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BLS-QLSTM: a novel hybrid quantum neural
network for stock index forecasting
Liyun Su 1✉, Dan Li1 & Dongyang Qiu2

With the rapid development of investment markets and the diversification of investment

products, accurate prediction of stock price trends is particularly important for investors and

researchers. The complexity of the stock market and the nonlinear characteristics of the data

make it difficult for traditional prediction models to meet the demand for high-precision

predictions. Although some existing machine learning methods and deep learning models

perform well in certain cases, they still face limitations in handling high-dimensional data and

time dependencies. To overcome these problems, we propose a novel hybrid quantum neural

network model, BLS-QLSTM, which combines broad learning system (BLS) and quantum long

short-term memory (QLSTM) network for chaotic time series prediction. Initially, the Cao

method and mutual information approach are employed to determine the embedding

dimensions and time delays, facilitating the reconstruction of the phase space of the original

time series. Subsequently, BLS is introduced to enhance the feature representation of the

data, while the gating structures within the long short-term memory (LSTM) network are

replaced by variational quantum circuits (VQCs) to form QLSTM, thereby further improving

prediction accuracy. BLS-QLSTM is a generalized prediction framework, which can be used to

predict the price fluctuations of stocks based on historical data. Extensive experiments on

three real stock indices—CSI 300, SSEC, and CSI 500—demonstrate that the BLS-QLSTM

model outperforms traditional LSTM and QLSTM models in six performance evaluation

metrics: the root mean square error (RMSE), mean absolute error (MAE), mean absolute

percentage error (MAPE), coefficient of determination (R2), precision, and accuracy. The

results validate the effectiveness and superiority of the BLS-QLSTM model in handling chaotic

financial time series data and predicting stock index price trends.

https://doi.org/10.1057/s41599-025-05348-z OPEN

1 School of Science, Chongqing University of Technology, Chongqing, China. 2 School of Economics and Finance, Chongqing University of Technology,
Chongqing, China. ✉email: cloudhopping@163.com

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2025) 12:1011 | https://doi.org/10.1057/s41599-025-05348-z 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05348-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05348-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05348-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05348-z&domain=pdf
http://orcid.org/0000-0001-7150-2161
http://orcid.org/0000-0001-7150-2161
http://orcid.org/0000-0001-7150-2161
http://orcid.org/0000-0001-7150-2161
http://orcid.org/0000-0001-7150-2161
mailto:cloudhopping@163.com


Introduction

Amid the increasing globalization and financialization of
the world economy, capital markets have emerged as key
drivers of global economic growth (Chen et al., 2022). The

stock market, as a crucial component of capital markets, is widely
regarded as a barometer of a nation’s economic health (Xie et al.,
2021). It plays an indispensable role in facilitating capital for-
mation, optimizing resource allocation, serving the real economy,
and supporting national development (An et al., 2024). Stock
prices are a direct reflection of market trends and have a pro-
found impact on investor decision-making and government
macroeconomic regulation (Li & Zhao, 2022; Shen et al., 2011).
Therefore, developing effective stock price prediction methods is
not only a significant research topic in academia but also an
urgent need in the financial industry (Kumar et al., 2024).

The price fluctuation of stock market is affected by various
external factors, such as the macroeconomic environment, cor-
porate financial performance, and international political events,
leading to highly nonlinear and chaotic characteristics in its
behavior (Chen et al., 2024). Traditional statistical models, such
as autoregressive moving average (ARMA), autoregressive inte-
grated moving average (ARIMA), generalized autoregressive
conditional heteroskedasticity (GARCH), and their variants, have
demonstrated certain effectiveness in addressing specific financial
time series problems. However, these models typically rely on
assumptions such as data stationarity and linearity (Zhao et al.,
2023; Lin, 2018; Mondal et al., 2014). In practice, stock market
data often deviate from these assumptions, thereby limiting the
applicability and performance of traditional models in complex
market environments.

In recent years, machine learning methods have become
mainstream tools for financial time series forecasting due to their
ability to learn patterns from data without requiring strict sta-
tistical assumptions. Compared with traditional statistical
approaches, machine learning exhibits superior capability in
handling nonlinear data, achieving significant advancements in
prediction accuracy. However, it is worth noting that these
methods still face limitations in capturing long-term dependen-
cies and local information within time series data, particularly
when dealing with highly complex temporal datasets (Sharma
et al., 2023; Zhou et al., 2019).

To address these challenges, researchers have further advanced
deep learning techniques, particularly the long short-term
memory (LSTM) network, an improved version of the recurrent
neural network (RNN). LSTM has been widely applied in stock
market prediction due to its powerful time series modeling cap-
abilities, effectively capturing long-term dependencies, and has
become a common approach in financial time series forecasting
(Fischer & Krauss, 2018). However, despite its outstanding per-
formance in handling temporal data, LSTM still faces challenges
in extracting local feature information, mitigating data noise, and
optimizing model generalization. To overcome these limitations,
this study proposes a novel hybrid model, BLS-QLSTM, which
combines the strengths of the broad learning system (BLS) and
quantum neural networks to address the shortcomings of pre-
vious models, thereby significantly enhancing the accuracy of
stock price predictions.

Inspired by chaotic time series analysis, three stock indices, CSI
300, SSEC and CSI 500, were selected as the experimental data.
The Cao method and mutual information method were first
employed to determine the embedding dimension and time delay
of the original time series data (Zhang Shu-Qing et al., 2010),
followed by phase space reconstruction. The data features were
then enhanced using BLS to build a quantum long short-term
memory model (QLSTM) for prediction. The effectiveness of the
proposed model was validated using the above three real stock

indices. The main contributions of our work can be summarized
as follows:

(1) A novel quantum neural network model, called BLS-
QLSTM, is proposed for predicting financial time series
data. The introduction of BLS and variational quantum
circuits (VQCs) significantly improves predictive
performance.

(2) The BLS-QLSTM model utilizes the cascade structure of
BLS to enhance feature representation. Additionally, it
exploits the advantages of quantum properties and
quantum computation by artfully integrating VQCs with
LSTM, effectively mitigating the impact of data noise and
rapidly extracting local temporal features.

(3) The BLS-QLSTM model is well-suited for chaotic financial
time series data prediction. Empirical analysis on CSI 300,
SSEC, and CSI 500 stock indices demonstrated excellent
results.

