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Previous research has primarily focused on the influence of digitalization on regional energy
efficiency, overlooking the variations in its impact on primary and secondary energy at the
firm level. This study leverages a unique and extensive dataset sourced from tax records of
Chinese firms to investigate the effects of digitalization on firm energy efficiency, utilizing a
quasi-natural experiment revolving around the “Broadband China” policy (BCP). Employing
propensity score matching (PSM-DID) to estimate the difference-in-difference model, our
analysis reveals that BCP implementation leads to a 10.5% and 11.3% enhancement in coal
and oil firm energy efficiency, respectively, while resulting in a 17.2% decrease in electricity
firm energy efficiency. Further analysis indicates that BCP influences firm energy efficiency by
fostering industrial upgrading and industrial intelligence. Moreover, government intervention
magnifies the impact of BCP on firm energy efficiency. Lastly, the paper conducts various
heterogeneity analyses and robustness checks. The proposed policies to enhance energy
efficiency among Chinese firms are practical and could be applicable to firms in other
emerging economies, particularly those experiencing rapid digital advancements.
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Introduction

ince the beginning of the industrial revolution, global eco-

nomic progress has heavily relied on the integration of

energy-related elements (Barbera et al. 2022; Devlin and
Yang, 2022; Lin and Zhu, 2021; Shao and Xue, 2022; Wen and Jia,
2022). The substantial growth in energy consumption has closely
mirrored the rapid pace of economic development, intensifying
the severity of climate-related challenges (Adom et al. 2018; Li
et al. 2021; Liu et al. 2021; Misik and Oravcovd, 2022; Shah et al.
2022; Yazar et al. 2022; Zhou and Xu, 2022; Zhu and Lin, 2022).
As the nation with the greatest total energy consumption and
carbon emissions in the world, China faces a pressing need to
improve energy efficiency as a crucial measure to combat the
climate crisis. Fortunately, with the rise of the “Fourth Industrial
Revolution” led by informatization and digitalization, many tra-
ditional industries are facing disruptive changes (Hu et al. 2022;
Shahbaz et al. 2022; Zhang and Chen, 2022). To explore this
energy transformation driven by digitalization, researchers have
focused on how digitalization influences energy efficiency. From
one perspective, digitalization has significantly improved the
input-output efficiency of diverse factors, including energy, as
evidenced by the emergence of intelligent coal mines (Balaga et al.
2021). The studies by Husaini and Lean (2022) and Qin et al.
(2022) further affirm that digitalization has increased national
energy efficiency and sustainability on the basis of panel data
from five ASEAN countries. These researchers posit that digita-
lization creates new opportunities for increasing energy efficiency.
Conversely, opposing views suggest that digitalization has also
increased energy consumption, such as the electricity demands of
data computing centers. Scholars who hold these views argue that
digitalization either has no significant effect on energy efficiency
or even reduces it (Mayers et al. 2015; Noussan et al. 2017; Qin
et al. 2022). Despite these varied findings, digitalization is an
inevitable trend in future global development, and its impact on
energy efficiency cannot be ignored. Therefore, it is crucial to
investigate the underlying reasons behind these differing
perspectives.

Notably, China is experiencing a serious energy shortage.
Despite its abundant coal resources (Chen et al. 2022), China
relies on imports to meet over 70% of its oil demand (Chen et al.
2023), while electricity (Guo et al. 2023) is also scarce to varying
degrees across different regions. This energy shortage heightens
concerns over energy security, making it essential to examine
energy efficiency separately for different types of energy sources
(Li et al. 2023).

Some studies have focused on the influence of digitalization on
overall energy efficiency, suggesting that digitalization generally
has a positive impact (Bataga et al. 2021; Husaini and Lean, 2022).
However, a smaller body of research that focuses on specific
energy categories has revealed unfavorable or negligible effects of
digitalization on energy efficiency. For example, analyses of the
service and transportation sectors have indicated that digitaliza-
tion significantly reduces the energy efficiency of electricity
(Dehghan Shabani and Shahnazi, 2019; Mayers et al. 2015;
Noussan et al. 2017).

We propose that these divergent findings stem from differences
in energy types. On the one hand, digitalization enhances
resource integration, reduces losses of coal and oil during pro-
duction and transportation, and improves the efficiency of pri-
mary energy (Balaga et al. 2021; Husaini and Lean, 2022). On the
other hand, the proliferation of data computing centers and
communication devices associated with digitalization may worsen
the inefficient use of secondary energy (Xue et al. 2022).

A review of current research revealed that no studies have
assessed the effects of digitalization on the energy efficiency of
various energy types while simultaneously conducting a
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comparative analysis. Therefore, substantiating evidence on how
digitalization influences the energy efficiency of different energy
sources is needed.

To address these gaps, this study employs the “Broadband
China” policy (BCP) as a quasi-natural experiment and utilizes
the China National Tax Survey Data (CNTSD), a comprehensive
and unique dataset of firm tax records, to examine the impact of
digitalization on firm energy efficiency using the PSM-DID
method. Additionally, this study develops mediating and mod-
erating effect models to investigate the mechanisms through
which digitalization influences firm energy efficiency, as well as
the externalities of government interventions. Moreover, the
analysis provides an in-depth assessment of digitalization’s effects
on firm energy efficiency across different regions and industries
using variable-coefficient panel models. Finally, robustness tests
are performed to ensure the credibility and reliability of the
analytical findings.

This study makes significant contributions to both theory and
practice, enhancing our understanding of the relationship
between digitalization and energy efficiency while providing
valuable insights for policymakers and business leaders.

First, at the theoretical level, this study fills an important gap in
the literature by evaluating the impact of digitalization on energy
efficiency at the micro level of the firm. Previous research has
focused primarily on improving the efficiency of individual
energy sources, often overlooking the complex and inter-
connected effects of digitalization on overall energy efficiency
within firms (Lin and Huang, 2023; Niu et al. 2022). In contrast,
this study proposes a more comprehensive analytical framework
that includes multiple energy sources, such as coal, oil, and
electricity, and reveals the differentiated impacts of digitalization
on various energy types. The findings challenge traditional
assumptions about energy savings, highlighting that the effects of
digital transformation depend on a firm’s energy consumption
structure. Consequently, this research introduces new perspec-
tives for energy management practices. Our analysis indicates that
digitalization may have unintended consequences, particularly
when energy structures are not adequately considered; thus, new
theoretical challenges arise, paving the way for future research
directions.

Second, this study explores the mechanisms through which
digitalization affects firm energy efficiency and the externalities of
government intervention. We find that digitalization impacts
energy usage not only directly through improved production
efficiency but also indirectly through changes in industrial
upgrading and intelligence. Moreover, government intervention
in digitalization may create subsidies or introduce market
uncertainties, offering critical insights for policymakers when
designing and implementing digitalization policies. Our findings
also reveal significant variations in how different industries and
firm characteristics respond to digitalization, suggesting that
policy design and business strategies should include the con-
sideration of industry and firm heterogeneity to achieve optimal
outcomes.

Third, the findings of this study have important implications
for policy and practice. The results provide a solid theoretical
foundation for governments and firms in terms of optimizing
energy use during the digitalization process. Specifically, for firms
with complex energy consumption structures, the findings
prompt managers to comprehensively assess changes in the effi-
ciency of different energy types when implementing digitalization
strategies, cautioning against a singular focus on digitalization
that may lead to an overall decline in energy efficiency. Fur-
thermore, the mechanism analysis of this study offers practical
insights for future policy design, suggesting that policymakers
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consider potential externalities and account for industry differ-
ences when promoting digitalization to achieve more efficient and
sustainable energy use goals.

Compared with existing research, this study not only offers
fresh empirical evidence but also makes significant contributions
to the theoretical framework and policy applications (Jia et al.
2024; Niu et al. 2022). These contributions expand the body of
literature on the relationship between digitalization and energy
efficiency and provide valuable guidance for future research and
practice in related fields.

