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Evolving trajectories of educational expectations
and science performance during middle school and
STEM degree attainment of youth in adulthood
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Extensive research has established the positive relationship between youths' educational
expectations and academic performance. However, limited attention has been paid to how
the developmental and growth trajectories of educational expectations may dynamically
shape the development and growth in science performance during middle school—a critical
period for fostering long-term STEM achievement. Leveraging longitudinal panel data from
the second-cohort sample of the Longitudinal Study of American Youth (LSAY), this study
employs parallel-process latent growth curve modeling (PP-LGCM) to investigate how
evolving educational expectations and science performance of youths during early adoles-
cence jointly predict STEM degree attainment in adulthood. Results reveal that the devel-
opment and growth in educational expectations of youths across middle school years
positively drive their corresponding development and growth in science performance. These
parallel trajectories collectively and significantly predict youths' successful graduation with a
four-year STEM degree in adulthood, with the developmental and growth trajectories of
science performance significantly mediating the relationship. Monte Carlo simulations con-
firmed the robustness of these findings, demonstrating strong statistical power (>0.80) and
minimal bias (<5%) for all focal parameters, with sensitivity analyses indicating model sta-
bility across varying sample sizes. The findings underscore the interconnected, cumulative,
and progressive nature of academic motivation and science competency during early ado-
lescence in relation to youths' later STEM achievement, challenging static conceptualizations
of these constructs. By framing educational expectations and science learning as dynamic,
time-varying processes, this study advances theoretical and methodological approaches to
STEM development research. Practical implications highlight the need for holistic educational
policies and interventions that nurture both aspirational growth and foundational science
competence during formative school years, thereby strengthening pathways to STEM
success.
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Introduction

he educational development and achievement of young

people hold profound implications not only for their long-

term health and well-being in adulthood (Kosik et al., 2018;
Zhang et al, 2022) but also serve as critical drivers of socio-
economic advancement and cultural enrichment across national
and societal contexts (Dolby and Rizvi, 2008; Menzies and Baars,
2021). Crucially, the attainment of an undergraduate degree
apparently signifies the prospects of youths for employment,
income stability, and quality of life across the adult life course
(Anderson and Li, 2020; Bass and Besen-Cassino, 2016; Dolby
and Rizvi, 2008), particularly for those pursuing science, tech-
nology, engineering, and mathematics (STEM) disciplines.
Indeed, the proportion of STEM graduates within a nation
directly and positively influences its political-economic competi-
tiveness, national innovation capacity, societal development, and
technological advancement (Penprase, 2020; Reid et al., 2025;
Tasos et al., 2018). Despite this, the rates of students to enroll for
STEM majors in matriculation and/or successful graduation with
a STEM degree have been declining over the past few decades (Ji,
2021; Pov et al., 2024), underscoring the urgency of identifying
factors that promote successful STEM degree completion.
Although researchers have investigated the contributors of sci-
ence- or STEM-related socialization, e.g., parental guidance in
science education, home-based STEM resources, teacher support,
and school STEM environment, to youths’ STEM development
(de las Cuevas et al., 2022; Ji, 2021), little research has examined
the dynamic relationships between youths’ educational expecta-
tions and science performance during middle school in con-
tribution to later STEM attainment of youths in adulthood. This
gap is notable given robust evidence linking educational expec-
tations to academic achievement (Fishman, 2022; Keung and Ho,
2019; Pinquart and Ebeling, 2020). Importantly, both educational
expectations and academic performance are developmental con-
structs that evolve over time, rather than static traits as often
conceptualized. To address this, the present study employs a
dynamic, longitudinal framework to investigate how shifts in
youths” educational expectations affect the changes in their sci-
ence performance during middle school, and how these trajec-
tories work collectively to predict eventual STEM degree
completion in adulthood.

The current study’s focus on youths” educational expectations
and science performance during middle school is grounded in the
critical developmental phase of early adolescence. This period
represents a critical formative window for cultivating educational
aspirations, academic motivation, and foundational learning
competencies (Carolanl, 2017; Park, 2021), with implications that
reverberate into adulthood through educational and career tra-
jectories. Such a focus is particularly salient for youth STEM
development, as STEM achievement is inherently cumulative and
progressive, requiring sustained academic motivation and mas-
tery of essential science knowledge and skills acquired during—or
even prior to—middle school (Miller and Pearson, 2012;
Penprase, 2020; Zhang, 2022). However, existing longitudinal
studies often reduce the contributions of early educational
development and science-related socialization factors to static,
fixed effects, measuring these variables at singular timepoints
rather than capturing their dynamic evolution over time (Kohen
and Nitzan, 2022; LeBeau et al, 2012; Luo et al, 2022; Wang,
2024). This methodological limitation constrains the field’s ability
to discern how evolving processes in adolescents’ educational
development shape later STEM achievement, thereby hindering
the design of targeted educational reforms and policies to advance
science and STEM education. To address these research gaps, we
intended in the current study to examine how the developmental
and growth trajectories of youths’ educational expectations may
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contribute to their developmental and growth trajectories in
science performance across middle school, which then jointly lead
to youths” later successful graduation with a STEM degree in

adulthood.

Theoretical framework of youths' educational expectations
and science performance during middle school and STEM
attainment in adulthood
Although the educational development of youths and their later
academic achievement, including successful graduation with a
STEM degree in adulthood, depend on various environmental
and personal factors, youths’ educational expectations have been
consistently found to positively predict better academic perfor-
mance and success, such as higher standardized exam scores,
GPAs, college education enrollment, and graduation with a uni-
versity degree (Andrew and Hauser, 2011; Liu et al.,, 2025; Liu
et al,, 2020; Wang, 2016). These relationships align with core
tenets of situated expectancy-value theory (SEVT; Eccles, 2009;
Eccles and Wigfield, 2020), which posits that achievement-related
choices (e.g., pursuing STEM degrees) are directly influenced by
(a) expectations for success (beliefs about one’s ability to succeed)
and (b) subjective task values (perceived importance, interest, or
utility of a task). Educational expectations reflect both constructs:
They embody youths’ success expectations in academia and the
SEVT concept of attainment value (the importance placed on
educational goals), which collectively motivate persistent
engagement in learning activities—including science—and long-
term goal pursuit, such as STEM degree attainment in adulthood.
Nevertheless, limited research has examined how educational
expectations of youths may dynamically shape their science
performance during middle school or how these evolving tra-
jectories may jointly predict later STEM degree attainment.
Manifestly, emerging advanced longitudinal studies reported that
both educational expectations and academic performance of
youths are time-varying processes evolving over time (Chykina,
2019; Dochow and Neumeyer, 2021; Marsh, 2023), denoting their
developmental and changing nature. SEVT elucidates this dyna-
mism: Expectations and values are situated and malleable, con-
tinually reshaped by contextual feedback (e.g., science
performance outcomes) and sociocultural influences (e.g., par-
ental support, school climate). Early success in science reinforces
competence beliefs and interest values, creating recursive feed-
back loops that sustain motivation and performance growth
(Eccles and Wigfield, 2020; Wang and Degol, 2013). Relevantly
and critically, science performance, hence, serves as both a direct
predictor of long-term STEM degree outcomes (by signaling
foundational competence necessary for advanced study) and a
mediator of the expectation-STEM link (by translating aspira-
tional motivation into tangible academic achievement that vali-
dates STEM identity and task-related utility/attainment values).
Additionally, middle school marks a pivotal transition from
childhood—characterized by dependency and undefined self-
concept—to adolescence (Reynolds et al., 2019), a critical period
for cultivating identity, academic motivation, learning interests
and performance, as well as future educational and occupational
directions. This formative period is critical for youths to establish
educational competencies that bridge childhood and early
adulthood within the life course. In fact, SEVT underscores
adolescence as a “critical window” for STEM identity formation,
which means when early science experiences align with youths’
interest values (e.g., fascination with scientific inquiry) and utility
values (e.g., belief that science aids career goals), they foster
enduring STEM aspirations (Eccles and Wigfield, 2023; Lauer-
mann et al., 2017). Therefore, it is of research worth to investigate
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how youths formulate their educational expectancy and perfor-
mance in middle school (Reynolds et al., 2019; Zilanawala et al.,
2017), which are believed to have profound impacts on their later
academic achievement in adulthood, such as successful comple-
tion of a STEM degree.