The remainder of the paper is structured as follows: “Literature
review reviews” the latest research on related methods. “Pre-
liminaries” presents the background theory, providing a brief
explanation of the key techniques used in the model. “Framework
of BLS-QLSTM modeling” describes the overall framework and
computational process of the proposed innovative model.
“Experimental results and analysis” discusses the empirical ana-
lysis results based on three real stock index datasets. Finally,
“Conclusion” concludes the study.

Literature review
Stock price data is inherently high-noise, nonlinear, dynamic, and
complex chaotic time series data, making stock price prediction a
challenging task. In recent years, researchers have proposed
various methods to address this issue, which can be broadly
categorized into three types: statistical methods, machine learning
methods, and deep learning methods.

Traditional statistical methods rely on systematically observing
historical data, performing curve fitting, parameter estimation,
and residual analysis to construct models and predict future
trends. The ARIMA model, which integrates the advantages of
ARMA, transforms non-stationary time series into stationary
ones, making it suitable for short-term time series forecasting.
Majumder et al. (2019) applied feedforward neural networks,
linear models, the Holt-Winter method, and ARIMA to predict
the stock index of Bangladesh, where ARIMA demonstrated the
highest prediction accuracy. However, the general ARIMA model
assumes residuals to be white noise, neglecting the volatility
clustering characteristic, leading to the adoption of GARCH
model for non-stationary time series forecasting. Lu et al. (2023)
applied the GARCH type model to the Chinese nickel industry
index, successfully predicting the volatility patterns of this stock
index, providing valuable insights for risk management in the
nickel market. Nonetheless, some researchers argue that such
statistical models rely on specific assumptions and offer limited
prediction accuracy, making them unsuitable for modeling and
analyzing the complex, non-stationary nature of stock
market data.

Machine learning methods exhibit certain advantages in
handling nonlinear and non-stationary data, demonstrating
strong performance in various prediction tasks, including weather
forecasting (Yang et al., 2024), traffic flow prediction (Luo et al.,
2023), stock price prediction, and energy prediction (Wang et al.,
2023). In stock price prediction, various machine learning algo-
rithms have been applied to real stock indices. Madge and Bhatt
(2015) attempted to use support vector machine (SVM) to predict
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the prices of 34 technology stocks. Their study indicated that
while the accuracy of short-term predictions was very low, the
long-term prediction accuracy of SVM ranged between 55% and
60%. Parray et al. (2020) converted data from the National Stock
Exchange of India’s 50-stock index into a time-series supervised
learning format and applied algorithms such as SVM, Perceptron,
and Logistic Regression to predict price trends. Compared to
trend predictions using unprocessed data, this approach
improved prediction accuracy by an average of 2%. Relevant
research has focused on enhancing model performance through
optimized feature engineering. Nahil and Lyhyaoui (2018)
introduced kernel principal component analysis (KPCA) to
reduce feature dimensions, integrating it with support vector
regression (SVR) to improve stock price prediction. Their results
showed that the SVR model with feature extraction using KPCA
outperformed SVR model without feature extraction in terms of
generalization performance. Yun et al. (2021) proposed using
genetic algorithm (GA) as a data optimizer to select optimal
features and expand the feature set, with the extreme gradient
boosting (XGBoost) model serving as the primary model for stock
price prediction. Statistics indicate that multiple techniques such
as principal component analysis (PCA) (Chen & Hao, 2018),
wavelet transform (WT) (Kao et al., 2013), and particle swarm
optimization (PSO) (Rustam & Kintandani, 2019) have also been
employed in preprocessing to form integrated models, enhancing
the predictive performance of the original machine learning
models.

In current research across various fields, employing deep
learning models as benchmark methods has become a prevailing
trend. Deep learning, a branch of machine learning, has achieved
groundbreaking results in numerous tasks (Janiesch et al., 2021).
It can identify hidden nonlinear relationships and extract relevant
features from complex data without relying on manual processing
or statistical assumptions, enabling efficient performance. Con-
sequently, convolutional neural network (CNN), RNN, and
LSTM have been widely applied to stock market prediction. CNN
employs learnable convolutional layers and downsampling layers
as core feature extractors, automatically learning effective feature
representations during the training process. Persio and Honchar
(2016) used a CNN which took a one-dimensional input for
making predictions only based on the historical closing prices
while ignoring other possible influencing variables. Ma and Yan
(2022) applied CNN to predict stock price changes in the Chinese
stock market, and the inclusion of social media sentiment vari-
ables effectively improved the model prediction accuracy. How-
ever, CNN is unable to use possible correlations between stock
price data as a source of predictive information (Hoseinzade &
Haratizadeh, 2019). In contrast, RNN and LSTM exhibit greater
flexibility in terms of input-output relationships. Their network
architectures have the ability to iteratively process time-series
data in sequence, allowing them to learn and understand
sequential patterns effectively. Rizvi and Khalid (2024) compared
various models and concluded that LSTM is the most accurate
and reliable model for stock price prediction. Other studies
similarly indicate that the improved LSTM model, through the
use of memory cells and gates, can effectively learn long-term
dependencies. The model largely overcome the challenges of
vanishing or exploding gradients, exhibiting superior perfor-
mance in chaotic time series prediction (Md et al., 2023; Bhandari
et al., 2022; Chhajer et al., 2022). However, when dealing with
complex time series data, increasing the depth of LSTM network
is not always an effective strategy. LSTM still faces challenges in
extracting local feature information, addressing data noise, and
optimizing model generalization. Jailani et al. (2023) argued that
the capability of a single benchmark model is limited. Although
hybrid LSTM models require longer training times, they can

achieve higher prediction accuracy. The combination of intelli-
gent algorithms or other deep learning networks with LSTM to
create hybrid models has become increasingly common, yielding
significant improvements (Cai et al., 2024; Yuan et al., 2023).

Quantum computing, leveraging the properties of quantum
state superposition and entanglement, possesses powerful parallel
computing capabilities. Current literature suggests that research
on quantum models primarily focuses on three paradigms: pure
quantum machine learning, quantum-inspired machine learning,
and hybrid classical-quantum machine learning based on VQCs
(Sergioli et al., 2019; Havlíček et al., 2019; Rebentrost et al., 2014).
Among these, the use of VQCs to enhance neural networks has
emerged as the mainstream development approach. Most quan-
tum neural network models are applied in the field of crypto-
graphy (Peral-García et al., 2024; Wang et al., 2023), with only a
few utilized for time series prediction. Chen et al. (2020) pio-
neered the QLSTM architecture, skillfully integrating VQCs with
LSTM. This approach utilizes the exponentially growing dimen-
sionality of Hilbert space for data representation and computa-
tion, showcasing the potential of hybrid quantum-LSTM models
in time series forecasting. Khan et al. (2024) applied a hybrid
quantum-LSTM model to forecast solar power generation, while
Li et al. (2018) proposed a quantum weighted long short-term
memory neural network (QWLSTMNN) for predicting the
degradation trends of rotating machinery. Experimental results
consistently demonstrate that neural network model incorporat-
ing VQCs address certain limitations of classical LSTM model,
achieving faster convergence, improved prediction accuracy, and
enhanced computational efficiency.