In summary, our study bridges a critical research gap by
simultaneously assessing the effect of digitalization on the energy
efficiency of various energy types and conducting a comparative
analysis. We find that digitalization improves the efficiency of
primary energy sources, such as coal and oil, by enhancing
resource coordination and reducing losses during production and
transportation. Conversely, digitalization worsens the inefficient
use of secondary energy sources such as electricity, specifically
because of the proliferation of data computing centers and
communication devices. These findings challenge conventional
assumptions about energy efficiency improvements through
digitalization, revealing that the impact of digitalization varies
significantly depending on the type of energy involved.

The rest of this paper is structured as follows: Section “Lit-
erature review” provides a review of the literature, while Section
“Methods and data” describes the methods employed and the
dataset used. Section “Results” presents an overview of the find-
ings, followed by a discussion of the heterogeneity analysis in
Section “Further analysis”. Further analysis is presented in Sec-
tion “Heterogeneity analysis”, culminating in the conclusions and
policy implications in Section “Conclusions and Policy
Implications”.

Literature review

Literature review on energy efficiency. In this section, the
methods used to calculate energy efficiency are described, and a
brief categorization of the influencing factors is provided.

Energy efficiency is a critical component of production
efficiency (Wang and Wang, 2022) and has gradually attracted
increased scholarly attention since the latter half of the last
century. The earliest metric for assessing energy efficiency in
industrial production was economic output per unit of energy
input (Berndt and Wood, 1975; Cai et al. 2022; Khoshroo et al.
2021; Zheng, 2021), a measure that has continued to be relevant
in recent years. In this approach, a higher value indicates greater
energy efficiency. In contrast, some researchers have adopted
stochastic frontier analysis (SFA) and data envelopment analysis
(DEA) methods (Dong et al. 2022a; Du et al. 2022; Kang et al.
2022).

The DEA method involves assessing energy efficiency on the
basis of multiple inputs and outputs without requiring prior
assumptions about the functional form of the production
function. However, this advantage makes it susceptible to
stochastic errors (Moon and Min, 2020; Xiao et al. 2023).
Conversely, the SFA method allows greater flexibility in defining
model variables to suit specific study contexts, incorporates
stochastic errors, and accounts for unobserved individual-specific
heterogeneity through tailored specifications (Li et al. 2024; Sun
et al. 2019; Zhang et al. 2024). Nonetheless, both DEA and SFA
require strict assumptions about the production function and the
error term distribution or are highly sensitive to data noise
(Kumbhakar et al. 2014). This can lead to unstable estimation
results when it is difficult to construct an accurate
mathematical model.

Nonparametric methods, in contrast, do not depend on
assumptions about the production function, so they are more
versatile and broadly applicable. Moreover, in scenarios with
significant data noise or small sample sizes, nonparametric
methods yield more robust estimates, avoiding issues that arise
from inappropriate assumptions in efficiency measurement.

Given the intrinsic link between energy concerns and societal
progress, numerous scholars have conducted extensive research
on the determinants of energy efficiency. At the macro level,
studies have investigated the relationships between energy
efficiency and factors such as industrial composition, foreign
investment, and GDP growth (Fisher-Vanden et al. 2006; Liu
et al. 2022; Pan et al. 2019; Ramanathan, 2006). At the micro
level, researchers have focused on firm-specific influences, such as
R&D investments, carbon emissions, and the interaction between
firm innovation and energy efficiency (He et al. 2021; Hong et al.
2022; Wen et al. 2022). As energy issues become increasingly
prominent, research on energy efficiency is emerging as a critical
academic priority.

Literature review on the relationship between digitalization
and energy efficiency. Most previous research has focused pre-
dominantly on the economic implications of digitalization, with
comparatively fewer studies addressing its impact on energy and
the environment. Moreover, a consensus regarding these effects
has yet to emerge.

Some scholars have argued that digitalization significantly
enhances energy efficiency. For example, Lange et al. (2020)
examined the relationship between digitalization and energy
consumption using an analytical model. Their findings demonstrated
a substantial improvement in overall energy efficiency attributed to
digitalization. Amasawa et al. (2018) conducted a 3-month social
experiment to investigate how e-book reading might reduce the
global warming potential (GWP) in a digitalized context. They
concluded that digitalization can increase industrial energy efficiency.
Similarly, Husaini and Lean (2022) employed the cross-sectional
augmented autoregressive distributed lag (CS-ARDL) approach,
analyzed panel data from five ASEAN countries (1990-2018), and
provided evidence that digitalization positively correlates with
national energy efficiency and sustainability. In addition, many other
researchers have produced findings that demonstrate the beneficial
impact of digitalization on energy efficiency (Rawte, 2017; van den
Buuse and Kolk, 2019).

Conversely, other scholars have argued that the impact of
digitalization on energy efficiency is negative or uncertain.
Mayers et al. (2015) explored the carbon footprint and energy
efficiency of the gaming industry and revealed that downloading
games via digital networks could lead to higher carbon emissions
and energy consumption than disc-based games. Noussan et al.
(2017) used scenario analysis to examine the effects of
digitalization on Europe’s prospective passenger transport sector.
Their findings showed that integrating digital technology
produced mixed outcomes for energy consumption and emis-
sions, resulting in uncertain impacts on energy efficiency. Other
studies have reached similar negative or inconclusive results
(Dehghan Shabani and Shahnazi, 2019; Hsu et al. 2014; Strobel,
2016).

A closer examination reveals that these conflicting viewpoints
may stem from digitalization’s differentiated impacts on primary
and secondary energy sources. Xue et al. (2022) suggested that
digitalization has increased the share of renewable energy in total
consumption, potentially affecting overall energy efficiency. The
comprehensive impact of digitalization on energy efficiency
depends on the direction and magnitude of its effects on primary
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and secondary energy sources. Specifically, if the negative impact
of digitalization on secondary energy efficiency outweighs its
positive influence on primary energy efficiency, overall energy
efficiency may decline.

In summary, a definitive consensus on the relationship between
digitalization and energy efficiency has not been reached in
previous studies. This study argues that the primary reason for
this divergence lies in the failure to distinguish between different
types of energy. Given the varied effects of digitalization on
electricity consumption versus coal and oil consumption, its
impact across diverse energy efficiency categories urgently needs
to be comprehensively assessed.

Research hypothesis. This paper proposes that digitalization
influences firm-level energy efficiency across different energy
categories through two primary pathways: industrial upgrading
and industrial intelligence. These pathways illustrate how digital
advancements transform both industry structures and production
processes, shaping how firms consume and manage energy.

Industrial upgrading plays a pivotal role in enhancing energy
efficiency by driving a shift from energy-intensive activities to
those with lower energy demands. This transition typically
involves movement from the manufacturing sector (secondary
sector) to the service sector (tertiary sector), which generally
consumes less primary energy, such as coal and oil, while
generating higher economic output per unit of energy consumed
(Dong et al. 2021; Usman and Balsalobre-Lorente, 2022).
Digitalization facilitates this shift through the automation of
processes and the optimization of resource utilization, thereby
increasing overall productivity (Anthopoulos and Kazantzi, 2022;
Vu and Hartley, 2022). Consequently, firms become less
dependent on primary energy sources, resulting in increased
economic returns per unit of coal and oil used (Sun et al. 2021).

However, this transition raises an important question: Does the
reduced reliance on primary energy inevitably lead to improved
overall energy efficiency? Industrial upgrading also drives higher
demand for secondary energy sources, particularly electricity,
owing to the increasing need for digital infrastructure. Unlike
primary energy, converting electricity into economic output does
not always yield proportional gains. This raises concerns about
whether the growing electricity demand, which is spurred by the
adoption of advanced digital systems such as data centers and
automated machinery, might offset the energy savings achieved
from reduced coal and oil usage. Could this create a scenario in
which the anticipated improvements in energy efficiency are
diminished or even negated by less efficient electricity use? On
this basis, we propose Hypothesis 1.

