Donetsk
(14 kt), and Odessa (7 kt). As for the ground transport sector, the
spatial distribution of CO, emission increases in Ukraine is
presented in Fig. 5A and D. In total, 106 kt and 33 kt increases in
ground transport CO, emissions are observed six months and one
year after the war began, respectively. Figure 5C and F present the
oblast-scale CO, emissions of the ground transport sector. Six
months after the war began, the top five oblasts with the largest
decline in monthly CO, emissions are Dnipropetrovsk (13 kt),
Kiev (11 kt), Kharkiv (9 kt), Donetsk (8 kt), and Lviv (6 kt). One
year after the war began, the top five oblasts with the largest
decline in monthly CO, emissions are Dnipropetrovsk (5 kt),
Donetsk (4 kt), Kharkiv (4 kt), Kiev (4 kt), and Poltava (2 kt).
Regarding the industry sector, the spatial distribution of CO,
emission declines in Ukraine is presented in Fig. 6A and D. Six
months and one year after the war began, 324 kt and 139 kt
declines in ground transport CO, emissions are observed,
respectively. Figure 6C and F present the oblast-scale CO,
emissions of industry sector. Six months after the war began, the
top five oblasts with the largest decline in monthly CO, emissions
are Dnipropetrovsk (126 kt), Zaporizhia (47 kt), Donetsk (22 kt),
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Fig. 3 Monthly NTL minimum composite and changes. Monthly NTL minimum composite in Ukraine in A January 2022, B August 2022, and C February
2023, and NTL changes at D oblast scale and E city scale.

Lviv (17 kt), and Luhansk (12 kt). One year after the war began,
the top five oblasts with the largest decline in monthly CO,
emissions are Dnipropetrovsk (57 kt), Zaporizhia (24 kt),

Donetsk (13 kt), Luhansk (12 kt), and Kharkiv (5 kt).

Linear regression analyses are conducted to assess the degree of
agreement between the estimated and reference CO, emissions for
each sector throughout the war period. For the residential
consumption sector, there is a significant degree of congruence

| (2025)12:1004 | https://doi.org/10.1057/s41599-025-05151-w



ARTICLE

A |
51°N+
48°N-
Residential CO, emission
decline (kgC/h)
<50 1500 - 1000
50 -100 EH1000-1500 < : 0 100 200 300
oy y
45°N7 - 7100 - 500 B> 1500 R © e Km
e + 22
T T - T — T
25°E 30°E 35°E 40°E
N cz 80
. e
5 g0
o0 o =
&£ -5000 S5
g L_; é 40
B £3
< -10000 E E 2
= »n
£ Stope=0.4708 | & £ H H \ H - H H W
a2 -15000 © Zope ol ml liﬂﬂ‘—lﬂ HH ﬂﬂ 0] H
= R =0.759 EEE EEN RN S N RN R R R ]
o SRES8C:¥EZ8S0 55255285528 ¢
p<0.05 e E>EER 228 3555028 P 5525865
y ; v § ET88 EZEC 2iZzzus 2UERUAR
-30000 -20000 -10000 0 g % O gN>  ¥FUCS g &%
Reference values (kgC/h) g 2 E
H«— West Oblast East —
D \
51°N+
48°N-
Residential CO, emission
decline (kgC/h)
<50 1500 - 1000
50 - 100 EH1000 - 1500 g 0 100 200 300
45°N1 1100 - 500 B> 1500 o R K
T — T o Zzid T
25°E 30°E 35°E 40°E
o sz 30
= 2% 2
g 23 F
2 2000 © 2 2
g o g
g S g5
- S =
g 4000 5 10
3 22
g Slope=1.9865 | £ & ° H H’ H H (
£ am| o o lope = 1. KT TSI TP
&3] R*=10.8693 EEE N RN S N I RN R R R
o R EEE Y E TS0 E 852 3E 258288
p<0.05 B EER SB[ CEE S8 A EEEEEEE
-8000 1 — . . . § B85 EzEC Sf£82zGS 32OE2UR3A
-3000 -2000 -1000 0 § & O gNE> MIUCS g 4x
Reference values (kgC/h) § ; g
T West Oblast East —