As abovementioned, although the STEM development of
youths is a cumulative and progressive process that meticulously
relies on their educational motivations and essential science
knowledge and skills adequately acquired in middle school years
or earlier (Miller and Pearson, 2012; Penprase, 2020), there is,
however, a paucity of research that has empirically explored the
evolving relationship between youths’ educational expectations
and science performance during middle school and scrutinized
how these trajectories may jointly affect later STEM attainment in
adulthood. For this, we intended in the current study to adopt a
dynamic approach to study how the developmental and growth
trajectories of youths’ educational expectations shape their
developmental and growth trajectories in science performance
across middle school years, which are both expected to contribute
to later STEM degree completion in adulthood. Apparently,
SEVT provides a mechanistic framework that strong educational
expectations (expectancy beliefs) enhance science effort and per-
sistence, improving performance (attainment); this success sub-
sequently validates and strengthens STEM-related utility/interest
values, ultimately predicting STEM degree pursuit (choice),
(Eccles and Wigfield, 2020). Thus, science performance is theo-
rized to mediate the expectation-STEM link—by operationalizing
motivational beliefs into demonstrable competence—while also
functioning as a direct predictor of STEM attainment due to its
role as a gateway to advanced STEM coursework. This dual role is
empirically tested in this study.

In this study, the educational expectations of youths refer to
the Wisconsin model portraying as youths’ general educa-
tional expectancy and aspirations for achieving better aca-
demic performance (Roth, 2017). Therefore, the educational
expectations of youths are understood as the possible educa-
tional attainment perceived as reachable (Andrew and Hauser,
2011; Roth, 2017). This approach to assess educational
expectations and its effects on adolescents’ academic perfor-
mance has been commonly applied by empirical researchers
(Andrew and Hauser, 2011; Liu et al., 2020; O’Donnell et al.,
2022; Zhang, 2014).

Notably, while SEVT traditionally emphasizes domain-specific
expectations (e.g., math self-efficacy), general educational expec-
tations reflect overarching success beliefs that permeate academic
domains. This aligns with SEVT’s acknowledgment that broader
achievement beliefs scaffold domain-specific motivations (Wig-
field and Eccles, 2023), particularly during early adolescence
when career identities are nascent, e.g., science and STEM
development. Empirically, contemporary advanced longitudinal
research underscores that educational expectations and academic
performance are dynamic, evolving constructs rather than static
traits, necessitating analysis across developmental trajectories
(Andrew and Hauser, 2011; Chykina, 2019; Marsh, 2023;
Widlund et al., 2023). This is consonant with the life course
perspective and Bayesian learning theory explicating that youths
are cognizant agents capable of refining their cognitive and
behavioral processes—including educational expectations and
science learning practices—throughout middle school years in
order to accomplish what they expect valuable and achievable in
the future when assimilating new information and experiences
across the life course (Morgan, 2005; Pallas, 2003). In the same
vein, SEVT complements this: Expectations and values are con-
tinually updated via recursive processes where prior outcomes
(e.g., science grades) recalibrate future expectations (success
beliefs) and task values (Eccles and Wigfield, 2020).

In fact, the STEM development of youths in adulthood
necessitates their well-equipped essential science knowledge and
skills as well as strong educational aspirations cumulatively and
progressively established in the early years of middle school
(English, 2017; Larkin and Lowrie, 2022; Zhang, 2022). Notably,
successful STEM development in adulthood hinges on founda-
tional science competencies and sustained educational aspirations
cultivated sustainably during early adolescence, particularly in
middle school. This corresponds with what Mau et al. (1995)
mentioned: “(e)ighth-grade students typically are in the crucial
stage of exploring self and the world of work. Unlike some
occupational fields, preparation for nontraditional occupations,
especially in the areas of science and engineering, must begin
early. ...training in math and science needs to be sequential and
uninterrupted from elementary school, and fundamentals must
be mastered before high school (p. 324).” Accordingly, SEVT
formalizes this: Middle school science mastery builds founda-
tional competence beliefs, while early STEM exposure cultivates
interest values—both prerequisites for later STEM choices
(Ozulku and Kloser, 2023; Wang, 2013). In this study, science
performance of youths during middle schools refers to their
academic proficiency in core science subjects that include biology,
chemistry, physical science, and environmental science, which are
the pivotal scientific foundations for their later STEM develop-
ment (Larkin and Lowrie, 2022; Tasos et al., 2018). Despite this,
very few longitudinal studies have systematically examined how
youths’ educational expectations and science performance during
middle school jointly predict later STEM attainment. Pertinently,
Larson et al. (2014) found in their short-term longitudinal study
that first-year college students’ initial educational aspirations and
science interests significantly predicted STEM degree completion.
Similarly, Zhang et al. (2019) linked grade-10 academic aspira-
tions to BA-STEM attainment, while Marsh, (2023) identified
dynamic relationships between high-school math self-concept
and postsecondary STEM credentials. These findings resonate
with SEVT that proximal expectations/values predict distal
choices, but crucially, middle school is the formative phase where
these beliefs crystallize (Eccles, 2009).

While prior longitudinal studies affirm the connection between
adolescents’ educational expectations, science performance, and
eventual STEM achievement, they predominantly emphasize
rank-order or autoregressive effects, overlooking how develop-
mental and growth trajectories of these constructs during middle
school prospectively shape STEM degree attainment in adult-
hood. Empirical evidence confirms that educational expectations
and academic performance evolve dynamically during adoles-
cence (O’Donnell et al., 2022; Zhao et al., 2019). For example,
O’Donnell et al. (2022), tracking 1477 Australian adolescents
from ages 12-13 to 16-17, demonstrated that intrapersonal shifts
in educational expectations significantly predicted later academic
outcomes. Besides, Zhao et al. (2019), following 775 Chinese
students from grades 6-8, found that early educational explora-
tion and commitment predicted developmental progression in
these measures, ultimately enhancing grade 8 academic achieve-
ment. Yet, such work largely treats educational development as
static, neglecting latent developmental and growth trajectories
that may underpin long-term educational outcomes like STEM
degree attainment. For this, Carolan (2017) mentioned: “(e)
mpirical work emanating from this tradition, however, has trea-
ted this complex mental process of educational expectations
formation as one that is relatively fixed by adolescence and not
responsive to new, relevant information (p. 238).”

In this study, we conceptualize the developmental and growth
trajectories of youths’ educational expectations and science per-
formance during middle school as two interrelated and evolving
processes: (1) the developmental trend of an individual youth
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relative to their peers over time (reflecting developmental status
in educational expectations and science performance), and (2)
intrapersonal changes within each youth across grades 7 to 9
(capturing growth in these measures through continuing and
repeated assessments). These dual trajectories align with SEVT’s
developmental principles that initial status (intercepts) reflects
early-formed expectations/values, while growth (slopes) captures
how school experiences reshape them (Eccles and Wigfield, 2023;
Wigfield and Eccles, 2000). We hypothesize that the develop-
mental and growth trajectories of youths’ educational expecta-
tions during middle school will positively shape their
developmental and growth trajectories in science performance.
Together, these two evolving trajectories are expected to predict
youths’ later successful graduation with a STEM degree in
adulthood. By modeling these longitudinal dynamic relationships,
the current study contributes to a nuanced understanding of how
early academic motivation and skill development coalesce to
shape STEM trajectories. Thereby, this study bridges critical
research gaps in education and behavioral research by recon-
ceptualizing youths’ educational expectations and science per-
formance as dynamic, co-evolving processes during middle
school. It reveals how these developmental and growth trajec-
tories synergistically predict youths™ later STEM degree attain-
ment—a contribution that challenges static conceptual
frameworks while advancing life course and Bayesian learning
theories.

To the authors’ knowledge, this is the first empirical inquiry to
conceptualize educational expectations and science performance
as time-varying constructs and rigorously test their dynamic
interplay during adolescence. By modeling these relationships
through a longitudinal framework, the study advances under-
standing of how cumulative and progressive processes in early
academic motivation and science learning—and their inter-
dependencies—spill over into long-term STEM outcomes. The
findings of this study help provide insights for how to design
policies and plan educational interventions in nurturing educa-
tional aspirations and foundational science competencies of
youths systematically in early school years with an aim to prepare
their later STEM development across the life course.