Hypothesis 1: Digitalization improves firm-level energy
efficiency for coal and oil but reduces energy efficiency for
electricity due to industrial upgrading.

Digitalization has also spurred the advancement of industrial
intelligence, which integrates smart technologies into production
processes. This enables firms to optimize operations, minimize waste,
and utilize energy more precisely. Industrial intelligence encompasses
the deployment of advanced machinery and automated systems that
streamline workflows and reduce energy waste. For example, smart
manufacturing technologies can replace outdated, inefficient machin-
ery that heavily relies on coal and oil, thereby further reducing
primary energy consumption and increasing economic output per
unit of energy used (Huang et al. 2022).

However, increased electricity usage is often needed for the
adoption of these smart machines. Operating these energy-
intensive technologies can substantially increase firms’ electricity
consumption. While the use of primary energy decreases, the
higher demand for electricity might offset the gains, particularly if
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the economic output generated by these intelligent systems fails
to fully compensate for the additional electricity costs. This
highlights a potential drawback of digitalization: although it
improves energy efficiency in certain areas, it may introduce
inefficiencies in others. On this basis, we propose Hypothesis 2.

Hypothesis 2: Digitalization improves firm-level energy
efficiency for coal and oil use but reduces efficiency for electricity
use due to the rise of industrial intelligence.

Furthermore, we examine the critical role of government
intervention in influencing the impact of digitalization on firm-
level energy efficiency, particularly across different energy types.
The effects of digitalization on energy efficiency can either be
enhanced or undermined depending on how government policies
and regulations are designed and implemented.

Government intervention may intensify the negative effects of
digitalization on electricity-based energy efficiency. Policies that
introduce uncertainty, such as fluctuating electricity prices or
supply constraints, could escalate the operational costs of digital
infrastructure (Dvofdk et al. 2018). Stable and affordable
electricity is needed for digital processes, especially those that
are reliant on IT and big data. When electricity costs are
unpredictable, firms may struggle to meet the energy demands of
advanced digital technologies, so energy efficiency may be
reduced, and operational challenges may arise. This unpredict-
ability could also discourage firms from fully adopting digital
technologies, as financial risk may outweigh efficiency benefits.
Consequently, even with digital advancements, firms might
experience reduced energy efficiency if the costs and stability of
electricity remain significant concerns.

Conversely, government intervention can also amplify the
positive effects of digitalization, especially in the context of coal
and oil usage. Supportive government policies, such as subsidies
for energy-efficient technologies or tax incentives, can directly
lower the financial barriers firms face when investing in
digitalization (Zhang et al. 2017). By reducing implementation
costs, digitalization becomes not only more appealing but also
more accessible to a wider range of firms.

In a policy environment that actively supports energy efficiency,
firms are incentivized to adopt digital technologies that specifically
target the optimization of primary energy sources such as coal and
oil. For example, a firm might upgrade to more efficient machinery
or implement smart energy management systems, motivated by the
financial advantages provided by such policies. These investments
could lead to significant improvements in energy efficiency and thus
reduce waste, enhance process precision, and maximize economic
output per unit of energy consumed.

As more firms take advantage of these supportive policies, the
cumulative effect could drive industry-wide advancements in
energy efficiency. This widespread adoption of digital technolo-
gies would not only reduce coal and oil consumption but also
establish new benchmarks for energy productivity, making the
entire sector more efficient and sustainable. Thus, this reasoning
supports the idea that strategic government intervention aligned
with energy efficiency objectives can significantly enhance the
positive impacts of digitalization on the efficient use of coal and
oil, yielding broad economic and environmental benefits. On this
basis, we propose Hypothesis 3.

Hypothesis 3: Government intervention worsens the negative
effect of digitalization on firm-level energy efficiency from
electricity but enhances the positive effect on energy efficiency
from coal and oil.

Methods and data
“Broadband China” policy. The advancement of digitalization
relies heavily on the development of network infrastructure across
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society. In China, the launch of the “Broadband China” policy
(BCP) in August 2013 marked a milestone in the nation’s digital
transformation. This policy designated broadband as a strategi-
cally important public infrastructure, signaling China’s entry into
a new phase of rapidly advancing broadband deployment
nationwide.

Following the issuance of the BCP by the State Council, the
National Development and Reform Commission and the
Ministry of Industry and Information Technology introduced
three batches of pilot cities for this policy. The policy was
implemented in three phases: the first batch of 41 cities, selected
and evaluated by experts, began implementation in 2014. This
was followed by the second batch of 38 cities in 2015 and the
third batch of 37 cities in 2016. The implementation of the policy
focused primarily on the following: (1) Expanding access network
coverage through broadband infrastructure construction. (2)
Promoting industrial optimization by enabling more diverse
network applications. (3) Strengthening the network industry
chain through the industrialization of major broadband products.

Since its introduction, the BCP has garnered widespread
attention and active public engagement, significantly boosting
China’s level of information technology. It has also had a notable
positive impact on fostering digitalization and driving societal
progress in the digital age.

Econometric model

Baseline model. To evaluate the influence of digitalization on firm
energy efficiency, the foundational PSM-DID baseline model in
this paper is established as follows:

yi,r,n,t = /50 + 181 X BCPr,t + ng- + At + yr + ﬂn + ez}r,n,t (1)

0, BCP is not implemented.

BCP,, = { 2)

1, BCP is implemented in city r at yeart.

where y; ., represents the energy efficiency of firm i in industry
n located in city r at year t. BCP, , indicates the implementation of
the “Broadband China” policy, with the estimated coefficient f3,
representing the average treatment effect of BCP on firm energy
efficiency. A, represents time fixed effects, y, represents city fixed
effects, #, represents industry fixed effects, ¢, represents firm
fixed effects, and ¢, , , represents the error term.

Event study model. To estimate the PSM-DID model, there need
to be no significant differences in the trends of the dependent
variable between the treatment and control groups prior to the
implementation of the policy. This condition is referred to as the
parallel trend assumption (Li et al. 2022; Lin and Huang, 2022;
Zhong and Peng, 2022). The event study model is utilized in this
paper to evaluate whether this assumption holds.

2
yi,r,n,t :ﬁO+k§3ﬁkxdurxD};+(Pi+lt+Yr+’7n

(3)
—l—s,},,n,t,k:t -1
D { 0, whent#2014 + k @)
7\ 1, whent = 2014 + k

where du, denotes the dummy of the treatment group, and the
value is 1 when city r belongs to the treatment group. D¥ denotes
the dummy variable of the year before or after the implementation
of the BCP, and the specific measurement is shown in Eq. (4). If the
coefficients f, fail to be significant at the 10% level before the
implementation of BCP (k < 0), this suggests that there is no sig-
nificant disparity in firm energy efficiency between the treatment

and control groups, thus confirming the satisfaction of the parallel
trend assumption.

