Humanities & Social Sciences Communications

ARTICLE

Check for updates

1

https://doi.org/10.1057/s41599-025-05903-8

OPFN

The impact of smart wearable product influence elements on health promotion behaviors

Yiweng Fu¹, Chunmao Wu^{1⊠} & Pei Li²

The rise of Smart Wearable Health Products (SWHP) offers fresh perspectives on solving societal health issues in light of wearable computing and personalized healthcare. However, more investigation is needed to clarify the exact processes by which smart wearables affect users' health results. To examine how the technological and esthetic components of SWHP affect users' psychological processes and health promotion behaviors (HPB), the study uses a multidisciplinary approach to build a stimulus-organism-response (SOR) model. A total of 506 valid samples were gathered, and structural equation modeling was used to analyze the data. The findings show that data management, social interaction, and esthetic pleasure considerably impact users' positive affect (PA) and that PA partially mediates their relationship with HPB. Besides, users' self-efficacy and HPB are influenced by their perceptions of the technological and esthetic components. This study of the smart wearables' function mechanism provides a novel direction for the growth of the health technology industry chain and helps designers to further improve users' health-related usage and decision-making.

¹ Department of Product Design, College of Fashion and Design, Donghua University, Shanghai, China. ² Department of Fashion Design and Engineering, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China. [™]email: cmwu@dhu.edu.cn

Introduction

ver the past few years, health has become a significant social concern due to the high prevalence of chronic diseases and the aging population. As defined by the World Health Organization (Seid et al. 2000), health is a condition of whole physical, mental, and social well-being rather than just the absence of illness or infirmity. Although physical health is a state of an individual's physiological integrity, the significance of exercise has been less widely recognized due to changes in work schedules and the emergence of bad lifestyles (Chiang et al. 2014; Rabin and Bock 2011). To improve it, physical activity evaluation is critical. Studies have shown that the accelerating development of technology and digitalization significantly impact health (Iyawa et al. 2016; Popkova et al. 2022). For decades, various computerized interventions have been used to promote health (Mattila et al. 2013). To solve the problem, digital health technology is revolutionizing how we track and enhance our health (Topol 2011).

As the main subcategories of digital health technology, wearable technology facilitates a range of end-user domains, including personal care (Luo and Gao 2021), lifestyle computing (Standoli et al. 2016), clinical decision (Beg et al. 2022), and encouragement of active and healthy lives (Dunn et al. 2018). The Internet of Things' (IoT) explosive growth is propelling the development of small electronic and computational devices that can be integrated into a person's body (Niknejad et al. 2020). People are beginning to use these devices to measure vital signs, body signals, location, environment, and movement (Cheng and Mitomo 2017; Park et al. 2018). For their part, product makers are constantly working to improve the software and hardware of their goods, and proliferating applications to meet consumer needs (Park 2020). There are no standards set for categorizing wearable devices. Entertainment, lifestyle, fitness, medical, industrial, and gaming are the six categories included in the classification scheme proposed by Dimou et al. (2017). Yang et al. (2016) offered a different approach to dividing wearable devices based on their form factor: watches, necklaces or wristbands, and head-mounted displays. According to the latest data from the global wearable tracker of International Data Corporation, 644.5 million wearable units will be shipped worldwide by 2027 (Sun et al. 2023).