The current study

Taking what has been reviewed above together, we planned to
take a dynamic approach in this study to investigate the devel-
opmental and growth trajectories of youths’ educational expec-
tations and science performance across middle school in
prediction of their later successful graduation with a STEM
degree in adulthood. This dynamic approach means that youths’
educational expectations and science performance are individu-
ally varying at standing levels (the development) in middle school
and are intrapersonally changeable (the growth) across middle
school, which helps scrutinize the importance of cultivability and
malleability of educational motivations and academic perfor-
mance during early school years in relation to youths’ long-term
academic achievement, e.g., STEM degree attainment in adult life
(Affuso et al, 2025; Chykina, 2019; Perinelli et al, 2022). In
addition, as educational expectations are empirically reported a
contributor to youths’ academic performance in school years
(Dotterer, 2022; Perinelli et al., 2022; Zhang, 2014), which both
are important for youths’ later completion of a college degree
(Kim and Fong, 2014; Sommerfeld, 2016; Zhan and Sherraden,
2011; Zhang, 2022), we expect that the developmental and growth
trajectories of youths’ science performance would mediate the
relationship between the developmental and growth trajectories
of youths’ educational expectations and their STEM degree
completion in adulthood. Due to the cumulative and progressive
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processes of youths’ educational expectations and science per-
formance in school, we hypothesize that the initial developmental
trajectories of youths’ educational expectations and science per-
formance lead to their growth in these trajectories across middle
school. Accordingly, we set the hypotheses as follows:

H1: The development and growth of youths’ educational
expectations in middle school would positively lead to their
development and growth in science performance across middle
school.

H2: The development and growth of youths’ educational
expectations and their science performance during middle school
would positively predict their later successful graduation with a
STEM degree in adulthood.

H3: The development and growth of youths’ science perfor-
mance would mediate the effects of their development and
growth in educational expectations during middle school on their
later successful graduation with a STEM degree in adulthood.

H4: The growth of youths’ educational expectations and sci-
ence performance during middle school would be a function of
their initial development of educational expectations and science
performance in middle school, anticipating that the initial
development of youths’ educational expectations and science
performance would predict their growth in educational expecta-
tions and science performance across middle school.

To ensure the estimated relationships between educational
trajectories and STEM outcomes reflect core theoretical processes
rather than sociodemographic disparities, we account for key
contextual factors central to STEM equity research, which include
youths’ gender, family composition, parental SES, and ethnicity
(Ji, 2021; Luo et al., 2022; Penprase, 2020). These factors were
included as statistical controls to isolate the unique predictive
effects of motivational and performance trajectories while
acknowledging their established roles in systemic opportunity
gaps. The rationales are that female students are reported to have
higher educational motivation and academic performance than
their male counterparts (Atchia and Chinapah, 2023; Keung and
Ho, 2019). Moreover, youths living in two-parent families with a
biological mother and father and having higher parental SES were
found to have higher educational expectations and better aca-
demic achievement compared to their student counterparts of
other family structures and lower parental SES (Gu et al., 2024;
Renzulli and Barr, 2017; Sun and Li, 2011; Zhang et al., 2021).
Additionally, Asian youths are reported to have stronger aca-
demic motivation and better educational performance, especially
in STEM development, compared to their peers of other ethnic
origins (Feliciano and Lanuza, 2017; Hsieh and Simpkins, 2022).
Thereby, the current study classified youths into five ethnic ori-
gins: White, African American, Hispanic, Asian, and Native
American, with Asian youths as the reference group due to their
higher academic motivation and educational outperformance
(Feliciano and Lanuza, 2017; Portes and Rumbaut, 2014). Youth
participants’ age was excluded as a control variable in the mod-
eling procedures to mitigate potential collinearity, as educational
expectations and science performance are time-varying constructs
inherently aligned with school years and chronological age (Wang
and Wang, 2019).

Methods

Data and sample. The present study utilized data from the
Longitudinal Study of American Youth (LSAY), a nationwide
representative study of public middle- and high-school students
in the United States (Miller, 2014). LSAY surveyed two cohorts
beginning in 1987: The first cohort included 2829 high school
students in the 10th grade, and the second cohort recruited 3116
middle school students in the 7th grade. The longitudinal
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interviews were conducted annually from 1987 to 1994 (spanning
7 years). Cohort-1 participants were tracked for 3 years of high
school and 4 years post-graduation after high school, while
cohort-2 participants were followed for 3 years of middle school,
3 years of high school, and lyear postgraduation of high school.
In 2006, the National Science Foundation (NSF) provided addi-
tional funding to trace the educational and occupational devel-
opment of the cohort-1 and 2 participants in LSAY. Five
additional longitudinal surveys were conducted in 2007, 2008,
2009, 2010, and 2011. In 2007, LSAY successfully relocated
around 95% of the original sample of cohort-1 and 2 students
(N=5945), and these youth students were in an age range
between 33 and 37 years old. LSAY employed a stratified sam-
pling framework from a national population of public middle and
high schools in 12 sampling strata defined by the geographic
region and type of community in the country to randomly draw
student participants as the final sample that was representative of
the public middle- and high-school student populations in the
United States. The original sample comprised ~48% female and
52% male students, and 70% Whites, 17% African Americans, 9%
Hispanics, 3% Asian Americans, and 1% Native Americans. The
present study used the data of cohort-2 students as the study
sample because they contain pertinent information regarding
educational expectations and science learning in middle school
years and STEM development in adulthood.

Measures. Educational expectations of youths were measured
annually from grades 7 through 9 by an item provided in LSAY
that is “As things stand now, how far in school do you think you
will get?” It was rated on a 6-point scale: 1 =high school only,
2 =vocational/ trade school, 3 =some college, 4 = bachelor’s
degree, 5=master’s degree, and 6 = doctorate/professional
degree, which means higher responses represent higher educa-
tional expectations. The measurement item is consistent with the
Wisconsin model to assess educational expectations of youths
(Liu et al., 2020; O’Donnell et al., 2022; Roth, 2017), which has
been commonly used to rate educational expectancy and aspira-
tions in existing empirical research (Feliciano and Lanuza, 2016;
Karlson, 2015; Liu et al., 2020).

Science performance of youths was assessed annually from
grades 7 to 9 using standardized scores provided by the LSAY
personnel, capturing students’ proficiency in core STEM
disciplines: biology, chemistry, physical science, and environ-
mental science. These foundational subjects are critical for future
STEM engagement and development (Ayuso et al, 2022;
Liversidge, 2009). Scores were derived via item-response theory
(IRT) methodology to adjust for measurement reliability,
guessing, and item difficulty (DeMars, 2010). To ensure cross-
cohort comparability, LSAY employed BILOG-MG software
(Zimowski et al, 1996) to recalibrate scores using multiple-
group IRT modeling (MGM). This aligned Cohort-1 students’
middle school performance with high school benchmarks and
integrated middle-to-high school data for Cohort-2 students (the
study sample). Annual score ranges spanned 26-88 (7th grade),
22-83 (8th grade), and 27-91 (9th grade), with higher scores
reflecting better science achievement.

STEM degree completion in college was measured in 2007 by
an item provided by the LSAY personnel to indicate whether the
participants had successfully graduated with a four-year STEM
baccalaureate degree in science, technology, engineering, mathe-
matics, or medicine. This dichotomous classification of graduates
with a STEM degree compared to their counterparts otherwise
has been used in prior research (Luo et al., 2022; Wright et al,
2017), which is coded: 0 =no baccalaureate or non-STEMM
major and 1 =STEMM major.

Contextual factors of youths’ gender, family composition,
parental SES, and ethnicity were included in the modeling
procedures for precluding confounding effects. Youths™ gender
(0O=female, 1=male) and family composition (0= otherwise,
1 = two-parent family) are dichotomous variables. Parental SES is
a continuous variable measured by the Duncan’s Socioeconomic
Index (SEI) to calculate parental responses of educational level,
income, and occupational prestige (Caston, 1989). SEI is
constructed by weighting an occupation’s median education
and income on the metric of occupational prestige (Caston,
1989), which has been widely used in empirical research to
indicate socioeconomic status, with higher scores indicating
better parental SES (Montero et al., 2021; Pitt and Zhu, 2019).
Youths’ ethnicity is classified into four ethnic dummy variables,
with Asian youths serving as reference (0) and White, African
American, Hispanic, and Native American youths setting as
comparison (1).