Mediation effect model. To examine whether BCP influences firm
energy efficiency by enhancing industrial upgrading and indus-
trial intelligence, the following mediation effect model is for-
mulated in this paper:

yi,r,n,t = ﬁO + ﬁl X BCPLI + (Pi + /\t + Yr + r]n + Si.nn‘t (5)
M, =By + B % BCP,, + ¢, + Aty +e, (6)

yi,r.n.t = ﬁo +ﬁ1 x BCPr,t +ﬁ2>< Mr.t + (pi +At + Yr + ’77; + £i,r,n,t (7)

where M, , represents the mediating variable, which encompasses
industrial upgrading and industrial intelligence. Industrial
upgrading is quantified by the ratio of added value from the
tertiary industry to added value from the secondary industry.
Industrial intelligence is measured by the logarithmic values of
urban industrial robot stock. On the basis of the study of Ace-
moglu and Restrepo (2020), the urban industrial robot stock is
calculated in this paper using the city’s industrial employment
structure, the number of laborers, and the number of industrial
robots at the industry level:

Empn,r,t

Robots,
% :
§ ZnEmpn.r‘t

Labour,,

int,, =3 (®)
where Robots,, denotes the number of industrial robots of
industry 7 at year t. Labour, , denotes the labor force number of
city r at year t. Emp, ,, denotes the labor force number of city r of
industry n at year t. If the coefficients of BCP, , in Eq. (6) and M, ,
in Eq. (7) are statistically significant, this suggests that digitali-
zation influences firm energy efficiency by impacting
industrialization.

Variable-coefficient panel model. To further explore the effects of
digitalization on firm energy efficiency across various regions,
industries, and firm types, the following variable-coefficient panel
model is developed in this paper:

d—1
yi,r,n.t = ﬁ +ﬁ0XBCPr,[ + % ﬁmxBCPr,tX Dxr.nr.n.l + (Pi +/\t + Yr + ”In + Si,r,vx.t

)

where D", denotes the region categorical dummy, industry

i,r,n,t
categorical dummy or categorical dummy of types of firms and
where d denotes the total number of categories. Owing to the
problem of collinearity, d — 1 dummy variable interaction terms
are added to the model rather than d. For example, this paper
divides China into eastern, central (D}, ,, = 1 if city i belongs to

the central region, others = 0) and western regions (D7, , = 1 if
city i belongs to the western region, others = 0). The coefficient
reflects the impact of digitalization on firm energy efficiency in
the eastern region, B, + f, and 3, + f, reflects the impact of
digitalization on firm energy efficiency in the eastern and western

regions.

Data and variables. Most previous studies on the impact of
digitalization on energy efficiency have focused on the national or
regional levels. However, conclusions derived from aggregated
macrolevel data often fail to provide a reliable foundation for
addressing energy conservation and emission reduction at the
microlevel, such as within enterprises. This study addresses this
limitation by using the annual large-scale enterprise survey data
of the China National Tax Survey Database (CNTSD) as the
research sample.
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CNTSD has two distinct advantages. First, the database
provides three types of energy consumption indicators, including
firm-level electricity consumption, coal consumption, and oil
consumption. Unlike existing studies that primarily measure
energy efficiency using output per unit of coal consumption, the
CNTSD enables a more comprehensive assessment of how
digitalization affects various types of energy efficiency. Second,
compared with the widely used China Industrial Enterprise
Database (CIED), the CNTSD encompasses not only industrial
enterprises but also enterprise data from eight industry sectors,
including the agricultural sector, mining sector, light industry
sector, heavy industry sector, electricity, steam, gas, and water
production sector, construction sector, service sector, and
transportation sector. Because of this broader scope, the ways
in which digitalization impacts firm-level energy efficiency across
different sectors can be evaluated on a nuanced level.

Furthermore, the data on industrial robots by industry in
China used in this paper are sourced from the International
Federation of Robotics (IFR).

The CNTSD survey period spans from 2007 to 2016, with the
primary dataset including information from approximately
500,000 firms annually. Since the BCP was implemented in
2014, this study focuses on firm-level data from 2011 to 2016 for
evaluation. During this process, the raw data were cleaned and
filtered as follows: (1) Samples with missing or abnormal values
for energy consumption and business indicators were excluded.
(2) Propensity score matching (PSM) was applied to match
samples to the treatment group, yielding a more reliable control
group. The detailed methods and matching results are provided
in Appendix A.

To enhance the model’s accuracy, fixed effects were chosen
over random effects, enabling better control for unobserved
heterogeneity. Specifically, firm, industry, year, and city fixed
effects are incorporated in this study to account for unique firm
characteristics, industry-specific factors, macroeconomic trends,
and geographical differences. These controls effectively isolate the
impact of the BCP on energy efficiency. By employing a high-
dimensional fixed-effects model, the treatment effect of the BCP
can be estimated simply by adding the dependent variable (Cui
et al. 2021).

During the PSM process, total assets and labor were selected as
covariates, with the detailed calculation methods outlined in
Table 1. After PSM was applied, a total of 389,061 screened
samples were identified as the final research objects. Descriptive
statistics for each variable, along with the distribution of energy
efficiency before and after the policy in both the treatment and
control groups, are also presented in Table 1.

Results

Baseline results. Table 2 presents the regression results of the
baseline model, highlighting the regression coefficients of BCP,
which reflect the impact of digitalization on firm energy effi-
ciency. The findings reveal notable variations in how digitaliza-
tion influences different energy sources.

The results demonstrate that the implementation of the BCP
led to a 17.2% (p < 0.01) reduction in firm-level energy efficiency
derived from electricity. This finding highlights that the adoption
of digitalization caused a significant decline in electricity
efficiency among firms.

In contrast, the BCP had a positive effect on the energy
efficiency derived from coal and oil, with increases of 10.5%
(p<0.01) and 11.3% (p<0.01), respectively. These outcomes
suggest that digitalization substantially enhanced efficiency in
these areas.
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Table 2 The average impact of digitalization on firm energy efficiency.
Variables Firm energy efficiency Firm energy consumption
Electricity Coal Oil Electricity Coal Oil
m (¢3)] 3) ) 5) (6)
BCP —0.172""" (0.018) 0.105™" (0.018) 0.113"" (0.018) 0.174"" (0.016) —0.102"" (0.016) —0.111"" (0.016)
C 6.342"" (0.002) 8.0557" (0.002)  8137"7 (0.002)  3.675" (0.002) 1.962™" (0.002) 1.881"" (0.002)
Firm FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Observations 389,061 389,061 389,061 389,061 389,061 389,061
R2 0.696 0.834 0.729 0.767 0.840 0.695
Adj-R2 0.508 0.732 0.560 0.622 0.741 0.506
F 92.306 35.118 41152 15.856 42.020 49.625
(1) *** signifies significance at the 1% level. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics, industry characteristics, and city
characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses.
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Fig. 1 Mechanism analysis.

Compared with the research findings of Hong et al. (2023),
which were based on panel data from prefecture-level cities, the
impact coefficients derived in this study, which focused on firms,
are more significant. This discrepancy highlights that the effect of
digitalization is more pronounced at the firm level, likely because
of the direct and targeted implementation practices within firms.

In examining the impact of the BCP on firm energy
consumption, the results reveal a 17.4% (p <0.01) increase in
energy consumption derived from electricity. This reflects a
significant rise in electricity demand as firms adopt digitalization.
Conversely, digitalization significantly reduced firm-level energy
consumption derived from coal and oil by 10.2% (p <0.01) and
11.1% (p<0.01), respectively. These findings highlight the
efficiency improvements and the reduced dependence on these
traditional energy sources facilitated by the digitalization process.

The findings presented above also reveal that the increase in
firm-level energy consumption derived from electricity is nearly
equivalent to the decrease in energy efficiency associated with
electricity. This suggests that the rapid rise in electricity
consumption driven by digitalization does not yield a propor-
tional increase in economic output. Moreover, the implementa-
tion of the BCP primarily enhances energy efficiency from coal
and oil by reducing their consumption.

This finding indicates that the current stage of digital
development has not yet effectively elevated the technical level
of energy utilization within firms. Instead, it appears to directly

influence energy consumption patterns and transitions between
energy sources (Xue et al. 2022). Thus, governments should adopt
a more cautious approach when evaluating the energy-saving and
emission reduction effects of digitalization. Additionally, digital
retrofitting should be further emphasized, with a focus on energy
transitions and clean energy substitution to achieve more
sustainable outcomes Figs. 1, 2.