Additionally, BLS with its horizontal expansion capability,
effectively enhances feature representation and offers advantages
in efficient modeling. BLS has been widely applied across various
fields, including image classification (Liu et al., 2021), feature
representation (Tang et al., 2021), and fault diagnosis (Fu et al.,
2022; Wang et al., 2019). Integrating BLS with other networks
results in BLS variants, further improving its efficiency (Zhang
et al., 2022). For chaotic time series prediction, Xiong et al. (2024)
proposed a novel model based on BLS, which employs a cascade
network with frozen weights to rapidly extract features from
reconstructed data, thereby maximizing the preservation of
chaotic properties and nonlinear relationships. Su et al. (2023)
developed a new model framework, which combines the cascade
structure of BLS with the attention mechanism of Transformers.
This integration enhances feature representation for time series
data, achieving superior prediction performance. Some
researchers have also applied this approach to stock price pre-
diction. Li et al. (2022) utilized stock price data filtered by the
pearson correlation coefficient (PCC) for BLS training to enable
rapid extraction of information features. Compared to various
machine learning methods, the models built using BLS demon-
strated superior performance and fitting capability.

Preliminaries
Phase space reconstruction. Stock data exhibits characteristics of
nonlinearity, non-stationarity and high noise, which have been
confirmed to be a time series with chaotic properties. The theory
of phase space reconstruction (PSR) illustrates the inter-
dependence among the evolution of each component of the sys-
tem state. The method is based on Takens’ embedding theorem,
which states that to ensure the phase space in which the attractor
is embedded must reach m≥ 2d þ 1 if the original attractor
resides in an a d-dimensional space (Takens, 1981). It can be
further explained that when mapping a one-dimensional chaotic
time series from a real-world problem to a higher-dimensional
space, the dimensionality of the higher-dimensional space must
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be greater than or equal to 3 in order to effectively represent the
original dynamical system information. For a certain observed
time series fxðtÞ; t ¼ 1; 2; � � � ;Ng, once the embedding dimension
m and time delay τ are determined, the phase point sequence after
phase space reconstruction is given as Eq. (1).

XðtÞ ¼ ðxðtÞ; xðt � τÞ; � � � ; xðt � ðm� 1ÞτÞÞ ð1Þ
Where ti ¼ N1;N1 þ 1; � � � ;N ; N1 ¼ 1þ ðm� 1Þτ. This recon-
structed time series can be further defined as {X, Y}, as shown in
Eqs. (2) and (3).

X ¼

xðt1Þ xðt1 � τÞ � � � xðt1 � ðm� 1ÞτÞ
xðt2Þ xðt2 � τÞ � � � xðt2 � ðm� 1ÞτÞ
..
. ..

. ..
. ..

.

xðtpÞ xðtp � τÞ � � � xðtp � ðm� 1ÞτÞ

2
666664

3
777775 ð2Þ

Y ¼ ½ xðt1 þ 1Þ; xðt2 þ 1Þ; � � � ; xðtp þ 1Þ �T ð3Þ
Where the embedding dimension m and time delay τ, calculated
using the Cao method and the mutual information method, p
correspond to the number of samples. In the reconstructed phase
space trajectory, each phase point exists a smooth mapping
F : Rm ! R, denoted as Y ¼ F ðXÞ, which can then be
approximated by building a deep learning model to obtain the
mapping F .

Broad learning system. The broad learning system, an
enhancement of the random vector functional-link neural net-
work (RVFLNN) (Pao et al., 1994), is an incremental learning
method that does not require a deep architecture. The structure of
BLS is shown in Fig. 1. BLS exhibits strong generalization cap-
abilities and allows for quick reconfiguration of the network
without requiring retraining if expansion is needed (Han et al.,
2021). Moreover, its computational speed surpasses that of deep
networks. For datasets with limited features and stringent real-
time prediction demands, BLS can effectively enhance prediction
accuracy through transversal incremental expansion, which
enhances feature expression. The specific operation process of
BLS is as follows.

In the initial step, input data XðX 2 Rp ´mÞ to n mapped node
groups (each group has q mapped features), then the mapped
feature of the i-th group of mapped nodes is defined as Eq. (4).

Zi ¼ ϕðXWei þ βeiÞ; i ¼ 1; � � � ; n ð4Þ
Where Wei and βei represent randomly generated weights and
bias, respectively. ϕ(*) is the activation function of the mapped
layer.

In the subsequent step, these mapped features Z1;Z2; � � � ;Zn
are multiplied by a set of random weights plus the bias and
processed with the activation function to create enhanced nodes,
denoted as H1;H2; � � � ;Hm, as shown in Eq. (5).

Hj ¼ ξðZiWhj þ βhjÞ; i ¼ 1; � � � ; n; j ¼ 1; � � � ;m ð5Þ
Where Whj and βhj represent randomly generated weights and
bias, respectively. ξð*Þ is the activation function of the
enhanced layer.

In the final step, Z1;Z2; � � � ;Zn merge with H1;H2; � � � ;Hm to
obtain the enhanced data features, denoted as Eq. (6).

A ¼ ½ZjH� ¼ ½Z1; � � � ;ZnjH1; � � � ;Hm� ð6Þ
Meanwhile, the output data of BLS is Y ¼ AWout , where Wout

is the weight matrix that needs to be optimized and can be
computed through the pseudoinverse.

Variational quantum circuit. Variational quantum circuit
(VQC), also known as parameterized quantum circuit, is a
kind of quantum gate circuit with free parameters, which is
the main part of the quantum computation model. The main
process of quantum computing involves using a series of
quantum gates to modify the state of qubits (quantum bits, the
fundamental units of quantum information), followed by
measuring the computation results at the end of the circuit.
The structure of the VQC is shown in Fig. 2, which consists of
three parts: the encoding layer, the variational layer, and the
measurement layer.