Fig. 4 Residential consumption CO: emission changes. A National spatial distribution, B linear regression, and € oblast-level estimation of residential
consumption CO, emission decline six months after the invasion. D National spatial distribution, E linear regression, and F oblast-level estimation of
residential consumption CO, emission decline one year after the invasion.

between the estimated and reference values in both August 2022  both August 2022 (R? = 0.64, p < 0.05) and February 2023 (R? =
(R? = 0.76, p < 0.05) and February 2023 (R? = 0.87, p < 0.05) 0.74, p < 0.05) (Fig. 5B and E). For the industry sector, linear
(Fig. 4B and E). For the ground transport sector, the estimated regression results demonstrate significant consistency between the
and reference values exhibit a substantial degree of consistency in  estimated and reference values in both August 2022 (R = 0.91, p
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Fig. 5 Ground transport CO: emission changes. A National spatial distribution, B linear regression, and C oblast-level estimation of ground transport CO,
emission decline six months after the invasion. D National spatial distribution, E linear regression, and F oblast-level estimation of ground transport CO,

emission decline one year after the invasion.

< 0.05) and February 2023 (R? = 0.89, p < 0.05) (Fig. 6B and E).
Additionally, Tables S1-S3 provide the statistical findings of linear
regression on the monthly variations in the estimated and
reference CO, emissions of different sectors. There is a notable

degree of agreement between the estimated and reference values
for each month during the war. Specifically, the R? ranges from
0.61-0.87, 0.51-0.74, and 0.69-0.93 for the residential consump-
tion, ground transport, and industry sectors, respectively.

| (2025)12:1004 | https://doi.org/10.1057/s41599-025-05151-w



ARTICLE

51°N-1
48°N-
Industry CO, emission
decline (kgC/h)
<50 1500 - 1000
EE50-100 E=1000 - 1500 0 100 200 300
45°N7 7100 - 500 mE> 1500 — T e =B
" Y,
T T— T = T
25°E 30°E 35°E 40°E
~ 200
= " §3
= ‘BB
2 ‘é = 150
& -25000- 5 g
£ S 2 100
S -50000 z<
3 o N=5818 £ s
£ 75000 Slope=3.6171 | = 2 . I
2 2 _ ‘ ‘ m = | m m mim
& R”=0.9095 CEEYETZ oo o 3P Ei St ELeY
1000004 o p<0.05 R R R E I A s b h ]
g E% ERREE
20000 -15000 10000 -5000 0 g Eeg TEE'EO ‘5;‘5‘)55&& a8 ELE
- - - - N n v} £ waN
Reference values (kgC/h) § [ '§
H«— West Oblast East —
D \
51°N-1
48°NA
Industry CO, emission
decline (kgC/h)
< 50 1500 - 1000
550 -100 E=1000 - 1500 0 100 200 300
45°NT1 7100 - 500 mE> 1500 o5 T e Km
7 .7 e 747:_}
L} T L} L}
25°E 30°E 35°E 40°E
90
- " 55
g 22
% £z 60
g 20000 S
E 2330
3 N=3158 o | 2%
g -400004 §lope = -1.473 =3 HH
Z R?=0.887 o CV’EEEgg'@@s’;égggazgaggg-‘s“ozfgfsﬁ
EAEC02z2PEL8Y0 s E2552E88€88
-60000 p=0.95 ) §>E’§M—?§Eg EEE’-“:’%‘QCEW hcﬁgié%ﬁ
0 10000 20000 30000 g & 0 ENm ¥2UPg - 89
=1
Reference values (kgC/h) s B a
«— West Oblast East —

Fig. 6 Industry CO: emission changes. A National spatial distribution, B linear regression, and C oblast-level estimation of industry CO, emission decline
six months after the invasion. D National spatial distribution, E linear regression, and F oblast-level estimation of industry CO, emission decline one year

after the invasion.