Parallel trend test. Figure 3 shows the results of the parallel trend
test. Prior to the implementation of the BCP, nearly all the
regression coefficients of f; (k<0) failed to reach the 5% sig-
nificance level, indicating that there were no notable differences
in firm energy efficiency and energy consumption between the
treatment and control groups. This outcome confirms that the
parallel trend assumption is satisfied.

After the policy shock, the results depicted in the figure reveal a
distinct pattern in the policy’s impact on energy efficiency.
Specifically, the policy’s effect on energy efficiency derived from
electricity is significantly negative, indicating a reduction in firms’
ability to efficiently utilize electrical energy following the policy’s
implementation. Conversely, the policy has a positive effect on
energy efficiency related to coal and oil, demonstrating an
improvement in firms’ ability to use these resources more
efficiently.
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Fig. 3 Parallel trend test results. The X-axis represents the window period for BCP implementation, while the Y-axis displays the regression coefficient fk
in the event study model. The year preceding BCP implementation serves as the base period. a-¢ present the results of the parallel trend tests using firm-
level energy efficiency derived from electricity, coal, and oil. Similarly, d-f illustrate the results of the parallel trend tests with firm-level energy consumption
derived from electricity, coal, and oil.
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This contrasting impact highlights the differing responses of
various energy sources to the policy and further corroborates that
the parallel trend assumption holds for this analysis.

Robustness test

Placebo test. Since the BCP might influence firm energy efficiency
in nonpilot cities, potentially leading to unreliable estimates, a
Monte Carlo simulation approach is adopted in this paper. Spe-
cifically, samples from the control group are randomly selected to
serve as the treated group, and the BCP parameters are re-
estimated. The reliability of the analysis is then evaluated by
determining whether the parameter distribution follows a normal
distribution with a mean of 0 (Dong et al. 2022b; M. Li et al. 2022;
Yu and Zhang, 2022).

Figure 4 illustrates the estimated coefficient distribution and
the kernel density curve based on 1000 random draws. The
coefficients are centered on zero and exhibit a normal distribu-
tion, which is consistent with expectations from a placebo test.
This confirms that the observed changes in energy efficiency
within the actual treated group are attributable to the imple-
mentation of BCP.

Re-estimation based on radius matching method of PSM. To
increase the robustness of the estimation results and address

potential biases arising from the PSM matching method, a radius
matching approach with a radius of 0.03 is adopted in this study

40.0

30.04

20.04

Density

10.0

0.0

-0.1 0.0 0.1
Estimator

Fig. 4 Results of placebo test.

to better align the control group with the treated group. The
results, presented in Table 3, show that the average effects of BCP
on firm-level energy efficiency are —17.2% (p<0.01) for elec-
tricity, 10.5% (p<0.01) for coal, and 11.3% (p<0.01) for oil.
Additionally, the average impacts on firm-level energy con-
sumption are 17.5% (p <0.01) for electricity, —10.3% (p <0.01)
for coal, and —11.1% (p <0.01) for oil. These results are largely
consistent with the estimates in Table 2, reaffirming the reliability
of the conclusions drawn in this paper.

Re-estimation based on different dependent variables. To mini-
mize the potential impact of variable selection on the estimation
results, operating income per unit of energy consumption is
adopted as a proxy for firm-level energy efficiency in this study.
Moreover, per capita energy consumption is used to measure
enterprise energy consumption. The re-estimation results, which
are based on these substituted dependent variables, are shown in
Table 4.

The findings indicate that the average effects of BCP on
operating income per unit of electricity, coal, and oil consump-
tion are —18.8% (p <0.01), 17.4% (p <0.01), and 4.9% (p < 0.05),
respectively. Additionally, the average impacts of BCP imple-
mentation on firm energy consumption for electricity, coal, and
oil were 18.8% (p<0.01), —11.9% (p<0.01) and —4.5%
(p <0.05), respectively.

These results align closely with those in Table 2, further
confirming the robustness and reliability of the conclusions of
this study.

Re-estimation excluding contemporaneous policy disturbances. To
eliminate the potential interference of other concurrent policies
on the analysis results, the policy impact of the Low-Carbon City
Pilot (LCPC) initiative, which was implemented during the same
period, is controlled in this paper. After this policy impact is
incorporated into the model, the effects of BCP on urban carbon
emission performance are presented in Table 5.

The findings in Table 5 show that BCP implementation
reduced firm-level energy efficiency derived from electricity by
16.9% (p<0.01) on average. Conversely, BCP significantly
improved the firm-level energy efficiency derived from coal and
oil, with increases of 10.4% (p<0.01) and 11.1% (p<0.01),
respectively.

These results indicate that even when the LCPC is controlled,
BCP consistently reduces the energy efficiency derived from

Table 3 Re-estimation based on radius matching methods of PSM.
Variables Firm energy efficiency Firm energy consumption
Electricity Coal Oil Electricity Coal oil
m ) (3) 4) (5) (6)
BCP —0.172"" (0.018)  0.105" (0.018) 0113”7 (0.018) 04175 (0.016) —0.103"7 (0.016)  —0.111""" (0.016)
C 6.343"" (0.002) 8.057"" (0.002) 8138 (0.002)  3.677" (0.002) 1963 (0.002) 1.882"" (0.002)
Firm FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Observations 388,650 388,650 388,650 388,650 388,650 388,650
R2 0.696 0.834 0.728 0.767 0.840 0.695
Adj-R? 0.508 0.732 0.560 0.622 0.741 0.506
F 93.055 35.170 40.769 16.248 42.410 49.509
(1) *** signifies significance at the 1% level. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics, industry characteristics, and city
characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses. (4) Re-run PSM with radius matching method (r=0.03) and then regress.
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Table 4 Re-estimation based on different dependent variables.

Variables Revenue/energy consumption Energy consumption/number of workers
Electricity Coal oil Electricity Coal oil
() 2) ) 4) (5) (6)
BCP —0.188" (0.017)  0.1774™ (0.031) 0.049" (0.021) 0.188" (0.015) —0.119"" (0.027) —0.045" (0.018)
C 6.383"" (0.004) —5.804"" (0.008) 7.485"" (0.005)  —0.376"" (0.004) -0.077"" (0.007)  -1.431"" (0.005)
Firm FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Observations 316175 147323 213428 364589 170952 245529
R2 0.232 0.259 0.188 0.176 0.260 0.188
Adj-R? 0.231 0.257 0.186 0.175 0.258 0.186
F 116.191 31.995 5.393 154.516 19.854 6.474

(1) *** and ** signify significance at the 1% and 5% levels, respectively. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics,
industry characteristics, and city characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses. (4) The new dependent variables are in natural logarithms.

Table 5 Re-estimation excluding contemporaneous policy disturbances.

Variables Firm energy efficiency Firm energy consumption
Electricity Coal Oil Electricity Coal oil
m ) () 4) (5) (6)
BCP —0.169™" 0.104™" (0.018) 0111 (0.018) 0.171"" (0.016) —-0.102""" —0.109™
(0.018) (0.016) (0.016)
LCPC -0.177"" 0.083"" (0.015) 0.210"" 0.221™" —-0.039™" —0.165™"
(0.015) (0.016) (0.014) (0.014) (0.014)
@ 6.419™" 8.020™" 8.046™" 3.580™" 1.979™" 1.952""
(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)
Firm FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Observations 389,061 389,061 389,061 389,061 389,061 389,061
R2 0.697 0.834 0.729 0.767 0.840 0.695
Adj-R? 0.508 0.732 0.560 0.623 0.741 0.506
F 107.693 31.606 107.518 173.759 24.847 93.483

(1) *** signifies significance at the 1% level. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics, industry characteristics, and city

characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses.

electricity while enhancing the efficiency for coal and oil. This
suggests that the original regression results remain robust.