Empirical evidence indicates that nearly half of wearable users discontinue use within 6 months (Canhoto and Arp 2017; Peng et al. 2021). Understanding whether wearable devices support the adoption of health promotion behaviors (HPB) is essential, as this shapes how the market evolves. Theoretically, Chib and Lin (2018) contend that mHealth research and the development of related practices (including smart wearable health products) have progressed through three phases: input, mechanism, and output (IMO). Current research on smart wearable health products (SWHP) has concentrated more heavily on technical elements (inputs), with limited attention to the underlying mechanisms (Noor et al. 2016; Rao 2019). Li et al. (2021) note that only a small number of studies have investigated the psychological processes involved in SWHP usage, particularly focusing on how wearable devices affect health behaviors from three angles: motivation, empowerment, and social influence. For instance, Nelson et al. (2016) introduced the concept of empowerment through the lens of self-regulation, describing it as the individual's belief in the ability to influence outcomes and to initiate and control behavior. Rupp et al. (2018) asserted that SWHP can satisfy fundamental psychological needs such as trust and motivational affordance, thereby supporting the uptake of health-related behaviors. AI-Emran et al. (2022) demonstrated that subjective norms positively affect smartwatch use, driven by their most impactful features. In short, the influence of SWHPs on the psychological dynamics of health behavior is complex and layered. These investigations have identified links between the design features of smart wearables (input) and users' observed health behaviors (output), yet the psychological pathways involved have often been examined in isolation. Roos and Slavich (2023) observed that studies into the psychological aspects of wearables offer a more direct grasp of how mental factors relate to users' sustained behaviors and physiological outcomes over time in real-world settings. Moreover, recent findings in human decision-making suggest that affective factors such as mood and emotion also play a meaningful role (Huang et al. 2024).

Therefore, this study aims to integrate the mediating roles of positive affect and self-efficacy from the psychological standpoint of users. Drawing on a multidisciplinary framework grounded in the Stimulus-Organism-Response (SOR) model, it explores how various influence factors of SWHP shape health promotion behaviors, thereby addressing the limited focus on psychological mechanisms and user-based theories of HPB. Notably, existing research has often regarded only the internal features of SWHP as stimuli tied to environmental factors, overlooking the integrity of the product experience (Cho et al. 2019; Jung et al. 2021; Parboteeah et al. 2009). It is necessary to establish a unified model pathway to examine the psychological perceptions and health promotion behaviors of wearable users (Niknejad et al. 2020). This study investigates both the internal (technical) and external (esthetic) elements of SWHP to offer a more complete foundation for evaluating future wearable product design. The remainder of this paper is structured as follows: First, the study's hypotheses and conceptual model are presented, alongside a review of key theories such as SOR and HPB. Next, the methods for data collection and measurement are described. This is followed by the empirical results of the data analysis. Finally, the paper outlines the main findings, discusses both theoretical and practical implications, and notes the study's limitations.

Related work and hypotheses

SOR model. The Stimulus-Organism-Response model is the most predominant theory model for consumer behavior, which was initially introduced by Mehrabian and Russell (1974). It makes the assumption that different environmental cues serve as stimuli that ultimately prompt a response (Hu et al. 2016) by influencing a person's internal experience (organism). According to SOR theory, behavioral responses are elicited by external stimuli and are the consequence of core affective states that are ubiquitous in a multitude of situations (Russell and Pratt 1980). Human behavior can alter in response to environmental factors stimuli. Examples of this include health information behavior (Soroya et al. 2021), consumer purchasing behavior (Li et al. 2023), and social behavior (Amaya Rivas et al. 2022).

Health promotion behavior. Social development is essentially predicated on the maintenance and promotion of health (Raiyat et al. 2012). Based on Kim et al. (2000), health promotion is an approach that helps individuals achieve ideal states of physical, mental, social, and spiritual health. As defined by Walker et al. (1987), HPB is the maintenance of multidimensional patterns of behavior that support personal well-being, life satisfaction, and self-actualization. These patterns usually involve a variety of activities that aid in disease prevention and health status promotion. Research has indicated a strong correlation between individual health status and engaging propensity in HPB (Fang et al. 2024). Adolescent health (Musavian et al. 2014), chronic illness prevention (McLeroy et al. 1988), and older adults' quality of life (Pascucci et al. 2012) are all significantly enhanced by the encouragement of healthy promotion behaviors.

Positive affect. Affect is a generic term used to represent a subjective feeling, either positive or negative, that occurs at a specific moment (Wyer et al. 1999). It serves as a theoretical summary of moods and emotions, projecting them onto a contrasting dimension and distinguishing them based on their activation levels (Russell and Carroll 1999). Positive affect reflects the extent to which an individual exhibits enthusiasm, energy, and alertness. High energy, full attention, and enjoyable engagement are traits of high positive affect (Watson et al. 1988).