Furthermore, the monthly changes in CO, emissions of
different sectors relative to the reference period are shown for
the whole Ukraine and also for seven cities severely affected by
the war, i.e., Dnipropetrovsk City, Donetsk City, Zaporizhzhia
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City, Kiev City, Kharkiv City, Kherson City, and Lviv City
(Fig. 7). Since the invasion in late February 2022, the ongoing
war in the first half of the year has caused significant changes
in CO, emissions of different sectors relative to January 2022.
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Beginning in mid-September, the Russia-Ukraine war was
reduced from a full-scale war to a local war due to the
declaration of defeat on Russia’s fronts in the Kiev and
Kharkov directions. Then, Russia began regular air and missile

attacks on Ukraine’s energy facilities and civilian infrastruc-
ture from October to December 2022, resulting in more
pronounced changes in CO, emissions of different sectors
during this period.
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Discussion

In the context of Russia-Ukraine war, this research estimates the
monthly changes in CO, emissions of different sectors using NTL
imagery. The spatial heterogeneity of the anthropogenic CO,
changes is also uncovered across various scales. According to the
results of linear regression tests, the estimated changes exhibit
good consistency with the reference changes from the GRACED
data during the war (Tables S1-S3). However, the difference
between the estimated and reference values of different sectors
needs to be investigated. Regarding the residential consumption
sector, GRACED calculated CO, emissions by assuming that the
annual totals remain unchanged (Dou et al. 2022; Liu et al
2020a). The war-induced changes in residential consumption
CO, emissions from the GRACED data could be ignored or
underestimated. The estimated changes derived from NTL data
are greater than those derived from GRACED, and the slopes of
linear regression are larger than 1. As for the ground transport
sector, GRACED calculated CO, emissions by makingthe
assumption that there would be little change in the spatial dis-
tribution of ground transport within a nation (Dou et al. 2022;
Liu et al. 2020a). But the massive population movement and
displacement at the beginning of the war, as well as the return of
civilians and the regularization of air and missile attacks after
September 2022, are likely to exacerbate CO, emissions related to
ground transport. Correspondingly, the estimated values are
larger than the reference values in those months, with the slopes
of linear regression being larger than one. Concerning the
industry sector, the slopes of linear regression are not consistently
positive or negative. It may be explained by the fact that statistical
information on industrial production and electrical generation in
Ukraine during the conflict was unavailable (Dou et al. 2022; Liu
et al. 2020a). In this case, datasets from other countries or regions
are adopted for calculating industry CO, emissions in GRACED.
Therefore, it is reasonable that the estimated changes in industry
CO, emissions are much larger than the reference changes from
GRACED. In addition, it can be observed from the results in
Tables S4 that the fitting effects of the three sectors are different.
The fitting results of residential consumption and industry sectors
are better than those of the ground transport sector, which could
be related to the difference in activity intensity reflected by NTL
in various sectors and NTL sensor limitations. On the one hand,
various human activities produce different lighting intensities and
durations at night, which determines the different abilities of light
data to capture changes in these activities (Shi et al. 2021). The
industry and residential consumption sectors usually produce
consistent and stable NTL signals, while the activities of the
ground transport sector are mainly manifested in road lighting
and moving vehicle lights, which are more dispersed in space and
highly time-varying, making it difficult to stably reflect their
overall activity level through a single indicator. On the other
hand, NTL data have issues with sensor saturation or insufficient
resolution in different brightness ranges (Sun et al. 2024; Zheng
et al. 2023). NTL in concentrated industrial and residential areas
is relatively less susceptible, while scattered and weaker road and
vehicle lights are more susceptible to sensor limitations and
atmospheric interference, which could statistically increase data
uncertainty and regression model errors.

To further highlight the contribution and methodological
advantages of this study, the following discussion will focus on
three aspects by comparing with related research: overcoming the
limitations of conventional carbon satellites in detecting weak
changes in anthropogenic CO, emissions, resolving the issue of
ground data scarcity during geopolitical conflicts, and offering
data support for climate accountability and policy making. So far,
many existing studies have demonstrated the effectiveness of
using carbon satellites to monitor atmospheric CO,