Further analysis

Mechanisms by which digitalization affects firm energy effi-
ciency. In Table 6, the regression outcomes regarding the
mechanism of industrial upgrading are presented. In Column (1),
the regression coefficient of BCP is 0.054 (p <0.01), indicating a
significant enhancement in regional industrial upgrading due to
digitalization.

The regression coefficients of iu in Columns (2) to (4) are
—0.459 (p<0.01), —0.008 (p>0.1), and 0.180 (p<0.01),
respectively. These results suggest that digitalization, by fostering
industrial upgrading, leads to a reduction in firm electricity
energy efficiency but an improvement in firm-level oil energy
efficiency. Moreover, the regression coefficients of iu in Columns
(5) to (7) are 0.344 (p<0.01), —0.027 (p>0.1), and —0.295
(p<0.01), respectively. These results further illustrate that the
implementation of BCP impacts enterprise energy efficiency and
consumption by stimulating industrial upgrading.

The findings in Table 6 provide valuable insights into the
mechanism of industrial upgrading. Additionally, this study

examines whether BCP affects firm energy efficiency by
promoting industrial intelligence. The regression results related
to industrial intelligence mechanisms are summarized in Table 7.

In Column (1), the coefficient of BCP is 1.064 (p < 0.01), which
indicates a significant enhancement in industrial intelligence as a
result of the BCP policy. The coefficients of int in Columns (2) to
(4) are —0.378 (p<0.01), 0.346 (p<0.01), and 0.106 (p<0.01),
respectively. These results suggest that BCP improves firm-level
energy efficiency derived from coal and oil while reducing firm-
level energy efficiency derived from electricity through the
promotion of industrial intelligence.

Furthermore, the regression coefficients of int in Columns
(5)-(7) are 0512 (p<0.01), —0.212 (p<0.01), and —0.028
(p <0.01), respectively. This finding indicates that BCP reduces
firm-level energy consumption derived from coal and oil while
increasing firm-level energy consumption derived from electricity
via the enhancement of industrial intelligence.

These findings highlight the role of digitalization in shaping
firm-level energy efficiency by fostering industrial intelligence.

Moderating effects of government intervention. Building on the
research of Kang et al. (2022), which highlights that government
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Table 6 Analysis of the mechanism of industrial upgrading.

iu Firm energy efficiency Firm energy consumption
Electricity Coal Oil Electricity Coal oil
m ) ) 4) (5) (6) @
BCP 0.054™" —0.145™" 0.107"" 0.106™" 0.152"" —0.101™" —0.099""
(0.001) (0.018) (0.018) (0.018) (0.016) (0.016) (0.016)
iu —0.459™" —0.088 0.180™" 0344 —0.027 —0.295™"
(0.061) (0.062) (0.059) (0.054) (0.054) (0.050)
C 0.925™" 6.785"" 8.189™" 7.996™" 3349 1.945™ 2138"
(0.000) (0.056) (0.058) (0.055) (0.050) (0.050) (0.046)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes
Observations 389,061 389,061 389,061 389,061 389,061 389,061 389,061
R2 0.986 0.696 0.834 0.729 0.767 0.839 0.694
Adj-R2 0.986 0.507 0.730 0.560 0.622 0.740 0.505
F 2974.897 67.536 18.040 25.762 69.715 20.834 45.309

(1) *** signifies significance at the 1% level. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics, industry characteristics, and city
characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses. (4) iu is defined as the ratio of added value from the tertiary industry to added value from the secondary

industry within the city where the firm operates.

Table 7 Analysis of the mechanism of industrial intelligence.

int Firm energy efficiency Firm energy consumption
Electricity Coal Oil Electricity Coal oil

m 2) () 4) (5) (6) (¢))
BCP 1.064™ (0.014) —0.041"" (0.021) 0.255"" (0.021) 0.241"" (0.018) 0.056"" (0.020) —0.239"""(0.020) —0.226"" (0.017)
int —0.378"(0.010) 0.346™ (0.011) 0.106"" (0.010) 0.512"" (0.009) —0.212"" (0.010) —0.028"" (0.009)
C 3.9717" (0.001) 86177 (0.069)  5.542"7 (0.075) 7.472"" (0.066) 0.533"" (0.064) 3.608"" (0.071)  1.678"" (0.060)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes
Observations 389,061 389,061 389,061 389,061 389,061 389,061 389,061
R2 0.798 0.601 0.830 0.712 0.707 0.838 0.681
Adj-R2 0.798 0.364 0.729 0.540 0.533 0.743 0.491
F 5450.766 850.992 42508 34.531 1780.563 41.229 34.611

(1) *** and ** signify significance at the 1% and 5% levels, respectively. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics,
industry characteristics, and city characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses. (4) int is measured by the logarithmic values of urban industrial robot stock.

intervention influences the energy usage of Chinese firms, this
study further explores the moderating effect of government
intervention levels on the relationship between digitalization and
firm-level energy efficiency. The findings are summarized in
Table 8.

According to the regression results in Table 8, the coefficients
of govxBCP are —4.490 (p<0.01), 1.685 (p <0.01), and 0.217
(p>0.1), as shown in Columns (2), (4), and (6), respectively.
These findings indicate that increased government intervention
exacerbates the negative impact of digitalization on firm-level
energy efficiency derived from electricity. Furthermore, govern-
ment intervention enhances the positive effects of digitalization
on firm-level energy efficiency derived from coal. These results
highlight the need for governments to regulate firms’ electricity
consumption behavior during the digital transformation process
and minimize inefficient electricity usage.

Heterogeneity analysis
In this study, we conduct a heterogeneity analysis by dividing the
sample into subgroups on the basis of region, industry, firm size,

and level of resource dependence. This approach is guided by
several key considerations and directly ties into our mechanism
analysis.

First, regional differences in economic development, techno-
logical infrastructure, and industrial structure lead to varying
impacts of digitalization on firms’ energy efficiency. Our
mechanism analysis reveals that digitalization affects energy
efficiency through industrial upgrading and industrial intelli-
gence, and these effects likely vary across the Eastern, Central,
and Western regions.

Second, industries exhibit distinct production processes, energy
usage patterns, and levels of technological adoption, leading to
distinct effects of digitalization on energy efficiency. By grouping
the data by industry, we aim to identify how digitalization
influences energy efficiency within each sector.

Third, firm size plays a crucial role in determining a company’s
capacity to access resources and enhance management efficiency
during the digitalization process. Larger firms generally have
more resources to leverage digitalization to improve energy effi-
ciency, whereas SMEs may encounter greater challenges.
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Table 8 Moderating effects of government intervention.
Electricity Coal oil
() (2) (3) (4) (5) (6)
BCP —01627" (0.018)  0.47577(0.047)  0.09277 (0.018)  —0.147"7(0.042)  0.112"" (0.018) 0.081" (0.040)
gov 1.671"" (0.416) 2108 (0.468) —3185"" (0.472)  —3.349"7 (0.501)  —0.752" (0.282)  —0.774"" (0.285)
govxBCP —4.490"" (0.321) 1.685™" (0.273) 0.217 (0.252)
C 6123 (0.059) 6.063"" (0.066) 8560 (0.067)  8.582"" (0.071) 8270 (0.040) 8272 (0.040)
Firm FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Observations 389061 389061 389061 389061 389061 389061
R2 0.696 0.696 0.834 0.834 0.729 0.729
Adj-R? 0.507 0.508 0.731 0.731 0.560 0.560
F 52.420 87.059 39.362 32.744 24.463 16.531
(1) *** and ** signify significance at the 1% and 5% levels, respectively. (2) High-dimensional fixed effects methods are employed to concurrently control for firm characteristics, year characteristics,
industry characteristics, and city characteristics. (3) Firm-level cluster robust standard errors are presented in parentheses. (4) gov is measured by the proportion of fiscal expenditure in GDP of the city
where the firm is located.
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Fig. 5 Impact intensity of digitalization on firm energy efficiency in different regions (Bar graph). a denotes the impact of BCP on firm energy efficiency
of electricity, coal and oil. The different colors of the bars denote Eastern region, Central region and Western region. The direction of the bar denotes

whether the impact of BCP is positive or negative, and the length of the bar denotes the intensity of the impact on the firm energy efficiency in the region.
The longer length means the more intense impact of BCP. b denotes the impact of BCP on firm energy consumption of electricity, coal and oil. The different
colors of the bars denote Eastern region, Central region and Western region. The direction of the bar denotes whether the impact of BCP is positive or
negative, and the length of the bar denotes the intensity of the impact on the firm energy consumption in the region. The longer length means the more
intense impact of BCP. In addition, the line segment on the bar denotes the standard error of the impact. If the line segment does not intersect the x-axis, it

denotes that the impact is significant.