Modeling procedures. Given the longitudinal design of this
study, parallel-process latent growth curve modeling (PP-LGCM)
was employed to examine how the developmental (initial levels)
and growth trajectories (rates of changes) in youths’ educational
expectations and science performance during middle school
(grades 7-9) jointly predict later successful graduation with a
STEM degree in adulthood. PP-LGCM, belonging to growth
modeling, is a robust modeling procedure to analyze longitudinal
relationships between evolving constructs and their association
with distal outcomes (Grimm et al., 2017), such as STEM degree
completion. The basic latent growth curve model (LGCM) is
expressed as:

Y=1,+An+e,

where Y is observed scores, 7, denotes population means of Y, A,
contains factor loadings, # includes latent intercept () and slope
(n,) factors of youths’ educational expectations and/or science
learning performance, and ¢ represents residuals. Intercept factors
capture initial levels, while slope factors quantify changes over
time. As both educational expectations and science performance
of youths were measured repeatedly in an equal time interval
from grades 7 through 9, the time scores were set to be ¢, t;, and
t, across the middle school years in the current study.

PP-LGCM extends LGCM by simultaneously modeling two
parallel processes that include the developmental and growth
trajectories of youths’ educational expectations and science
performance within a unified framework in the current study,
which can be written as:

Yi =y + Ny e
o = 10"+

=mr Q.

The first equation is the within-subject model, in which Y}
indicates the educational expectations of youth and their science
performance observed in middle school, and 7} in the second
equation and #}7 in the third equation are the model parameters
representing the latent intercepts and slopes of the mth growth
process that refers to youths” educational expectations and science
performance. The second and third equations denote the
between-subject models, in which #," and #," are the dependent
variables of the intercept and slope factors regarding youths’
educational expectations and science performance during middle
school years, 1" is the estimated overall initial levels of youths’
educational expectations and science performance in middle
school (the development of youths” educational expectations and
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Table 1 Descriptive statistics of the study variables
(N =3116).
Study Variables Mean/ Frequency SD/%
1. Gender
Female 1495 48%
Male 1621 52%
2. Family composition
Two-biological-parent 2715 87.1%
Other 401 12.9%
3. Parental SES 39.723 16.575
4. Ethnicity
White 2169 69.6%
African American 504 16.2%
Hispanic 284 9.1%
Asian n2 3.6%
Native American 47 1.5%
5. Educational expectations
Grade 7 4.011 1.405
Grade 8 4.005 1.846
Grade 9 3.886 1.458
6. Science performance
Grade 7 49.854 10.213
Grade 8 53.282 10.814
Grade 9 57.440 10.929
7. STEM degree
Yes 281 9%
No 2,835 91%
Parental SES is parental socioeconomic status based on the Duncan’s Socioeconomic Index
(SEI) score.

science performance), #7," is the average rate of changes referring
to youths’ educational expectations and science performance
across middle school (the growth of youths’ educational
expectations and science performance), and ¢ and c{m are the
residuals.

To combine the above equations with a distal outcome of
youths’ successful graduation with a STEM degree in adulthood,
we have:

Mpi = apo + Bty + Pattsi + Bszi + Epis

where 7, is the distal outcome of students’ graduation with a
STEM degree, f3,7;; and f3,7; are the regression parameters of the
intercept and slope factors of youths’ educational expectations
and science performance to represent their developmental and
growth trajectories in middle school, and f,z; is the regression
parameters for the contextual factors of youths’ gender, family
composition, parental SES, and ethnicity. These contextual factors
were adjusted in the modeling procedures to preclude back-
ground confounding effects on the developmental and growth
trajectories of youths’ educational expectations and science
performance and their later STEM degree completion in
adulthood, with ap, indicating as the intercept of the distal
STEM attainment outcome and &, referring as the person-
specific difference between 7, and ap,, respectively.

The modeling procedures were fit in Mplus 8.10 (Muthen and
Muthen, 1998-2017). To address the nested structure of the
LSAY data (clustered at the school level), the COMPLEX function
with <TYPE = COMPLEX> was applied to adjust standard errors
and chi-square tests for interdependence (Wang and Wang,
2019). Missing values are the concern of longitudinal research. In
this study, missing data (1.3-12.7%) indicated low attrition rates,
consistent with longitudinal population-based studies (Gustavson
et al,, 2012). Traditional Little’s test (Little and Rubin, 2002) is
commonly used to evaluate missingness patterns, e.g., missing
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completely at random (MCAR), missing at random (MAR), or
missing not at random (MNAR), for missing data. However, it is
recently found to risk biased MCAR rejection due to its sensitivity
to large sample size and nonnormality of longitudinal data
(Ahmad and Zhang, 2021; Enders, 2022). Instead, we adopted the
TestMCARNormality procedure in MissMech package of R
programming to test the pattern of missing data (Jamshidian
et al.,, 2014), which accounts for longitudinal data complexities,
temporal dependencies, and large-scale samples via bootstrap-
ping. The result supports the MCAR assumption of the data used
in this study (p =0.099)". Missing data were handled using full
information maximum likelihood (FIML), a likelihood-based
method that leverages all available participant data for efficient
estimation (Lee and Shi, 2021), thereby preserving statistical
power and minimizing bias under the assumption that data were
missing at MCAR or MAR. In the context of growth modeling,
FIML can accommodate missingness due to attrition or sporadic
non-response by estimating model parameters directly from the
observed data likelihood, avoiding the need for ad hoc procedures
like listwise deletion or imputation, which can distort results
(Enders, 2022). Model fit was evaluated by comparative fit index
(CFI), root mean-square error of approximation (RMSEA), and
standardized root mean-square residual (SRMR). Acceptable
model fit is: CFI>0.90, RMSEA <0.08, and SRMR <0.1; and
excellent model fit is: CFI>0.95, RMSEA <0.06, and SRMR <
0.08 (Wang and Wang, 2019).

Results

Descriptive analysis. Descriptive statistics are summarized in
Table 1. The sample comprised 48% female (n = 1495) and 52%
male (n=1621) youths. Most participants (87.1%, n=2715)
resided in two-parent households, with 12.9% (n=401) from
other family structures. Parental socioeconomic status (SES)
averaged M =39.72 (SD =16.575). Ethnically, the majority
identified as White (69.6%, n=2169), followed by African
American (16.2%, n=504), Hispanic (9.1%, n=284), Asian
(3.5%, (n=112), and Native American (1.5%, n =47). Youths’
educational expectations showed a slight decline across grades:
M=4.011 (Grade 7), M=4.005 (Grade 8), and M = 3.886
(Grade 9). Conversely, science performance increased progres-
sively (M = 49.85 in Grade 7, M = 53.28 in Grade 8, M = 57.44 in
Grade 9). By 2007, only 9% of youths (1 =281) had attained a
four-year STEM baccalaureate degree. The decrease in educa-
tional expectations across middle school may reflect youth stu-
dents more realistically perceiving their educational development
gradually along with the harder academic standards required in
higher grades, even with their improvement in science perfor-
mance observed.

Unconditional LGCM models of educational expectations and
science performance. Table 2 presents standardized results of the
unconditional latent growth curve model (LGCM) analyzing
youths’ educational expectations (Model 1A). The model
demonstrated excellent fit (CFI=1.000, RMSEA = 0.000,
SRMR = 0.000). Factor loadings for the intercept factor (grade
7-9 educational expectations) were significant (A = 0.857, 0.886,
0.826; p <0.001), while slope factor loadings (grade 8-9) were
A =0.227 and 0.424 (p < 0.001). A significant negative correlation
emerged between intercept and slope factors (r=—0.167,
p <0.01), suggesting that youths with higher initial development
of educational expectations exhibited slower subsequent growth.
Both intercept (6® = 1.456) and slope (6> = 0.096) variances were
significant (p < 0.001), indicating substantial individual variation.
Table 3 summarizes LGCM results for youths’ science perfor-
mance (Model 1B), which also showed excellent model fit
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Table 2 Standardized results of unconditional latent growth
curve model (Unconditional LGCM) for youths' educational
expectations (Model 1A).