concentrations (Pan et al. 2021; Wang et al. 2024; Wilmot et al.
2024). But in reality, changes in anthropogenic CO2 emissions
are typically far less significant than variations in concentrations
caused by transportation and interannual variability in the
atmosphere (Liu et al. 2023a). It is challenging to precisely record
such small changes using carbon satellite data. By combining
global CO, emission datasets prior to the conflict (e.g., GRACED)
with NTL data during the conflict, this study offers a novel model
to monitor changes in anthropogenic CO, emissions in the
context of geopolitical conflicts. To a certain degree, the proposed
model could compensate for the limitations of carbon satellite
data. In addition, the current global CO, emissions datasets can
well reflect the spatiotemporal characteristics of CO, emissions
from different human activities (Crippa et al. 2020; Dou et al.
2022; Oda et al. 2018). However, the statistical reports and
ground observation data for dataset construction are often diffi-
cult to obtain or updated with lags during geopolitical conflicts
(Levin et al. 2018; Ratnayake et al. 2022). This study uses NTL
data as an alternative indicator, which not only compensates for
the lack of data but also captures the immediate impact of conflict
on CO, emissions by comparing pre-war data with near-real-time
changes. Furthermore, some studies have made significant pro-
gress in the development of policy frameworks and the adjust-
ment of policy measures in recent years, such as the carbon
market mechanism (Asadnabizadeh and Moe, 2024; Redmond
and Convery, 2015; Schneider and La Hoz Theuer, 2019) and the
climate accountability framework (Atapattu, 2020; Mees and
Driessen, 2019; Williams, 2020). And policy design is gradually
shifting towards data-driven, transparent, and cross-departmental
coordination (Ali and Kamraju, 2025; van Deursen and Gupta,
2024; Hughes et al. 2020). However, it is challenging to satisfy the
timely and reliable emission data demands of international reg-
ulators and policymakers, particularly in unpredictable contexts
like geopolitical conflicts, because of inadequate measurement
precision or a lack of frequent data updates (Ali and Thakkar,
2023; Feng et al. 2024). At the policy level, the proposed model
can support spatial data on CO, emissions in a dynamic manner.
This will help improve the implementation of the climate
accountability framework, in addition to providing decision
makers with a new tool to assess CO, emission changes in the
context of conflict.

In the following, the limitations of this research and corre-
sponding potential future research lines are discussed. First of all,
Despite NTL imagery demonstrates great potential for anthro-
pogenic CO, monitoring during geopolitical conflicts, numerous
research has demonstrated that the accuracy of NTL for CO,
emission estimation depends on a number of variables, including
the population, economy, and natural environment (Liu et al.
2018; Shi et al. 2019; Sun et al. 2024). In particular, NTL tends to
exhibit higher uncertainty for less developed or rural areas of the
world with poor lighting (Pandey et al. 2017). In order to over-
come such limitations (and the lack of NTL data) for anthro-
pogenic CO, emission estimation under geopolitical conflicts, it is
of great importance to introduce point source data to enhance the
understanding of spatiotemporal relationships between NTL and
CO, emissions. Specifically, social media data and data on poli-
tical violence events can be considered (Liu et al. 2020b, 2024b;
Raleigh et al. 2010). For example, some studies have modeled
population displacements in Ukraine during the Russia-Ukraine
war using social media data from sources including Facebook’s
advertising platform and Twitter (Leasure et al. 2023; Liu et al.
2024). The near real-time data on the ongoing geopolitical con-
flicts from ACLED also provides spatial information on different
types of political violence events that can also be used to reveal
conflict-related CO, emission processes and their environmental
impact, including the use of petroleum products in military
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activities, the decomposition of war waste and fires in infra-
structure, forests, and petroleum storage depots (Bun et al. 2024;
Rawtani et al. 2022). Second, the current models may have
oversimplified assumptions in complex and dynamically chan-
ging situations, and may not be able to fully eliminate the impact
of factors such as temporary controls and damaged infrastructure.
In future research, machine learning and deep learning can be
introduced into the current model to capture nonlinear rela-
tionships and the impact of sudden events, thereby improving the
model’s prediction accuracy and robustness for CO, emission
changes in complex environments (Ali et al. 2025; Bianchi and
Putro, 2024; Guth and Sapsis, 2019; Qi and Majda, 2020). Third,
this study is limited to analyzing the spatiotemporal changes in
CO, emissions under geopolitical conflict scenarios. A key
direction for future research is to migrate the model to other
emergency scenarios on a global scale, such as natural disasters
(Mu et al. 2024), public health crises (Lan et al. 2021), energy
crises (Liu et al. 2023), and others. In these different scenarios,
energy consumption and human activity patterns may change
significantly, which in turn affects the dynamics of CO, emissions
(Anser, 2019; Liu et al. 2022; Yu et al. 2022). By comparing cross-
domain applications and verifications, the universality of the
current model can be further validated. On this basis, a unified
and flexible framework can be constructed to provide data sup-
port and a more comprehensive scientific basis for global climate
accountability and environmental governance.