(1) Encoding layer: classical data is encoded into quantum
states and loaded into quantum circuit by changing
the states in which the qubits are by H gate, Ry gate, and
Rz gate. This study utilizes angle encoding, which

X

Y

Fig. 1 The structure of BLS. BLS is an efficient incremental learning system that does not require deep structures. It initially maps input data to the mapping
layer, followed by the augmentation layer. The output layer is connected to both the augmentation and mapping layers.
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demonstrates superior performance compared to base-
state encoding and amplitude encoding. Moreover, the
method of angle encoding is simpler. Initially, the H gate
transforms the initialized quantum state into an
entangled state. Subsequently, classical information
x!¼ ðx1; x2; � � � ; xN ÞT is applied to the parameters of
the rotation gate Ry and Rz , ultimately converted into a
quantum state j x!i ¼ �n

i RðarctanðθÞÞj0ni, where θ ¼ xi
in the rotating gate Ry and θ ¼ x2i in the Rz .

(2) Variational layer: using multiple CNOT gates and R gates,
these qubits are entangled and rotated to the target state.
The parameters of the VQC optimization update are
derived from the 3 rotation angles α, β, and γ of the R gate
of the variational layer along the x, y, and z axes,
respectively, which are iteratively optimized by the gradient
descent method.

(3) Measurement layer: set at the end of VQC, its main purpose
is to measure the expectation value of each qubit by Pauli Z
to realize the transformation of quantum information into
classical information.

Long short-term memory. RNN is known to suffer from the
gradient vanishing or exploding problem and is limited in its
capacity to store long-term effective information. To address
these issues, Hochreiter and Schmidhuber jointly proposed LSTM
in 1997. LSTM builds upon the foundational structure of RNN by
incorporating a gating mechanism that controls the information
transmission path within the network, thereby enabling the
selective forgetting or retention of information (Hochreiter &
Schmidhuber, 1997). This functionality has made LSTM exten-
sively applicable in various fields such as natural language pro-
cessing and time series prediction. In the forward transfer
learning process of LSTM, the architecture comprises four crucial
components: the forget gate, input gate, output gate, and the cell
state, as depicted in Fig. 3. The specific transfer formulas are
shown in Eqs. (7)–(12).

f t ¼ σðWf � ½ht�1; xt � þ bf Þ ð7Þ

Where σ is the activation function; Wf is the weight matrix; bf is
the bias vector; f t represents the output of the forgetting gate,
whose main purpose is to control whether the state of the
memory unit at the previous moment needs to be forgotten or

not. The output range is [0,1].

it ¼ σðWi � ½ht�1; xt � þ biÞ ð8Þ

~Ct ¼ tanh ðWc � ½ht�1; xt � þ bcÞ ð9Þ

Where Wi represents the input matrix; Wc represents the state
matrix; it represents the input gate output, ~Ct represents the
temporary state of the memory cell at the current moment. The
input gate portion is mainly used to control the extent to which
new information is updated by the memory cell.

Ct ¼ f t � Ct�1 þ it � ~Ct ð10Þ

Where Ct is the state output of the current memory cell, which is
the superposition of the information of the previous moment and
the new information of the current moment.

Ot ¼ σðWo � ½ht�1; xt� þ boÞ ð11Þ

ht ¼ Ot � tanhðCtÞ ð12Þ

Where Wo is the output matrix, bo is the bias vector and ht is the
hidden state at the current time step.

Encoding Layer Variational Layer Measurement 
Layer

Fig. 2 The structure of VQC. VQC is a kind of quantum gate circuit with free parameters. It consists of three main components: the encoding layer, the
variational layer, and the measurement layer.

Fig. 3 The structure of LSTM. LSTM has a chain-like structure with a
repeating module. This module consists of four interacting neural network
layers, designed in a very special way to manage and maintain long-term
dependencies in the data.
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Framework of BLS-QLSTM modeling
Motivation for modeling. Chaotic time series are different from
general time series. In order to recover their original dynamical
system, phase space reconstruction is required to map them into a
high-dimensional space. However, traditional deep learning
models might encounter the curse of dimensionality with
increasing data dimensions. In contrast, the capabilities of BLS
and VQC can effectively mitigate this issue and enhance model
performance.

(1) Enhanced feature representation by BLS: BLS employs a
simple cascade structure that facilitates information reuse
and enriches feature representation. The approach avoids
the complex residual connections typical in deep learning
models while preserving the integrity of the original
information.

(2) Quantum State Representation and Quantum Parallel
Computing: VQC introduces quantum state representation
of the original data, which is instrumental in capturing the
microstate of chaotic system. Moreover, VQC leverages the
inherent parallelism of quantum computing, enabling more
efficient handling of high-dimensional data. It achieves
parallel computing through quantum superposition, sig-
nificantly enhancing the learning capabilities of the model.

Architecture of the QLSTM model. QLSTM is an innovative
model that integrates VQCs with classical LSTM network. The
QLSTM architecture, as proposed by Chen et al., which comprises
six VQC blocks. Experimental results had demonstrated that the
hybrid quantum-classical LSTM model not only learns faster but
also achieves more stable convergence (Chen et al., 2020). Building
on this foundation, Cao et al. (2023) introduced a linear-enhanced
quantum LSTM model (L-QLSTM), which added a shared linear
embedding layer prior to each VQC within the standard QLSTM
framework. This addition enhanced the quantum benefits,
improving model learning performance and the accuracy of car-
bon price predictions. Numerous studies have proved that the
introduction of VQCs is beneficial to the performance of classical
neural networks. In the study, four VQCs are strategically
employed to replace the gates in the recurrent unit of the LSTM
network, instead of using the traditional weight matrix. The
modification facilitates the construction of a new QLSTM model,
whose architecture is illustrated in Fig. 4. The specific operational

formula for the QLSTM is provided in Eq. (13).

f t ¼ σðVQC1 � ½ht�1; xt � þ bf Þ
it ¼ σðVQC2 � ½ht�1; xt� þ biÞ
~Ct ¼ tanhðVQC3 � ½ht�1; xt � þ bcÞ
Ct ¼ f t � Ct�1 þ it � ~llt
Ot ¼ σðVQC4 � ½ht�1; xt � þ boÞ
ht ¼ Ot � tanhðCtÞ

8>>>>>>>><
>>>>>>>>:

ð13Þ

Architecture of the BLS-QLSTM model. Based on the preceding
analysis, it is evident that the cascade structure of BLS enhances
the feature representation of time series data, while VQC leverage
the properties of quantum superposition and entanglement to
enhance the learning capabilities of the model through parallel
computing. Theoretically, it is feasible to integrate these two
approaches to develop a BLS-QLSTM model for predicting
chaotic time series. This model would combine the strengths of
both components to significantly improve prediction accuracy.