95% CI

Intercept factor Intercept Factor loadings SE

Grade 7 0.857*** 0.014 0.830 to 0.885

Grade 8 0.886*** 0.014  0.859 to 0.913

Grade 9 0.826*** 0.020 0.797 to 0.865

Slope Factor Slope Factor loadings SE 5% Cl

Grade 7 0.000 0.000 —

Grade 8 0.227*** 0.027 0.175 to 0.279

Grade 9 0.424*** 0.053 0.320 to 0.528

Model parameters Model SE 95% CI
Parameters

Intercept and slope —-0.167** 0.061 —0.286 to

Covariance —0.048

Intercept variance 1.456*** 0.077 1.306 to 1.607

Slope variance 0.096*** 0.024 0.050 to 0.142

For model fit, CFI =1.000, RMSEA = 0.000, SRMR = 0.000.
*p<0.05, **p<0.01, ***p< 0.001.

Table 3 Standardized results of unconditional latent growth
curve model (Unconditional LGCM) for youths' science
performance (Model 1B).

Intercept factor Intercept Factor Loadings SE 95% CI
Grade 7 0.964*** 0.013  0.939-0.988
Grade 8 0.908*** 0.011  0.887-0.929
Grade 9 0.904*** 0.016  0.872-0.935
Slope factor Slope Factor Loadings SE 95% CI
Grade 7 0.000 0.000 —
Grade 8 0.292*** 0.012 0.263-0.316
Grade 9 0.581*** 0.026 0.530-0.633
Model parameters Model SE 95% CI
Parameters
Intercept and slope —0.0134*** 0.031 —0.0195 to —0.073
Covariance
Intercept variance 97.419*** 4.229 89.130-105.709
Slope variance 10.080*** 1.044 8.033-12.126

For model fit, CFI =1.000, RMSEA = 0.000, SRMR = 0.000.
*p<0.05, **p<0.01, ***p<0.001.

(CFI =1.000, RMSEA = 0.000, SRMR = 0.000). Intercept factor
loadings (grade 7-9 scores) were A=0.964, 0.908, 0.904
(p<0.001), with slope loadings (grade 8-9) at A =0.292 and
0.581 (p < 0.001). Similarly, a negative intercept-slope correlation
(r=—0.134, p <0.001) implied that higher initial development of
science performance was related to slower later growth. Sig-
nificant variances for intercept (0®=91.419) and slope
(6> =10.080) factors (p<0.001) further highlighted individual
differences. Collectively, both models fit the data well, accurately
capturing developmental and growth trajectories of youths’
educational expectations and science performance during middle
school.

Conventional PP-LGCM model of educational expectations
and science performance. A conventional parallel-process latent
growth curve model (Conventional PP-LGCM) was estimated to
examine associations between youths’ educational expectations

and science performance in middle school (Model 2). This model
regressed the intercept and slope factors of science performance
on the intercept factor of educational expectations, and the sci-
ence performance slope factor on the educational expectations
slope factor (Figs. 1-3). The model demonstrated good fit:
CFI = 0.997, RMSEA = 0.049, SRMR = 0.018. As shown in Fig. 1,
the intercept of educational expectations positively predicted both
the intercept (8 =0.424, p <0.001) and slope factors (= 0.065,
p<0.01) of science performance, indicating that higher initial
development of educational expectations was associated with
better initial development and modestly faster growth in science
performance. Additionally, the slope of educational expectations
positively predicted the science performance slope (f=0.141,
p <0.001), suggesting that greater growth in educational expec-
tations parallelly led to greater gains in science performance. The
factor loadings were robust: educational expectations intercept
(A =0.845, 0.874, 0.815) and slope (A =0.196 and 0.366), and
science performance intercept (A = 0.955, 0.909, 0.899) and slope
(A=0.281 and 0.556), all p<0.001. These results provide
empirical justification for estimating conditional PP-LGCM
modeling to predict distal STEM degree attainment. Full para-
meter estimates of Model 2, including cross-domain regressions
and within-domain covariances, are reported in Table S1 in
Appendix.

Conditional PP-LGCM models of educational expectations and
science performance in prediction of STEM degree completion.
A conditional parallel-process latent growth curve model (Con-
ditional PP-LGCM) was estimated to examine how youths’
educational expectations, science performance, and contextual
factors (youths’ gender, family composition, parental SES, and
ethnicity) predict STEM degree completion in adulthood (Model
3A). STEM degree completion was modeled as an ordered
categorical outcome. The model demonstrated excellent fit:
CFI =0.997, RMSEA = 0.026, SRMR = 0.011. Fig. 2 shows that
higher initial development of youths’ educational expectations
(3=0.148, p<0.001) and science performance (8 =0.150,
p<0.001) in middle school predicted greater odds of STEM
degree attainment (15.95% and 16.18% per standard deviation
increase, respectively). Similarly, growth in educational expecta-
tions (8 =0.087, p<0.01) and science performance (= 0.045,
p <0.05) predicted modest increases in STEM degree attainment
(9.08% and 5% per SD). Full parameter estimates of Model 3A are
reported in Table S2 in Appendix. To test whether growth in
educational expectations and science performance depends on its
initial developmental trajectories, a conditional and directional
parallel-process latent growth curve model (Conditional and
Directional PP-LGCM) was conducted to regress the slope factors
of educational expectations and science performance on their
respective intercept factors while retaining the structure of Model
3A intact (Model 3B). The model fit of this conditional and
directional PP-LGCM model was excellent: CFI=0.997,
RMSEA = 0.026, SRMR = 0.011. Fig. 3 shows that the develop-
mental trajectories of youths’ educational expectations and sci-
ence performance negatively predicted the growth rates of
educational expectations (8= —0.186, p<0.001) and science
performance (8 = —0.165, p < 0.001), respectively, indicating that
higher baseline development of educational expectations and
science performance were associated with slower subsequent
growth. Notably, the effect of educational expectations’ intercept
on science performance’s slope strengthened in Model 3B
(8=0.151 vs. 0.091 in Model 3 A; p<0.001), suggesting that
modeling intercept-slope relationships as directional (vs. corre-
lational) better captures the developmental trajectories in edu-
cational expectations and science performance. Besides, other

| (2025)12:1233 | https://doi.org/10.1057/s41599-025-05563-8 7



ARTICLE

Educational Educational Educational
Expectations Expectations Expectations
in Grade 7 in Grade 8 in Grade 9

»xxVCV'0

o
‘Q
O,

-0.157*** \

*»=xxl¥1°0

Science Science Science
Performance Performance Performance
in Grade 7 in Grade 8 in Grade 9

Fig. 1 Standardized effects of conventional parallel-process latent growth curve model (Conventional PP-LGCM) of youths' educational expectations
and science performance (Model 2). Note. For model fit, CFl = 0.997, RMSEA = 0.049, SRMR = 0.018. Inpgge«, = Intercept Factor of Youths' Educational
Expectations; Slpeqexp= Slope Factor of Youths' Educational Expectations; Inpscpes= Intercept Factor of Youths' Science Performance; Slpscper= Slope Factor

of Youths' Science Performance. *p <0.05, **p<0.01, ***p < 0.001.

parts of Model 3B had similar effects to those of Model 3A. See
Table S3 for the details of parameter estimates of Model 3B in
Appendix.

Effects of youths’ contextual factors. For the effects of youth
gender, family composition, parental SES, and ethnicity, male
youths showed higher science performance (= 0.217, p <0.001)
and greater STEM degree attainment (f=0.065 p<0.01;
OR =1.069), and youths from two-parent families (= 0.037,
p<0.01; OR=1.037) and of higher parental SES (= 0.080,
p <0.01; OR = 1.083) had greater STEM odds. In addition, higher
parental SES contributed to stronger developmental trajectories of
youths’” educational expectations (= 0.322, p <0.001) and sci-
ence performance (f=0.144, p<0.001). Hispanic, African
American, White, and Native American youths reported lower
developmental  trajectories of educational expectations
(8= —0.148 to —0.051, p <0.001-0.05) and science performance
(Hispanic: f = —0.139; African American: § = —0.210, p < 0.001)
compared to Asian peers. These groups also had reduced odds of
STEM degree completion (OR = 0.913-0.894, p <0.01).

8

Mediation analysis. Latent mediation tests (Table 4) revealed
significant indirect effects of educational expectations’ intercept
on successful graduation with a STEM degree via science per-
formance’s intercept (= 0.055, p <0.001) and slope (5= 0.007,
p <0.05). A marginally significant mediation emerged for science
performance’s intercept and slope (= —0.003, p <0.10). While
the slope-to-slope path from educational expectations to science
performance was nonsignificant (f = —0.003, p = 0.131), the total
indirect effect was significant (= 0.058, p <0.001), indicating
that science performance of youths jointly mediated the link
between their educational expectations and the STEM outcome.