Conclusion

We develop a new spatial model based on VIIRS NTL and
GRACED data to monitor monthly changes in anthropogenic
CO, emissions of different sectors during geopolitical conflicts.
Taking the Russia-Ukraine war as a case study, we estimate the
monthly changes in CO, emissions of different sectors and reveal
the spatial heterogeneity of CO, emission changes across various
scales. Relative to January 2022, residential consumption, ground
transport, and industry sectors are respectively observed to have
CO, emission changes of 413 kt, 106 kt, and 324 kt (six months
after the war began), and of 136 kt, 33 kt, and 139 kt (one year
after the war began). There is significant consistency between the
estimated and reference CO, emission changes for each month
during the war. The R? ranges from 0.61-0.87, 0.51-0.74, and
0.69-0.93 for the residential consumption, ground transport, and
industry sector, respectively. In conclusion, this study provides a
new perspective to improve the understanding of CO, emission
changes under geopolitical conflicts, as well as the potential use of
applying the proposed spatial model to ongoing geopolitical
conflicts around the world. Future perspectives include not only
deepening the technical level of existing methods, but also
expanding to multi-modal data fusion and interdisciplinary col-
laborative research, so as to build a more flexible and efficient
system for global environmental monitoring and CO, emission
management. Specifically, the integration of multi-source remote
sensing data and ground monitoring data can be explored to
improve the spatiotemporal resolution of CO, emission mon-
itoring in geopolitical conflicts and emergency situations. In
addition, advanced technologies such as machine learning and
deep learning can be considered to further optimize data cor-
rection and model prediction capabilities, so as to provide more
accurate and real-time data support for policy making, climate
accountability, and environmental emergency management.

Policy recommendations. This study reveals the spatiotemporal
impact of geopolitical conflicts on anthropogenic CO, emissions
from a remote sensing perspective. Relevant policies should make
full use of this technology and data advantages to optimize the
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environmental monitoring system and enhance CO, emission
management capabilities. First, it is recommended that govern-
ments and international organizations increase investment to
build a monitoring system that integrates multiple remote sensing
data, such as nighttime lights, thermal infrared, aerosols, and
high-resolution optical images. This system can not only com-
plement the advantages of different data and improve the accu-
racy of capturing emission changes, but also achieve all-weather
and dynamic monitoring (Jiang et al. 2023; Tian et al. 2024).
Meanwhile, the system should have automated data processing
and real-time early warning functions to ensure that abnormal
fluctuations in environmental indicators can be quickly reflected
in emergency situations, providing a scientific basis for govern-
ment decision-making and emergency response.

Second, geopolitical conflicts and emergencies often go beyond
the jurisdiction of a single country or department. Therefore,
monitoring and assessing CO, emission change requires cross-
departmental and cross-regional collaboration (Xu et al. 2025). It
is recommended that governments, scientific research institu-
tions, international organizations and private enterprises build
data sharing and joint monitoring mechanisms, break down
information silos and establish a multilateral cooperation frame-
work. By regularly holding international seminars and joint
experimental projects, all parties can discuss issues such as data
integration, model improvement, and emergency plans, thereby
improving the accuracy and credibility of monitoring results.

Third, environmental governance and climate policy formula-
tion cannot be separated from public supervision and extensive
participation. It is recommended to build an open and
transparent environmental data sharing platform to regularly
release remote sensing monitoring data, emission estimation
results and related analysis reports to the public. Transparent
information disclosure will not only help to improve the
accountability of governments and enterprises in carbon emission
reduction, but also create conditions for public participation in
environmental decision-making (Hahn et al. 2015; Li et al. 2017).
This will help promote the formation of a green development
model with the participation of the whole society and provide real
and timely data information support for the international climate
accountability framework.

Data availability

The VIIRS NTL data are available at https://ladsweb.modaps.
eosdis.nasa.gov. The CO, emissions data of GRACED are avail-
able at https://www.carbonmonitor-graced.com.
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