Positive emotions have been empirically supported in the impact on behavioral intentions by certain researchers (Berriche and Altay 2020; Jia and Cheng 2024). As shown by a related study, people who often experience positive affect are better equipped to handle trauma, enjoy good health (Shiota et al. 2021), and even live longer (Diener and Chan 2011). Venkatesh and Speier (1999) examined how moods influence employee motivation and desire to use specific computer technology. They found that people's intrinsic motivation and technology-using intention are enhanced in the short term by positive mood interventions. Wakefield (2015) used SOR theory in the context of TAM and demonstrated how technological stimuli directly impact people's usage intentions by generating both positive and negative affect.

Besides, Positive emotion and HPB were identified as strongly correlated by Lee and Kim (2019). By measuring the fluctuations of an individual's internal positive and negative emotions, Nylocks et al. (2019) demonstrated that the level of positive emotion within individuals was directly connected with future health promotion behaviors. There are also additional studies that point out the inverse connection between HPB and affect. For example, Schultchen et al. (2019) discovered that while positive affect rises with increased physical activity, the ensuing stress and negative affect decrease. Thus, the following hypothesis is proposed:

H1: Positive affect positively influences health promotion behaviors when using SWHP.

Self-efficacy. Bandura (1997) originally defined self-efficacy as the belief in one's ability to organize and execute the actions needed to achieve a specific goal. As a significant determinant of behavioral change, self-efficacy influences the initial determination to participate in the behavior, the effort exerted, and persistence in the face of challenges. It has now become a key factor in social health and personality psychology. Optimistic beliefs about one's ability to resist temptation and adopt a healthy lifestyle are referred to as health-related self-efficacy (Schwarzer and Renner 2009). According to scientists, numerous biological processes that mediate human health and disease are thought to be influenced by self-efficacy (Bandura 2014). It should ideally be raised by evidence-based digital health tools (SWHP, WAT) that emphasize health behaviors (Abernethy et al. 2022). Stajkovic and Luthans (1998) indicated that a person's chances of reaching their goals increase with their perceived level of self-efficacy.

An excessive level of self-efficacy is necessary for long-term behavior modifications, and merely disseminating health-related information does not always lead to the desired action from the user. A meta-analysis has demonstrated that self-efficacy affects a person's propensity to carry out a specific action (Guntzviller et al. 2017; Kim 2024). At present, self-efficacy exerts two principal influences on health outcomes: the first is to affect physiological stress responses, and the second is to modify how health-related behaviors are performed. Research on SWHP in healthcare has revealed that self-efficacy is a core factor in user involvement with health-related applications and devices (Asimakopoulos et al. 2017). Along with guiding the adoption of HPB and strongly predicting engagement in health promotion lifestyles

(Grembowski et al. 1993; Jackson et al. 2007; Resnick and Nigg 2003), it also mediates the relationship between behavior results and technological usage (Myneni et al. 2016). Thus, the following hypothesis is proposed:

H2: Self-efficacy positively influences health promotion behaviors when using SWHP.

Data management. Data management includes the process of collecting, analyzing, updating, and information searching (James et al. 2019). It provides performance feedback by monitoring users' activities and attitudes (Suh and Li 2022). Information processing can be directly impacted by a person's emotional state. On the other hand, an individual's affect may alter because of information processing (Mantello et al. 2023). Jafarlou et al. (2023) experimentally illustrated the feasibility of using the SWHP to continually track users' sleep, metabolism, and physical activity patterns to predict positive affect. Kim (2021) found that a wearable device that shows a user's workout progress can boost their positive emotions and lower the negative ones.

Individual information based on personal traits will surely be necessary for the future development of e-health tools. It has been shown that the development of information technology promotes better self-management and self-efficacy (Ilioudi et al. 2010). By Liu et al. (2020), using activity trackers to regularly review data has been proposed to enhance user efficacy. Choe et al. (2013) investigated how self-efficacy was impacted by the data presentation and framing during data collection. Williams and French (2011) demonstrated that providing users with specific instructions about when, where, and how to perform exercise behaviors was also associated with increased self-efficacy. Moreover, researchers have found how self-efficacy dynamics while seeking information online (Chiou and Wan 2007). Through the process of collecting, evaluating, and searching for data, users can increase their ability to self-perception. Thus, the following hypothesis is proposed:

H3a-b: Data management positively influences positive affect (H3a) and self-efficacy (H3b) when using SWHP.