Monte Carlo simulation for power test and sensitivity analysis.
The application of parallel-process latent growth curve modeling
(PP-LGCM) to examine dynamic longitudinal relationships
between youths’ educational expectations, science performance,
and STEM degree attainment is a sophisticated analytical
approach. Given the complexity of these longitudinal models, we
conducted Monte Carlo simulations to assess (1) statistical power
in detecting true parameter estimates and (2) model reliability
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Fig. 2 Standardized effects of conditional parallel-process latent growth curve model (Conditional PP-LGCM) of youths' educational expectations and

science performance in prediction of successful completion of a STEM degree (Model 3 A). Note. For model fit, CFl =
Intercept Factor of Youths' Educational Expectations; Slpggex, = Slope Factor of Youths' Educational Expectations;

SRMR = 0.011. IandExp

0.997, RMSEA = 0.026,

Inpscpet = Intercept Factor of Youths' Science Performance; Slpscper = Slope Factor of Youths' Science Performance. Dotted arrows are the effects of
youths' gender, family composition, parental SES, and ethnicity on the intercept and slope factors of youths' expectations and science performance in

middle school years and their STEM degree attainment in adulthood. *p < 0.

and stability (sensitivity analysis). Conventional analytical-based
methods for power test (e.g., multivariate methods and exact
tests) cannot handle the complexities of growth modeling
employed in the current study as they depend on the priori and
deterministic method (Arend and Schifer, 2019; Carsey and
Harden, 2014). Moreover, employing Monte Carlo simulations by
testing varying sample sizes to verify model reliability and sta-
bility is an effective way of sensitivity analysis to corroborate
replications in complicated mixed-effects and growth models (Lee
and Hong, 2021). Hence, Monte Carlo simulation is adopted to
conduct power test and sensitivity analysis for Model 3B, the final
growth model in the current study”

For power test, a total of 4000 replications were applied for
repeated random sampling in the simulation (by setting seed =
12345) with the original sample size (N=3116) to generate
synthetic datasets’. The parameter estimates of the fitted PP-LGCM
Model 3B were input in the population model and analysis model
to verify their statistical power of replications. The results showed
that all the focused parameter estimates regarding the regression
effects between the developmental and growth trajectories of
youths’ educational expectations and science performance as well as
STEM degree completion were all found to have a statistical
power > 0.80, ranging from P = 0.897t01.000 (Table 5). Bias in
parameter estimates (0-1.91%) and standard errors (0-3.62%) all
fell below the 5% benchmark, indicating high precision. The
coverage rates of 95% confidence intervals (95% Coverage) that
include the true population parameter values from replications were
between 0.942 and 0.963, well within the 0.91 to 0.98 threshold. In
addition, the average model fit across replications was excellent:
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05, **p<0.01, **p<0.001.

CFI = 1.000, RMSEA = 0.004, SRMR = 0.004, The results of power
test indicate the sample size (N =3116) employed in the current
study is well adequate to detect true parameter estimates®. To
ensure simulation reliability, we repeated the simulation analyses
with 5000 and 10,000 replications. The results of these replications
all meet the required Monte Carlo criteria.

We further conducted Monte Carlo sensitivity analysis to test
model robustness through simulating smaller and larger samples
(with N = 2500, 4000, 5000, and 7000)° for checking reliability
and stability of growth modeling analyzed in the current study.
Table 6 shows the results of Monte Carlo sensitivity analysis for
Model 3B. The average model fits across varying samples were
excellent (CFIs= 1.000, RMSEAs=0.002 to 0.004, and
SRMRs =0.003 to 0.004) and parameter recovery was highly
stable as the ranges of bias in parameter estimates and standard
errors were all less than 5% across different sample sizes. Besides,
95% confidence intervals (CIs = 0.943 to 0.960) were all within
the 0.91 and 0.98 threshold, suggesting consistent coverage even
with reduced Ns. The statistical powers of different sample sizes
ranged from 0.829 to 1.000, demonstrating reliability across
conditions. The results of Monte Carlo sensitivity analysis
support the reliability and stability of Model 3B in terms of
model structure and parameter estimates for the longitudinal
relationships between developmental and growth trajectories of
youths’ educational expectations and science performance in
contribution to later STEM degree attainment in adulthood. Full
Mplus code and result outputs of all the growth models and
Monte Carlo simulation analyses for power test and sensitivity
analysis are available at https://osf.io/m4eyn/files/osfstorage.


https://osf.io/m4eyn/files/osfstorage
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Fig. 3 Standardized effects of conditional and directional parallel-process latent growth curve model (Conditional and Directional PP-LGCM) of
youths' educational expectations and science performance in prediction of successful completion of a STEM degree by regressing slope factors on
intercept factors (Model 3B). Note. For model fit, CFl =0.997, RMSEA = 0.026, SRMR = 0.011. Inpgqe,p= Intercept Factor of Youths’ Educational
Expectations; Slpeqexp = Slope Factor of Youths’ Educational Expectations; Inpscper = Intercept Factor of Youths’ Science Performance; Slpscper = Slope
Factor of Youths' Science Performance. Dotted arrows are the effects of youth gender, family composition, parental SES, and ethnicity on the intercept and
slope factors of youths' expectations and science performance in middle school years and their STEM degree attainment in adulthood. *p < 0.05, **p < 0.01,
***p < 0.001.

Table 4 Standardized mediated effects of the slope and intercept factors of youths' science performance and/or the slope factor
of youths' educational expectations on the relationship between the intercept factor of youths' educational expectations and
successful STEM degree completion (Model 3B).

No. Mediational path Bind SE Z—value 95% ClI

1 INPedexp — INPscper = STEM degree 0.055*** 0.009 5.964 0.037-0.073
2 INPedexp = SlPscper = STEM Degree 0.007* 0.003 2.006 0.001-0.013

3 INPedexp = INPscpet = Slpscper = STEM degree —0.003* 0.002 -1.757 —0.006-0.000
4 INPedexp = SIPEdexp = SlPscpet = STEM degree —0.001 0.001 —1.510 —0.003-0.000
5 Total indirect effect of Inpgqe,p — @ STEM degree 0.058*** 0.009 6.073 0.039-0.076

All latent mediational analysis procedures were conducted simultaneously in the modeling interface of the PP-LGCM Model under the ‘Model Indirect’ Function in Mplus, and the contextual variables of
youths' gender, family composition, parental SES, and ethnicity were adjusted in the modeling procedures.

Inpegeyp Intercept Factor of Youths' Educational Expectations, Inpscpes Intercept Factor of Youths' Science Performance, Slpgqey, Slope Factor of Youths' Educational Expectations, Slpscpes Slope Factor of
Youths' Science Performance.

+p<0.1, *p<0.05, **p<0.01, ***p<0.001.

Discussion

The cultivation of STEM talent is crucial for national and global
socioeconomic, cultural, and technological advancement (Larkin
and Lowrie, 2022; Penprase, 2020). While prior studies have
identified factors influencing youth STEM development, little
research has explored how middle school trajectories of educa-
tional expectations and science performance jointly shape later
STEM degree attainment of youths in adulthood. Existing work
often treats these factors as static rather than dynamic (Kohen
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and Nitzan, 2022; Premraj et al., 2021). This study demonstrates
that the developmental and growth trajectories of youths’ edu-
cational expectations and science performance during middle
school are critical contributors to adult STEM degree completion.
Furthermore, the trajectories of science performance are sig-
nificantly influenced by concurrent development and growth in
educational expectations, with both pathways jointly enhancing
the likelihood of earning a STEM degree. These findings under-
score the need for educational strategies that nurture both
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Table 6 Results of Monte Carlo simulation for sensitivity analysis of Model 3B with N = 2500, 4000, 5000, and 7000.

