Table 8 Sensitivity analysis based on Cinelli–Hazlett method.

From: Big data products and income inequality of e-commerce farmers: evidence from China

Core explanatory variable

Coefficient

S.E.

t (H0)

\({R}_{Y \sim D|X}^{2}\)

RV

RV0.05

Whether or not to use big data products

−0.053

0.015

−3.507

0.031

0.164

0.076

Reduced variable

Bound

\({R}_{D \sim W|X}^{2}\)

\({R}_{Y \sim W|D,X}^{2}\)

Coefficient

S.E.

t (H0)

CI

Gender

\({k}_{D}={k}_{Y}=1\)

0.040

0.0004

−0.052

0.016

−3.353

[−0.083,−0.022]

\({k}_{D}={k}_{Y}=2\)

0.079

0.0008

−0.051

0.016

−3.202

[−0.082,−0.020]

\({k}_{D}={k}_{Y}=3\)

0.119

0.0013

−0.050

0.016

−3.049

[−0.082,−0.018]

Age

\({k}_{D}={k}_{Y}=1\)

0.027

0.0000

−0.053

0.016

−3.442

[−0.084,−0.023]

\({k}_{D}={k}_{Y}=2\)

0.054

0.0000

−0.053

0.016

−3.381

[−0.084,−0.022]

\({k}_{D}={k}_{Y}=3\)

0.080

0.0001

−0.053

0.016

−3.320

[−0.084,−0.022]

Education

\({k}_{D}={k}_{Y}=1\)

0.013

0.0011

−0.052

0.015

−3.411

[−0.083,−0.022]

\({k}_{D}={k}_{Y}=2\)

0.025

0.0021

−0.051

0.016

−3.318

[−0.082,−0.021]

\({k}_{D}={k}_{Y}=3\)

0.038

0.0032

−0.050

0.016

−3.225

[−0.081,−0.020]