Consequently, this paper proposed a hybrid quantum neural
network model, the BLS-QLSTMmodel, whose framework is depicted
in Fig. 5. The model is structured into three primary components:
first, the phase space reconstruction module, which reconstructs the
phase space of chaotic time series to restore the original dynamical
system and convert it into predictable data; second, the broad learning
module, where the acquired data is expanded into high-dimensional
space through the cascade structure of BLS via random mapping; and
third, the VQCs incorporation module, namely, it is the QLSTM
module that uses the VQCs to replace the LSTM network gates and
memory units in the loop, instead of the original weight matrix,
QLSTM then predicts the input data. The operational workflow of the
BLS-QLSTM model is detailed as follows:

Step 1: Phase Space Reconstruction (PSR). For the input original
one-dimensional time series data xt , phase space reconstruction is
performed to obtain multidimensional data. Assuming embed-
ding dimension m and time delay τ, the phase space recon-
structed data Xt is defined as Eq. (14).

Xt ¼ PSRðxtÞ ¼ ½xt ; xt�τ ; � � � ; xt�ðm�1Þτ � ð14Þ

Step 2: Broad Learning System (BLS).

(1) Mapped node: define the output Hi of the mapped node i as
Eq. (15).

Hi ¼ ϕðWiXt þ biÞ ð15Þ

Where Wi and bi are the weight and bias of the i-th
mapped node, respectively. ϕð*Þ is the activation function.

(2) Enhanced node: define the output Ej of the enhanced node j
as Eq. (16).

Ej ¼ ξðVjH þ cjÞ ð16Þ

Where Vj and cj are the weight and bias of the jth mapped
node, respectively. ξð*Þ is the activation function.

(3) Feature merging: merge the outputs of all mapped and
enhanced nodes to obtain the output F of BLS as shown in
Eq. (17).

F ¼ ½H1; � � � ;HnjE1; � � � ; Em� ð17Þ

Step 3: Data Fusion. Splicing and fusing the phase space recon-
structed data Xt with the output of BLS F to get the

Fig. 4 The architecture of proposed QLSTM. The QLSTM model integrates
Variational Quantum Circuits (VQC) with classical LSTM. In this model,
VQCs replace the traditional gates and cell state operations of the LSTM,
enhancing the network’s performance and stability.
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multidimensional features to Zt in Eq. (18).

Zt ¼ ½FjXt � ð18Þ
Step 4: QLSTM network prediction. Process the final input data Zt
using QLSTM to obtain the predicted output yt in Eq. (19).

yt ¼ QLSTMðZt; ht�1;Ct�1Þ ð19Þ
Where ht�1 and Ct�1 represent the QLSTM hidden state and cell
state at the previous moment, respectively.

Experimental results and analysis
Data sources. The research objects selected for this paper are
three representative stock indices in China: the CSI 300 Index
(CSI 300, Index code: 000300), the SSE Composite Index (SSEC,
Index code: 000001), and the CSI Smallcap 500 Index (CSI 500,
Index Code: 000905), whose time series data are the daily closing
prices from January 4, 2013 to December 29, 2023, excluding
holidays. Each index has a total of 2,672 data points, which were
retrieved from the official Investing website (https://cn.investing.
com). The closing price data for these indices are illustrated in
Fig. 6, while the statistical description are presented in Table 1.

Data processing
Phase space reconstruction of data. The closing price data of the
three selected stock indices, CSI 300, SSEC, and CSI 500, have no
outliers or missing values. Initially, we employ the Cao method
and mutual information method to ascertain the embedding

dimension m and time delay τ for each stock index, which are the
key parameters for the phase space reconstruction of the data.
After calculation, the time delay of the closing price data of the
CSI 300 index is τ ¼ 16 and the embedding dimension is m ¼ 7;
the time delay of the closing price data of the SSEC index is
τ ¼ 20 and the embedding dimension is m ¼ 6; the time delay of
the closing price data of the CSI 500 index is τ ¼ 25 and the
embedding dimension is m ¼ 8. The time delay τ and embedding
dimension m of each stock index data are known, the following
phase space reconstruction is performed to recover the original
dynamical system information, which helps the short-term pre-
diction of stock index data.

As outlined in “Phase Space Reconstruction”, phase space
reconstruction involves converting original one-dimensional time
series data into a multidimensional state space. This transformation
enables a more profound comprehension of the dynamical
characteristics and underlying patterns of the data. After phase
space reconstruction, the one-dimensional closing price data of CSI
300 index is reconstructed into a two-dimensional matrix data of
2576 × 7; the one-dimensional closing price data of SSEC index is
reconstructed into a two-dimensional matrix data of 2572 × 6; and
the one-dimensional closing price data of CSI 500 index is
reconstructed into a two-dimensional matrix data of 2497 × 8.

Broad learning of data. Instead of training layer by layer like a
deep network structure, BLS uses a cascade structure to quickly
learn and expand the feature data. The parameters within the BLS
used in this paper are set as follows: the mapped node in the

Enhanced Layer

Concat Concat

Concat

Mapped Layer

Phase Space Reconstruction

Output

Input Data

Fig. 5 The framework of proposed BLS-QLSTM. The BLS-QLSTM model is an innovative composite prediction framework, consisting of three main
components: phase space reconstruction, broad learning, and VQCs integration.
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mapped layer is map_num=3, the mapped feature is map_fea_-
num=2, the enhanced node is enh_num=1 and the enhanced
feature is enh_fea_num=10. The feature data obtained from the
phase space reconstruction of each stock index is further pro-
cessed by broad learning as a way to expand the dimension of the
features. Finally, the feature data of each stock index is expanded
to 16 dimensions.

Data fusion and standardization. In the further analysis process,
the feature data derived from phase space reconstruction is
concatenated and integrated with the expanded feature data from
broad learning. The approach horizontally combines the feature
sets obtained from both methods. This way not only increases the
dimensionality of the data but also merges information extracted
from diverse perspectives, enhancing the expressiveness and
accuracy of the final model.

To ensure equitable comparisons among different stock indices
and to augment the performance of subsequent models, it is
imperative to standardize the fused data. Standardization, a
pivotal data preprocessing technique, rescales the data values to
achieve a mean of 0 and a standard deviation of 1. This process
helps to eliminate the differences in the magnitude of the data,
making the learning process more efficient during model training.
The standardized formula is Eq. (20).