Sample Size
Assessment Criteria N=2500 N =4000 N=5000 N=7000
CFI 1.000 1.000 1.000 1.000
RMSEA 0.004 0.003 0.003 0.002
SRMR 0.004 0.003 0.003 0.003

Range of Parameter Estimate Bias %
Range of Standard Error Bias %
Range of 95% Coverage

Range of Power (P)

—2.2203 to 0.9901
—1.0978 to 2.5970
0.943 to 0.960
0.829 to 1.000

—1.9201 to 1.3079
—2.9059 to 2.5714
0.9460 to 0.9600
0.9550 to 1.000

—1.2931 to 0.1964
—1.7857 to 0.1949
0.943 to 0.956
0.985 to 1.000

—0.7942 to 0.1964
—2.1276 to 0.9237
0.944 to 0.957
0.997 to 1.000

needed to preserve adequate statistical power (P> 0.80) for model reliability and stability.

The input of parameter estimates in Monte Carlo sensitivity analysis is unstandardized coefficients, which are needed for simulations. As observed in the sensitivity analysis, a sample size of N > 2500 is

academic performance and aspirational growth during middle
school, as these dynamic trajectories collectively lay the ground-
work for long-term STEM success.

Evidently, educational expectations are a well-established dri-
ver of academic performance (Park, 2021; Reynolds and Johnson,
2011). The current study extends this understanding by demon-
strating that higher initial development of general educational
expectations in middle school predict better development and
steeper growth in science performance during early adolescence.
Critically, these general expectations—reflecting youths’ over-
arching beliefs about their academic potential and the value of
educational attainment (Wisconsin Model; Roth, 2017)—were
robust predictors of later STEM degree completion, even when
measured independently of STEM-specific aspirations. This aligns
with SEVT’s principle that broad achievement beliefs scaffold
domain-specific motivations (Wigfield and Eccles, 2023), parti-
cularly during early adolescence when STEM identities are nas-
cent. Further, growth in educational expectations itself
significantly predicts growth in science performance. These
findings are particularly salient given the heightened malleability
of educational expectations during middle school compared to
later developmental stages (Andrew and Hauser, 2011; Pyne et al.,
2018), underscoring the importance of cultivating positive general
educational expectations of students in early adolescence to bol-
ster science achievement and long-term STEM outcomes.

Parallel-process latent growth curve modeling (PP-LGCM)
analyses revealed that initial development (intercept factors) of
expectations and science performance shapes their subsequent
growth (slopes), respectively. While higher initial levels were
associated with slower growth rates, both intercepts and slopes
independently contributed to STEM degree attainment. This
highlights the dual significance of fostering strong aspirational
and science learning foundations and sustaining growth trajec-
tories during middle school to support later STEM success. This
study further demonstrates that growth trajectories in general
educational expectations during middle school significantly pre-
dict STEM degree attainment in adulthood. This relationship
operates through two key, interrelated mechanisms: (1) General
expectations foster persistence in science learning, building
foundational competence necessary for advanced STEM study (as
evidenced by mediation via science performance trajectories); and
(2) They establish a credentialing pathway—youths with higher
expectations are more likely to pursue and complete college
degrees, thereby accessing the institutional gateway to STEM
majors (Bass and Besen-Cassino, 2016; Khattab et al., 2022).
These findings corroborate evidence that the link between ado-
lescent expectations, science proficiency, and adult STEM
achievement is inherently developmental and cumulative (Dokme
et al., 2022; Miller and Pearson, 2012). Given the formative role of
middle school in shaping educational and career motivations and
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directions, policymakers and educators must prioritize these
dynamic trajectories when designing interventions (Bozick et al.,
2010; Penprase, 2020). To this end, fostering supportive ecosys-
tems—encompassing schools, families, and communities—is
essential for cultivating expectations and science engagement
during early adolescence, thereby anchoring equity-driven edu-
cational reforms (Ji, 2021; Zhou et al,, 2019).

Latent mediation analyses revealed that both the develop-
mental and growth trajectories of science performance mediated
the effects of educational expectations on STEM degree attain-
ment, both collectively and independently. These findings offer
actionable insights for advancing science education and STEM
equity (Anderson and Li, 2020; Penprase, 2020). The significant
relationship between general educational expectations and STEM
attainment challenges the assumption that only domain-specific
motivations (e.g., science self-efficacy) are relevant for STEM
pathways. Instead, it highlights the foundational role of broad
academic aspirations in creating the preconditions for STEM
engagement: Sustained effort in foundational science courses
(mediating the expectation-STEM link) and progression into
higher education where STEM specialization occurs. Beyond
fostering direct engagement in STEM, policymakers and educa-
tors should design programs that cultivate general educational
expectations as foundational drivers of motivation—for instance,
through mentorship initiatives or project-based learning—to
amplify student agency and sustained growth in science profi-
ciency. While the indirect path linking growth in educational
expectations (slopes) to STEM attainment via science perfor-
mance growth (slopes) was nonsignificant, the total indirect effect
—combining initial levels and growth trajectories—underscores
the cumulative and progressive role of middle school expectations
and science development in shaping adult STEM outcomes. This
highlights the need for early, targeted efforts to strengthen general
educational expectations at the onset of adolescence. Such efforts
may catalyze cascading gains in both educational expectations
and science performance, ultimately enhancing STEM achieve-
ment. In fact, by modeling general educational expectations as
dynamic trajectories, this study reveals how their cumulative
development during middle school—propelled by recursive
feedback loops where early academic success reinforces aspira-
tions (Eccles and Wigfield, 2020)—creates momentum toward
college completion, within which STEM degree attainment
becomes a viable pathway. This broader credentialing effect
complements the direct motivational influence on science mas-
tery, underscoring why general expectations uniquely predict
long-term STEM degree outcomes even after accounting for sci-
ence performance.

The current study provides robust evidence for the long-term
effects of youths’ educational expectations and science perfor-
mance during middle school on their later STEM degree
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completion in adulthood. Using a nationally representative
longitudinal sample, we found that both the initial development
(intercepts) and growth in (slopes) educational expectations and
science performance significantly predicted STEM attainment,
with standardized effects ranging from f§ = 0.045 to 0.150. While
these effects may appear modest by conventional benchmarks
(e.g., Cohen’s guidelines), they are substantively meaningful given
the long-term, population-level nature of the study. For example,
a 1-standard-deviation increase in the intercept of science per-
formance (8 =0.150) corresponds to a 15% higher likelihood of
STEM degree completion, which could translate to thousands of
additional STEM graduates in a national cohort. While few stu-
dies have examined the evolving trajectories of educational
expectations and science performance as predictors of STEM
attainment in adulthood, our findings resonate with, yet critically
extend, prior research examining static predictors of STEM out-
comes. For example, Jiang and Simpkins (2024) reported com-
parable effect sizes (f=0.11-0.15) for students’ self-concept in
mathematics and science abilities—measured at discrete time
points (grades 9 and 11)—on STEM major enrollment. Rele-
vantly, Moakler and Kim (2014) identified modest effects of
academic confidence (8 =0.14) and high school GPA (8 =0.15)
on STEM major selection in cross-sectional analyses. However, by
modeling educational expectations and science performance as
evolving trajectories dynamically rather than static snapshots, our
study uniquely reveals that their rates of change (slopes: § = 0.087
and 0.045, respectively) independently contribute to long-term
STEM attainment. This underscores the necessity of con-
ceptualizing academic motivation and achievement as fluid pro-
cesses, where cumulative gains (or declines) over time amplify
their impact on career pathways. These results challenge the
reliance on single-timepoint measurements in prior literature and
advocate for educational policies and interventions that nurture
both initial competencies and sustained growth in science
engagement and aspirations during adolescence.

Manifestly, our findings underscore the critical role of educa-
tional expectations and science performance during middle
school in shaping later STEM degree attainment. To leverage
these insights, schools should integrate aspirational support with
skill-building—for instance, through mentorship initiatives or
project-based learning (PBL) workshops to connect classroom
science to real-world challenges for middle school students
(Larkin and Lowrie, 2022). In addition, schools should consider
integrating science performance with aspirational support by
pairing academic skill-building with interventions (Ayuso et al.,
2022; English, 2017), such as growth mindset training and STEM
industry and school partnership schemes, to boost students’ con-
fidence and aspirations as well as science competence. Besides,
schoolteachers and educators should be equipped to acknowledge
and support both aspirational and science learning development
of middle school students, which are crucial to provide timely
assistance and remedies for struggling student learners to catch
up their aspirational and STEM development (Ozulku and Kloser,
2024). More importantly, longitudinal tracking and account-
ability of students’ development and progression in educational
expectations and academic performance (including science
learning) during middle school are pivotal to monitoring aca-
demic readiness and inform resource allocation for facilitating
students’ learning trajectories of STEM development. This is
critical to cultivate next-generational STEM professionals due to
the cumulative and progressive nature of STEM development
found in this study. Moreover, policymakers must prioritize
funding for middle school STEM resources, particularly in
underserved communities, to address equity gaps (English, 2017;
Larkin and Lowrie, 2022). Early identification systems can flag
students at risk of declining engagement, enabling timely

interventions such as mentorship and learning guidance initia-
tives. By aligning educational practices with these dual pathways
of educational expectations and science performance, stake-
holders can cultivate a robust STEM pipeline, ensuring students
are well prepared earlier to meet future workforce demands.