Finally, a firm’s level of resource dependence influences its
sensitivity to changes in energy consumption and efficiency.
Resource-dependent firms and nonresource-dependent firms are
likely to respond differently to the industrial upgrading and
industrial intelligence brought about by digitalization.

Through an examination of these dimensions, this study aims
to uncover the subtle ways in which digitalization impacts dif-
ferent types of firms, providing valuable insights to inform more
targeted and effective policy interventions.

Regional heterogeneity analysis. The impact of digitalization on
energy efficiency and energy consumption in East China, Central

12

China, and West China is illustrated in Fig. 5, with the bars
showing the direction and magnitude of the effects of digitali-
zation. The findings reveal that although the direction of digita-
lization’s impact on energy efficiency and consumption is
consistent across regions, there are notable differences in
magnitude.

Specifically, in East China, the implementation of the BCP
resulted in a 14.0% (p<0.01) decrease in firm-level energy
efficiency derived from electricity, whereas it increased firm-level
energy efficiency derived from coal and oil by 9.0% (p < 0.01) and
14.6% (p<0.01), respectively. In the central region, BCP
implementation led to a 39.4% (p <0.05) decrease in firm-level
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energy efficiency derived from electricity, a 14.9% (p<0.1)
increase in coal efficiency, and an 11.5% (p <0.01) decrease in
oil efficiency. Conversely, in the western region, BCP had no
significant effect on firm-level energy efficiency derived from
electricity and oil but notably increased firm-level energy
efficiency derived from coal by 23.8% (p <0.05).

On the basis of these findings, we further investigate the
influence of BCP on firm-level energy consumption. In East
China, BCP implementation caused a 14.3% (p < 0.01) increase in
electricity consumption, accompanied by significant reductions of
8.7% (p <0.01) and 14.3% (p < 0.01) in coal and oil consumption,
respectively. In the central region, BCP led to a 37.6% (p <0.01)
increase in firm-level energy consumption derived from elec-
tricity, a 16.7% (p <0.05) decrease in coal consumption, and a
9.7% (p<0.01) increase in oil consumption. In the western
region, BCP implementation did not significantly affect electricity
or oil consumption but notably reduced coal consumption by
19.5% (p<0.1).

The implementation of the BCP has led to a notable increase in
electricity consumption among firms in the eastern and central
regions. However, the corresponding output does not increase
significantly, resulting in a substantial decline in electricity energy
efficiency. Moreover, BCP implementation significantly reduced
coal consumption in the eastern, central, and western regions. For
oil consumption, the BCP led to a decrease in the east region and
an increase in the central region, while the output remained
stable. With no significant changes in output, the BCP caused an
increase in oil energy efficiency in the east and a decrease in the
central region.

Notably, the improvements in firm-level energy efficiency
derived from coal and oil in the Eastern region are almost entirely
due to the reduced consumption of these energy sources.
Conversely, the declines in electricity and oil energy efficiency
are driven primarily by increased consumption of these resources.
This suggests that current digitalization efforts do not effectively
enhance the technological sophistication of energy use in firms,
regardless of whether they are located in East China, Central China,
or West China. Instead, digitalization primarily impacts direct
energy consumption and shifts the use of different energy types.

Given these findings, we recommend that the government
adopt a more balanced approach in evaluating the effects of

digital energy savings and emission reduction across China’s
eastern, central, and western regions. Additionally, advancements
in clean energy technologies need to be prioritized to ensure
sustainable energy use and efficiency improvements.

Industry heterogeneity analysis. Figure 6 illustrates the impact of
digitalization on energy efficiency and energy consumption across
various industries. The bars represent both the direction and
magnitude of digitalization’s influence. Our findings reveal sig-
nificant disparities in how digitalization affects energy efficiency
across different sectors.

For example, the implementation of the BCP led to 62.1%
(p<0.05) and 30.7% (p<0.01) decreases in firm-level energy
efficiency derived from electricity and coal in the transportation
sector, respectively, while simultaneously driving a 47.1%
(p<0.01) improvement in firm-level energy efficiency derived
from oil. In the electricity, gas, and production sectors, BCP
increased the firm-level energy efficiency derived from electricity
and oil by 23.4% (p <0.01) and 36.9% (p < 0.01), respectively.

Additionally, the light industry sector also experienced notable
effects from BCP, with improvements of 9.6% (p <0.01), 45.3%
(p <0.05), and 20.3% (p<0.01) in firm-level energy efficiency
derived from electricity, coal, and oil, respectively.

A further analysis of the impact of BCP on firm energy
consumption reveals distinct effects across industries. In the
transportation sector, BCP resulted in a 47.2% (p<0.01) and a
15.8% (p<0.01) increase in firm-level energy consumption
derived from electricity and coal, while significantly reducing
oil consumption by 61.9% (p <0.01). In the electricity, gas, and
production sector, BCP drove substantial increases in energy
consumption: 42.3% (p < 0.01) for electricity, 45.6% (p < 0.01) for
coal, and 28.9% (p<0.01) for oil. In the mining sector, BCP
significantly increased firm-level electricity consumption and coal
consumption by 70.4% (p<0.01) and 16.2% (p<0.01). Con-
versely, digitalization in the agricultural sector reduced firm-level
electricity, coal, and oil consumption by 11.1% (p>0.1), 67.1%
(p<0.1), and 20.5% (p < 0.05), respectively.

These results demonstrate the considerable variability in BCP
effects across industries. In many cases, implementing BCP leads
to changes in energy consumption that are opposite in direction
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to the corresponding changes in energy efficiency. This shows
that digital development has a limited effect on enhancing
technological efficiency across most industries. However, firm-
level energy consumption and energy efficiency have increased
simultaneously in the electricity, gas, and production sectors. This
shows that BCP still contributes to output growth and
technological advancement in certain sectors, particularly in the
energy production industry.

These results highlight the uneven impact of digitalization on
improving the technological utilization of energy across industries
(Husaini and Lean, 2022). The characteristics of each industry
also play a crucial role in shaping the effects of digitalization.
Therefore, policy-makers should adopt a more tailored approach
when evaluating the energy-saving and emission reduction effects
of digitalization. Special efforts should focus on promoting digital
energy transitions in highly energy-intensive industries.

Heterogeneity analysis of different firm sizes. Figure 7 illus-
trates the impact of digitalization on energy efficiency and energy
consumption across firms of different sizes. The results reveal
notable differences in how digitalization affects energy efficiency
on the basis of firm size.

For example, the implementation of the BCP reduced the
energy efficiency derived from electricity in small and medium
enterprises (SMEs) by 31.9% (p < 0.01), whereas it led to a 22.9%
(p <0.01) increase in energy efficiency derived from electricity in
large firms. Additionally, the BCP reduced the energy efficiency
derived from coal and oil in SMEs by 4.3% (p <0.05) and 6.2%
(p<0.01), respectively. In contrast, it improved the energy
efficiency derived from coal and oil in large enterprises by
51.1% (p <0.01) and 59.4% (p < 0.01), respectively.