Xstd ¼
X � μ

σ
ð20Þ

Where X represents the fused stock index data, Xstd denotes the
standardized data. μ and σ are the mean and standard deviation of
the original data, respectively.

Furthermore, in order to revert the data to its original scale, the
output predictions must also undergo inverse standardization, as

depicted in Eq. (21).

by ¼ Xstd � σ þ μ ð21Þ
Where ŷ indicates the predicted value post-output and inverse
standardization by the QLSTM neural network.

Experimental environment and parameter settings. The pro-
cessor of the experimental environment in this paper is 12th Gen
Intel(R) Core(TM) i5-12500H, the operating system is Windows
11 (64-bit), the deep learning development environment is
Pytorch 2.0.1+cpu, and the Python version is 3.10.

In order to verify the predictive ability of the constructed BLS-
QLSTM model, this paper selects three real stock index data of
the CSI 300 index, SSEC index, and CSI 500 index for
experiments and compares the errors with the QLSTM model
without introducing BLS as well as the single model LSTM. Due
to the chaotic nature of stock index data, the original one-
dimensional closing price data must be input after phase space
reconstruction. The key parameters in this phase of phase space
reconstruction are the embedding dimension m and the time

Table 1 Statistical description of the closing price data for stock indices.

Stock index name Data volume Mean value Standard deviation Minimum value Maximum value

CSI 300 2672 3678.94 817.08 2086.97 5807.72
SSEC 2672 3031.77 506.28 1950.01 5166.35
CSI 500 2672 5747.65 1209.59 3219.13 11,545.89

Table 2 Main parameter settings of PSR.

Method Parameter
name

Parameter
meaning

Stock
index

Numerical
value

PSR m embedding
dimension

CSI 300 7
SSEC 6
CSI 500 8

τ time delay CSI 300 16
SSEC 20
CSI 500 25

Fig. 6 Closing price data for stock indices. A graphical representation of the original data for three stock indices: CSI 300 Index, SSEC Index, and CSI 500
Index.
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delay τ, which can be determined by the Cao method and the
mutual information method, respectively, as shown in Table 2.
The parameter settings for BLS are shown in Table 3.

Given the modest dataset size, comprising only 2672 data
points per stock index and the relatively low task complexity, thus
a single-layer QLSTM was employed. Through continuous trial
and error experiments and analyses, the data batch size is 1, the
number of iterations is 20, the learning rate is 0.0004. The
number of layers of LSTM is also 1 with 16 neurons in a single
layer, and the learning rate is 0.00007. All models choose the
Adam optimization algorithm for weight and bias adjustments,
and use MSE as the loss function. The data partitioning strategy
allocates 75% of the samples to training and the remaining 25% to
testing.

In the stock index prediction experiment, the labels of up or
down were generated based on the percentage change in the daily
closing price, setting a threshold of 1%. If the daily price change
exceeds 1%, it is labeled as “up”; if the decrease exceeds 1%, it is
labeled as “down”; otherwise, it is considered stable. To
concentrate on the capacity of models to predict significant
movements in different stock indices, the “stable” data points
were filtered out, ensuring that the analysis centered on clear
upward and downward trends in the indices. Subsequently, the
predicted daily closing prices of the model were compared with
the actual prices from the previous day to generate up or down
prediction labels, and these predictions were analyzed in
comparison with the actual outcomes.

Evaluation indicators. In order to explore the accuracy of
models, the root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and coefficient
of determination (R2) are selected as prediction evaluation indices
in this paper to evaluate and compare the predictive effect of
models. Additionally, two categorical evaluation metrics, preci-
sion and accuracy, were introduced to measure the performance
of models in predicting the direction of stock price movements.

1. The formulas for the selected forecasting metrics are as
follows as Eqs. (22)–(25).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
ðŷi � yiÞ2

r
ð22Þ

MAE ¼ 1
n
∑
n

i¼1
jbyi � yij ð23Þ

MAPE ¼ 1
n
∑
n

i¼1
j yi � byi

yi
j ð24Þ

R2 ¼ 1�
∑
n

i¼1
ð yi � byi Þ2

∑
n

i¼1
ð yi � yi Þ2

ð25Þ

In the above formulas, byi is the predicted value, yi is the true
value, yi is the sample mean, n is the number of samples. Among
them, RMSE, MAE, MAPE measure the deviation between the

predicted value and the real value. Lower values of these metrics
indicate reduced prediction errors, thereby reflecting greater
accuracy in the results. The coefficient of determination, R2, when
approaching 1, indicates a higher degree of model fit, signifying
that the predicted values closely align with the real observations,
thereby denoting superior model performance.

2. The formulas for the selected classification indicators are
shown in Eqs. (26)–(27).

Precision ¼ TP
TP þ FP

ð26Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð27Þ

In the aforementioned formulas, TP represents true positives,
referring to the number of samples correctly predicted as positive
by the model; FP denotes false positives, indicating the number of
samples incorrectly predicted as positive by the model; TN stands
for true negatives, representing the number of samples correctly
predicted as negative; and FN signifies false negatives, referring to
the number of samples incorrectly predicted as negative.
Precision measures the proportion of true positives among all
samples predicted as positive, with a higher value indicating
greater reliability of the model in predicting positive cases.
Accuracy, on the other hand, assesses the overall predictive
accuracy of the model, defined as the proportion of correctly
predicted samples out of the total number of samples, with a
higher value indicating better overall model performance.

BLS-QLSTM, QLSTM and LSTM comparison experiments. In
this section, we conduct experimental comparisons using data
from three major stock indices—CSI 300, SSEC, and CSI 500—to
thoroughly analyze the predictive performance of three models:
LSTM, QLSTM, and BLS-QLSTM. The experiments are primarily
evaluated along two dimensions: one focuses on the analysis of
forecasting evaluation metrics, while the other centers on the
analysis of classification evaluation metrics. Stock index price
forecasting is fundamentally a time series prediction problem,
typically analyzed using forecasting evaluation metrics. However,
in practical applications, investors are concerned not only with
the accuracy of price forecasting but also with the ability of
models to predict market trends. Therefore, we introduce classi-
fication evaluation metrics to comprehensively assess the per-
formance of the proposed model across different stock index
datasets.

Table 3 Main parameter settings of BLS.

Method Parameter name Parameter meaning Numerical value

BLS map_num Number of mapped nodes 3
map_fea_num Number of mapped features 2
enh_num Number of enhanced nodes 1
enh_fea_num Number of enhanced features 10

Table 4 Prediction Evaluation Metrics for CSI 300 Index
Across Different Models.