Besides, this study highlights the contextual influences on
youths’ educational expectations, science performance, and
STEM degree attainment. Male youths demonstrated higher
STEM degree attainment and stronger initial development in
science performance, reflecting persistent gender disparities often
attributed to gendered academic preferences (de las Cuevas et al,,
2022; Dokme et al., 2022; Owen, 2023). However, recent studies
challenge these patterns, reporting comparable science interest
and ability across genders (Zhao and Perez-Felkner, 2022).
Family background also played a pivotal role: youths from two-
parent families and higher socioeconomic status (SES) house-
holds exhibited greater STEM attainment and stronger initial
development in academic trajectories. This underscores the role
of home resources, family socialization, and parental human
capital as critical assets for STEM development (Ji, 2021; Luo
et al., 2022; Miller and Pearson, 2012). Ethnic disparities further
emerged, with Asian youths showing higher baseline expectations
and STEM attainment—a pattern linked to cultural emphasis on
academic achievement and communal educational support
(Feliciano and Lanuza, 2016; Portes and Rumbaut, 2014; Toyo-
kawa and Toyokawa, 2019). These findings collectively advocate
for policies that need to prioritize equitable resource allocation to
mitigate contextual barriers, ensuring inclusive pathways to
STEM success. Such measures are important for transforming
education into a true equalizer, empowering students from
diverse family, ethnic, and societal backgrounds.

Conclusion

Utilizing longitudinal data of a representative sample of middle
school youths from the Longitudinal Study of American Youth
(LSAY), spanning early adolescence to adulthood, the current
study corroborated that youths” educational expectations devel-
opmentally enhance science performance during middle school,
which then later collectively foster STEM degree completion.
Furthermore, science performance of youths in middle school
emerged not only a direct predictor of later STEM degree
attainment but also as a mediator linking educational expecta-
tions to the STEM outcome. Nevertheless, some limitations of the
current study should be noted. First, although the LSAY sample is
nationally representative, its exclusion of private school students
leaves unclear whether developmental and growth trajectories of
expectations, science learning, and STEM attainment differ across
educational settings. Hence, replication with recent, multi-cohort
data including students in public and private schools is critical to
validate these dynamics in modern contexts. Second and more
importantly, the findings of this study should be interpreted in
light of potential cohort effects and historical context tied to the
LSAY data, which spanned 1987-2011. Manifestly, the experi-
ences of youth participants were shaped by era-specific factors,
such as pre-internet educational practices and STEM policies now
outdated by contemporary reforms (Larkin and Lowrie, 2022;
Penprase, 2020). Consequently, generalizability to current edu-
cational environments—marked by technological integration
(e.g., Al tools, online learning) and emerging equity initiatives-
may be limited. Third, educational systems—particularly in sci-
ence and STEM fields—have undergone significant reforms over
the past decade (Ayuso et al.,, 2022; Klees, 2018). Consequently,
contemporary data reflecting these shifts are essential to validate
the generalizability of this study’s findings. Fourth, while this
study examines the developmental trajectories of youths’
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educational expectations and science performance during middle
school as predictors of later STEM degree attainment, it is
important to acknowledge that STEM outcomes are shaped by a
complex interplay of interconnected systems, including familial,
peer, societal, institutional, and intrapersonal influences. Future
research should adopt multi-system frameworks to better disen-
tangle these dynamic interactions across educational contexts
(Anderson and Li, 2020; Penprase, 2020). Additionally, due to
LSAY only using a single measurement item to evaluate educa-
tional expectations, it is suggested to employ well-validated multi-
item measures to assess youths’ educational expectations in the
future, as this would enable more nuanced comparisons with the
current study’s findings by different approaches in measuring this
construct. Finally, although middle school represents a critical
period for fostering STEM motivations, these trajectories develop
dynamically across the lifespan, spanning early childhood
through postgraduate education (Larkin and Lowrie, 2022; Pallas,
2003). To inform comprehensive policy and educational reforms,
future research should explore how intersecting systems—across
various educational stages—interact to shape STEM achievement,
thereby enabling the design of more nuanced and effective
interventions, especially for those students under disadvantaged
learning and less science-stimulated environments.

Data availability

The data of LSAY used in the current study can be accessible at
https://www.icpsr.umich.edu/web/ICPSR/studies/30263/
summary.
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Notes

1 The TestMCARNormality procedure in MissMech package of R programming is a
robust bootstrapping method to account patterned missingness and nonnormality in
longitudinal data, which can more accurately test whether the MCAR assumption of

missingness is held. The equation of TestMCARNormality procedure is written as
4

Q=% [t, (52_1 )fg) - In’ﬁi_l ng| - Pg], in which the covariance comparison
(Q) is _olbtained by adjusting for sample size for pattern (), number of missingness
patterns (G), estimated covariance matrix (%), and number of observed variables in
pattern g (Pg). Thereby, the procedure evaluates missingness patterns in a less biased
way through taking longitudinal data complexities, temporal dependencies, and the
sample scale into account. R code and result output can be found in the Open Science
Framework at https://osf.io/m4eyn/files/osfstorage.

Monte Carlo simulation (MCS) is a computational algorithm that leverages repeated
stochastic sampling from probability distributions to probabilistically estimate
outcomes by generating and analyzing large-scale synthetic datasets (e.g., thousands to
millions of iterations). In the context of statistical power testing and sensitivity
analysis, MCS serves as a robust methodological framework to evaluate (1) the
reliability of inferential conclusions under uncertainty and (2) the influence of
variability in parameter estimates and model assumptions on result precision and
stability. Statistical power is computed as the proportion of simulations in which the
null hypothesis (H)) is rejected at a specified signjﬁcanfe threshold (e.g., a <0.05),
relative to the total number of replications: P = Lk:%m, where P is the estimated
power, K denotes the total simulations, and 1(-) is an indicator function. In addition,
based on the procedure of power test in Monte Carlo simulation, sensitivity analysis
can be conducted by changing in inputs (e.g., effect sizes, missing data rates, and
sample sizes) and examine how these inputs affect outputs (e.g., power, effect
estimates).

To ensure the precision of power estimates derived from MCS, the required number of
replications (NREPS) must be determined based on a predefined margin of error (ME).
The equation to determine required repliczations with reference to margin ME for
power estimates is NREPS > (Z”"’XT W) , where P is expected power and Z,, (e.g.,
P =0.80) is critical value for confidence level (e.g., 1.96 for 95% CI). In this power test
by Monte Carlo simulat%on, we set ME to 0.01 with a power of 0.80, which has
NREPS > (12608202} " ~ 3 843, meaning that an approximation of 4000
replications is needed to ensure the empirical power estimate reliably reflecting the

[
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true parameter values with the specified precision. This approach minimizes sampling
variability and enhances the robustness of inferences drawn from simulation study.
In Monte Carlo simulation for power test, three criteria need to be examined in
determining whether a sample size is sufficient to detect true parameter values: (i) the
estimated statistical power of all focused parameter estimates must be P > 0.08; (ii) the
bias in parameter estimates and standard errors for the focused parameters should be
less than 5%; and (iii) the coverage rates of 95% confidence intervals containing the
true parameter values from replications must be within 0.91 to 0.98. Besides, the
average model fit across 4000 replications is also considered as a criterion to support
the adequacy of sample size (N = 3116) in detecting precision of parameter estimates.
Growth modeling, including the PP-LGCM models analyzed in the current study, is
within the structural equation modeling (SEM) framework, which ascribes to large-
sample theory. For this, we set the minimum sample size to N = 2500, which generates
a statistical power of 0.829, indicating that if a sample size is <N = 2500, it is
inadequate for statistical power to detect true parameter estimates.
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w
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