Examining the impact of the BCP on firm-level energy
consumption further highlights these differences. Among SMEs,
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the BCP led to a 13.9% (p<0.01) increase in electricity
consumption while reducing coal consumption by 13.6%
(p<0.01) and oil consumption by 11.7% (p <0.01). For large
companies, the BCP increased electricity consumption by 27.1%
(p<0.01) but reduced coal and oil consumption by 0.9%
(p<0.01) and 9.2% (p > 0.1), respectively.

According to the results in Fig. 7, there are significant or even
contradictory outcomes for firms of different sizes. The
implementation of the BCP has resulted in an increase in firm-
level energy consumption derived from electricity and a decrease
in firm-level coal and oil consumption across firms of all sizes. In
terms of energy efficiency, the BCP has enhanced energy
efficiency in large firms but reduced it in SMEs. This finding
highlights that digital development is far more effective in
improving energy efficiency for large firms than for SMEs.

Therefore, this paper argues that the government should pay
closer attention to the changes in energy efficiency experienced by
SMEs under the BCP policy while also ensuring that energy
efficiency improvements continue for large firms. The energy
efficiency and emission reduction effects of digitalization should
be assessed more carefully, considering the distinct characteristics
of firms of different sizes. Moreover, digitalization initiatives
should be designed to benefit both large firms and SMEs,
ensuring balanced progress in energy efficiency across the board.

Heterogeneity analysis of different resource dependencies
of firms. Figure 8 reports the impact of digitalization on energy
efficiency and energy consumption in firms with varying levels of
resource dependence. Our findings show that the effects of digi-
talization on energy efficiency are generally consistent between
resource-dependent and nonresource-dependent firms.

For example, implementing BCP reduced firm-level energy
efficiency derived from electricity by 65.7% (p < 0.01) in resource-
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dependent firms and 56.0% (p < 0.01) in nonresource-dependent
firms. However, it improved the firm-level energy efficiency
derived from coal by 9.3% (p<0.01) and 11.8% (p <0.01) and
increased the energy efficiency derived from oil by 8.3% (p < 0.01)
and 4.2% (p>0.1).

A further analysis of the effect of the BCP on firm-level energy
consumption reveals significant increases in electricity consump-
tion, increasing by 66.8% (p<0.01) and 58.2% (p<0.01) for
resource-dependent and nonresource-dependent firms, respec-
tively. Moreover, BCP reduced firm-level coal consumption by
9.0% (p <0.01) and 8.4% (p <0.01) and lowered oil consumption
by 7.0% (p <0.01) and 2.3% (p > 0.1), respectively.

The results presented in Fig. 8 demonstrate that BCP produces
similar effects for both resource-dependent and nonresource-
dependent firms. In most instances, implementing BCP results in
an increase in firm-level energy consumption derived from
electricity while reducing coal and oil consumption. This trend
leads to changes in the opposite direction for the corresponding
energy efficiency. These findings highlight that digital develop-
ment has a limited impact on driving technological advancements
in both resource-dependent and nonresource-dependent firms.

Conclusions and policy implications

Conclusions. While previous studies have highlighted the bene-
ficial effects of digital transformation policies on regional energy
efficiency, the influence of digitalization on firm-level energy
efficiency remains largely unexplored. This paper investigates the
impact of digitalization on firm energy efficiency using the PSM-
DID model, leveraging a distinctive dataset of firm tax records.
Additionally, this study goes beyond prior work by examining
variations in the impact of digitalization on firm energy efficiency
across the electricity, coal, and oil sectors.

First, the PSM-DID model results reveal that the “Broadband
China Policy” improved the firm-level energy efficiency derived
from coal and oil by 10.5% and 11.3%, respectively, but reduced the
energy efficiency derived from electricity by 17.2%. The BCP also
led to a 174% increase in firm-level electricity consumption,
coupled with 10.2% and 11.0% reductions in firm-level coal and oil
consumption, respectively. These findings suggest that the energy
efficiency improvements attributed to BCP primarily stem from
changes in energy consumption. Robustness checks, including
parallel trend tests, placebo tests, and re-estimations using
alternative variables and matching methods, validate these results.

Second, the mechanism analysis results reveal that the BCP has
influenced firm-level energy efficiency through the enhancement
of industrial upgrading and industrial intelligence. Furthermore,
greater government intervention exacerbated the negative impact
of the BCP on electricity energy efficiency while intensifying its
positive effects on coal and oil energy efficiency.

Third, the heterogeneity analysis uncovers substantial differences
in the impact of the BCP on firm energy efficiency on the basis of
region, industry sector, firm size, and resource dependence.
Regionally, the BCP had the least negative effect on electricity
energy efficiency in the eastern region but most significantly
improved coal and oil energy efficiency in the western region. By
industry, the decline in electricity energy efficiency due to the BCP
is primarily observed in the transportation and service sectors. In
contrast, the effects on coal and oil energy efficiency are
predominantly positive in light and heavy industries, suggesting
that the service sector’s transformation under BCP has reduced
overall firm-level energy efficiency. With respect to firm size, the
BCP has a markedly stronger positive effect on the energy efficiency
of large enterprises than on that of SMEs. Finally, from the
perspective of resource dependence, the BCP significantly reduces
electricity energy efficiency in resource-dependent firms but has a
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pronounced positive effect on coal and oil energy efficiency in
these firms.

Policy implications. On the basis of these findings, we propose
several recommendations to assist both practitioners and pol-
icymakers in improving energy efficiency during digital trans-
formation. Our research reveals that digitalization has led to a
17.2% decrease in firm electricity energy efficiency and a 17.4%
increase in electricity consumption. To address this, firms should
adopt advanced energy management systems (EMSs) that allow
real-time monitoring and optimization of energy use. Policy-
makers can support this by offering financial incentives, such as
low-interest loans or grants, specifically for the implementation of
these systems. Additionally, providing training programs for
facility managers would help ensure that these systems are used
effectively to maximize energy savings.

This study also highlights notable energy efficiency challenges
in the service and transport sectors, where digitalization has
resulted in enormous efficiency declines. To address this issue,
policymakers should establish sector-specific energy efficiency
standards and require mandatory energy audits as part of digital
transformation initiatives in these industries. Companies that
meet or exceed these standards could be rewarded with tax
incentives or public recognition, whereas those that do not meet
these standards could face penalties. For firms in the service and
transport sectors, upgrading energy-intensive digital infrastruc-
ture, such as data centers and logistics systems, should be a
priority to comply with these new standards.

Moreover, this study reveals that SMEs and resource-
dependent firms face particularly significant challenges due to
limited resources for investing in energy-efficient technologies.
To mitigate this, policymakers should introduce targeted support
measures, such as energy efficiency grants or subsidies covering a
significant portion of the costs for upgrading to efficient
equipment. Partnering with technology providers to offer
discounts on energy-efficient upgrades could further assist these
firms. SMEs and resource-dependent firms should actively seek
out these opportunities and consider forming alliances to share
resources, enabling them to negotiate better terms for purchasing
and implementing energy-efficient technologies.

Finally, we recommend the creation of a “green digitalization”
certification program to encourage firms to focus on energy
efficiency during their digital transformation. This certification
would recognize companies that achieve substantial energy
savings, offering them a competitive edge in the market.
Policymakers could work with industry associations to create
this program, providing benefits such as reduced regulatory
burdens, priority in public contracts, or enhanced marketing
opportunities. Firms should aim to earn this certification by
planning their digital transformation efforts with a strong
emphasis on energy efficiency, thereby improving their perfor-
mance while also gaining market recognition.

Data availability
All data generated or analyzed during this study are available
upon request.
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