Model RMSE MAE MAPE R2

LSTM 65.85690 46.68833 0.01256 0.99328
QLSTM 55.13404 37.92015 0.01017 0.99529
BLS-QLSTM 51.64988 37.19272 0.01018 0.99570

Bold values indicate better results than other methods.
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Experimental results of CSI 300 based on various models.
(1) Prediction Evaluation Metrics Results

The BLS-QLSTM model performs best on all four evaluation
metrics selected for forecasting the CSI 300 index (See Table 4).
Compared to the traditional LSTM model, the BLS-QLSTM
achieved a 21.6% reduction in RMSE and demonstrated a 6.3%
improvement over the QLSTM model, underscoring its significant
advantage in accurately capturing market dynamics. The reduction
in MAE further confirms the effectiveness of BLS-QLSTM in
minimizing prediction bias, while its robust performance in MAPE
highlights the precision of model in reflecting stock market
volatility. Additionally, the R2 value increased to 0.99570, indicating
a high degree of fit in modeling the overall trend of the stock index.
The forecasting results of CSI 300 and the overall model
presentation are shown in Fig. 7.

(2) Classification Evaluation Metrics Results
The classification prediction results for the upward and

downward trends of the CSI 300 index demonstrate that the
BLS-QLSTM model achieved the best performance in both
precision and accuracy metrics (See Table 5). Specifically, the
precision of the BLS-QLSTM model reached 0.72505, which is
significantly higher than the 0.52401 of the LSTM model and the
0.53579 of the QLSTM model. This indicates that the BLS-
QLSTM model has superior accuracy in predicting market
uptrends. Additionally, the accuracy of the BLS-QLSTM model
was 0.72865, representing an improvement of 23 percentage
points compared to the 0.49708 of the LSTM model and an
increase of 22 percentage points compared to the 0.51111 of the
QLSTM model. These results suggest that the BLS-QLSTM model

offers greater reliability and stability in overall trend prediction. A
comparison of the confusion matrices for the classification results
of the CSI 300 index is illustrated in Fig. 8.

Experimental results of SSEC based on various models.
(1) Prediction Evaluation Metrics Results

The BLS-QLSTM model continues to maintain its leading
position in the SSEC forecasting analysis (See Table 6), with a
significant reduction in RMSE, being 23.3% lower than that of the
LSTM model and 13.3% lower than that of the QLSTMmodel. This
reduction demonstrates the remarkable ability of the model to
synthesize market information and enhance the quality of forecasts.
The performance of the model on the MAE metric underscores its
robustness in reducing mean errors, while the slight variations in
the MAPE metric remain within a reasonable range, showcasing the
adaptability of the model to specific market conditions. The
improvement in the R2 metric to 0.99344 further validates the
explanatory power of the BLS-QLSTM model and confirms its
utility in market forecasting practice. The forecasting results of
SSEC and the overall model presentation are shown in Fig. 9.

(2) Classification Evaluation Metrics Results
In the classification prediction of the SSEC trend, the

performance of different models is presented in Table 7. It is
evident that the BLS-QLSTM model significantly outperforms the
LSTM and QLSTM models in both precision and accuracy, which
are two critical metrics. Specifically, in the SSEC trend
classification prediction experiment, the BLS-QLSTM model
achieved a precision of 0.82102, compared to 0.55789 and
0.53257 for the LSTM and QLSTM models, respectively.
Additionally, the BLS-QLSTM model also attained an accuracy
of 0.78933, whereas the LSTM and QLSTM models recorded
accuracies of 0.53371 and 0.52809, respectively. These results
indicate that the BLS-QLSTM model offers higher accuracy and
reliability in classifying the SSEC trend, effectively identifying
market changes and reducing the occurrence of misclassifications.
A comparison of the confusion matrices for the classification
results of the SSEC index is shown in Fig. 10.

Experimental results of CSI 500 based on various models.
(1) Prediction Evaluation Metrics Results

Fig. 7 The forecasting results of CSI 300 and the overall model presentation. A graphical representation of the forecasting result of the CSI 300 Index
using three models: LSTM, QLSTM, and BLS-QLSTM.

Table 5 Classification Evaluation Metrics for CSI 300 Index
Across Different Models.

Model Precision Accuracy

LSTM 0.52401 0.49708
QLSTM 0.53579 0.51111
BLS-QLSTM 0.72505 0.72865

Bold values indicate better results than other methods.
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The experimental results of the CSI 500 index highlight the
superiority of the proposed BLS-QLSTM model for complex
financial data processing (See Table 8). Its RMSE decreases by
36.5% compared to the LSTM model and 19.8% compared to the
QLSTM model, this significant reduction not only shows the
absolute advantage of the model in reducing the prediction error,
but also highlights its insight in mastering the chaotic attributes of
the financial market. The significant improvement in MAE and
MAPE further confirms the stability and reliability of the BLS-
QLSTM model in maintaining the prediction accuracy. The
significant improvement in MAE and MAPE further confirms

Fig. 8 CSI 300 Index Confusion Matrix Comparison. Visualization of the confusion matrix comparison for predicting the CSI 300 Index’s up and down
movements based on LSTM, QLSTM, and BLS-QLSTM models. a LSTM Confusion Matrix; b QLSTM Confusion Matrix; c BLS-QLSTM Confusion Matrix.

Table 6 Prediction Evaluation Metrics for SSEC Index Across Different Models.

Model RMSE MAE MAPE R2

LSTM 49.54711 34.24406 0.01104 0.98962
QLSTM 43.80635 28.10384 0.00898 0.99221
BLS-QLSTM 37.99746 27.25398 0.00926 0.99344

Bold values indicate better results than other methods.

Fig. 9 The forecasting results of SSEC and the overall model presentation. A graphical representation of the forecasting result of the SSEC Index using
three models: LSTM, QLSTM, and BLS-QLSTM.

Table 7 Classification Evaluation Metrics for SSEC Index
Across Different Models.

Model Precision Accuracy

LSTM 0.55789 0.53371
QLSTM 0.53257 0.52809
BLS-QLSTM 0.82102 0.78933

Bold values indicate better results than other methods.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-025-05348-z ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2025) 12:1011 | https://doi.org/10.1057/s41599-025-05348-z 11



the stability and reliability of the BLS-QLSTM model in
maintaining forecast accuracy, and the significant improvement
in the R2 of the BLS-QLSTM model to 0.99404 demonstrates the
high ability to capture the intrinsic dynamics of the data. The
forecasting results of CSI 500 and the overall model presentation
are shown in Fig. 11.

(2) Classification Evaluation Metrics Results
In the classification prediction experiment for the CSI 500

Index trend, the BLS-QLSTM model once again demonstrated its
superior performance (See Table 9). From the perspective of two

Fig. 10 SSEC Index Confusion Matrix Comparison. Visualization of the confusion matrix comparison for predicting the SSEC Index’s up and down
movements based on LSTM, QLSTM, and BLS-QLSTM models. a LSTM Confusion Matrix; b QLSTM Confusion Matrix; c BLS-QLSTM Confusion Matrix.

Table 8 Prediction Evaluation Metrics for CSI 500 Index Across Different Models.

Model RMSE MAE MAPE R2

LSTM 131.03905 86.34158 0.01420 0.98548
QLSTM 103.66679 69.62523 0.01162 0.99116
BLS-QLSTM 83.17634 56.26406 0.00945 0.99404

Bold values indicate better results than other methods.

Fig. 11 The forecasting results of CSI 500 and the overall model presentation. A graphical representation of the forecasting result of the CSI 500 Index
using three models: LSTM, QLSTM, and BLS-QLSTM.

Table 9 Classification Evaluation Metrics for CSI 500 Index
Across Different Models.

Model Precision Accuracy

LSTM 0.53047 0.49108
QLSTM 0.55935 0.53200
BLS-QLSTM 0.80079 0.77545

Bold values indicate better results than other methods.
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key classification metrics, precision and accuracy, the BLS-
QLSTM model significantly outperformed the LSTM and QLSTM
models. Specifically, the BLS-QLSTM model achieved a precision
of 0.80079, which is considerably higher than the 0.53047 and
0.55935 recorded by the LSTM and QLSTM models, respectively.
Moreover, the BLS-QLSTM model also surpassed the other two
models in accuracy, reaching 0.77545, showcasing the exceptional
capability of the model in accurately classifying the market trends
of the CSI 500 Index. A comparison of the confusion matrices for
the classification results of the CSI 500 index is shown in Fig. 12.

Conclusion
Developing efficient and accurate stock price prediction models has
long been a central focus in financial research. Previous studies such
as Lin (2018) and Mondal et al. (2014) have indicated that statistical
models such as ARIMA and GARCH possess certain short-term
forecasting capabilities, but they typically rely on assumptions of
linearity and stationarity, limiting their adaptability to chaotic
financial time series. While machine learning methods exhibit
advantages in handling nonlinear relationships, they often fall short
in capturing long-term dependencies within time series data and
show limited modeling capacity for high-dimensional datasets. In
recent years, mainstream studies have increasingly adopted deep
learning models such as LSTM to improve the accuracy of time series
forecasting. However, challenges remain, including insufficient
extraction of local features and weak noise resistance. These limita-
tions suggest that relying solely on a single model is inadequate to
fully exploit the complex intrinsic structure of stock index data.
Accordingly, we attempt to reform the traditional LSTM and propose
a hybrid quantum neural network model, BLS-QLSTM, which
incorporates modular design and technological integration to achieve
multidimensional enhancements in feature extraction, prediction
accuracy, and model robustness.

The BLS-QLSTM model is composed of three main modules: the
phase-space reconstruction module, the BLS module, and the
QLSTM module. The phase-space reconstruction module employs
embedding dimension and time delay techniques to reconstruct
chaotic time series data, extracting latent dynamic features and
enhancing the nonlinear representational capacity of the data, thus
providing higher-quality inputs for subsequent modeling. The BLS
module utilizes a cascade structure for efficient feature expansion,
enriching stock indices prediction feature space with accurately
enhanced features in high-dimensional space, significantly improving
the model’s generalization ability. The QLSTM module integrates the
parallelism of quantum computing, offering robust noise resistance,
and further optimizes the model’s capability to capture short-term

and long-term dynamics as well as high-dimensional feature repre-
sentation efficiency compared to traditional LSTM models. Through
the synergistic interaction of these three modules, the BLS-QLSTM
model theoretically bridges the research gap in the integration of
quantum computing and deep learning for financial time series
prediction.

The effectiveness of BLS-QLSTM was validated on three real-
world Chinese stock indices: CSI 300, SSEC, and CSI 500. For
instance, on the CSI 500 dataset, BLS-QLSTM achieved a 36.5%
reduction in RMSE compared to traditional LSTM and a 19.8%
reduction compared to QLSTM. The model also showed con-
sistent improvements in MAE and MAPE, while the R2 value
reached 0.99404, indicating excellent fit and trend reconstruction
ability. In terms of directional classification, the model achieved a
classification accuracy of 0.77545 on CSI 500, outperforming
LSTM and QLSTM by approximately 24.5% and 21.6%, respec-
tively. Similar performance gains were observed on the CSI 300
and SSEC datasets, further demonstrating the model’s robustness
and generalizability across diverse market conditions. These
findings confirm that BLS-QLSTM not only enhances numerical
prediction performance but also improves the recognition of
stock price movement trends, offering a novel and practical
approach to modeling chaotic financial time series.

The BLS-QLSTM model demonstrates significant value in both
academic research and practical applications. For investors, the
model offers precise price forecasting and trend analysis, serving
as a scientific tool for optimizing asset allocation, improving
investment decisions, and mitigating risks. For market regulators,
the model excels in identifying market fluctuations, effectively
aiding in the formulation of more precise regulatory policies,
enhancing market stability and transparency, and supporting the
healthy functioning of financial systems.

Despite the superior performance of the BLS-QLSTM model,
there are certain limitations to this study. The maturity of
current quantum computing hardware is insufficient to support
large-scale applications. Additionally, the high cost of quantum
computing restricts the model’s application to small-scale
experimental studies. Furthermore, the interpretability of the
model requires further enhancement to improve its usability
and transparency in practical scenarios. Future research
directions include optimizing the model architecture to reduce
computational costs and enhance its interpretability and sta-
bility; exploring its application potential in other complex
domains such as energy, healthcare, and transportation; and
leveraging the continuous advancements in quantum comput-
ing technology to enable the large-scale implementation of the
model in practice.

Fig. 12 CSI 500 Index Confusion Matrix Comparison. Visualization of the confusion matrix comparison for predicting the CSI 500 Index’s up and down
movements based on LSTM, QLSTM, and BLS-QLSTM models. a LSTM Confusion Matrix; b QLSTM Confusion Matrix; c BLS-QLSTM Confusion Matrix.
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