H3c: Positive affect mediates the relationship between data management and health promotion behaviors when using SWHP. H3d: Self-efficacy mediates the relationship between data management and health promotion behaviors when using SWHP.

Exercise control. Reminders, rewards, and goal management are all part of exercise control (James et al. 2019). It gives users authority over behaviors associated with health like eating, running, keeping early hours, and taking regular medications. Sweatcoin has been used to illustrate how reward apps can raise positive affect and exercise levels (Lemola et al. 2021). In addition, when self-tracking users engage in physical activities, performance feedback is used to assess how well their current goals are being met, which in turn stimulates both positive and negative replies (Prasopoulou 2017).

Exercise self-efficacy and exercise behavior have been shown to be related, and that beliefs formed during interventions are critical in sustaining exercise behavior (Neupert et al. 2009). As stated by Olander et al. (2013), one popular method for enhancing self-efficacy among elder people is integrating behavior change techniques (BCT) into the planning of fitness regimens. Devices with a variety of eHealth strategies that present instant information at vital decision-making or result points can be effective in changing user behavior and raising competence perceptions (Intille 2004; Prestwich et al. 2016; Spook et al. 2016). Further, multiple programmed algorithms can also be targeted to impact self-efficacy. For instance, Kranz et al. (2013) developed the GymSkill app to show users customized goals and maintain a

greater level of self-efficacy. Langrial and Lappalainen (2016) and Kuonanoja et al. (2015) investigated the effectiveness of certain BCTs in depressed patients' self-efficacy. Gualtieri et al. (2016) found that goal reminders, satisfaction reporting, and feedback on daily routines improved users' self-efficacy. Thus, the following hypothesis is proposed:

H4a-b: Exercise control positively influences positive affect (H4a) and self-efficacy (H4b) when using SWHP.

H4c: Positive affect mediates the relationship between exercise control and health promotion behaviors when using SWHP.

H4d: Self-efficacy mediates the relationship between exercise control and health promotion behaviors when using SWHP.

Social interaction. Social interactions include sharing, encouragement, competition, comparison, and coaching (James et al. 2019). Users can interact, learn, or compete with others in SWHP as well as share their data and experiences (Suh and Li 2022). Prior studies have indicated that positive emotions and health are related through the stress-buffering effects, as well as by fostering healthier habits and enhancing social interactions (Cohen and Pressman 2006; Ong 2010). Since we are social creatures, it is natural to interact and communicate with others in daily life (Castiello et al. 2010). As a result, wearable devices that integrate social components into their hardware may appeal to a variety of users (Koh et al. 2021). Additionally, popularity and interpersonal ties can stimulate positive emotions. For example, the position of the traditional gym personal trainer has been substantially replaced by the introduction of online coaching technology (Araujo 2018). This change may foster a more favorable affective disposition towards the device in issue, leading to an overall positive experience of the technology (Muntaner-Mas et al. 2019). Social cues like other users' experiences, views, and progress can also have a positive impact on users' perceptions, affect, and attitudes (Hosseinpour and Terlutter 2019).

Encouraging social interaction as a key element of SWHP design for people who exhibit social isolation and loneliness can aid in removing obstacles to greater physical exercise (Fan et al. 2012). Regarding the wearables' social characteristics, Rieder et al. (2021) discussed vicarious experience, which is the notion that people believe they can do it after seeing someone else complete it or learning that someone else can do it. Users are encouraged to equal or exceed the performance of others by this engagement and sense of competition, which also helps to increase self-efficacy. Compared to extra long-term research, family support contributed to increased self-efficacy when utilizing e-health interventions (McCormack et al. 2022), and Kettunen et al. (2020) explored how digital coaching affected users' self-efficacy in physical activity within the setting of online coaching. Thus, the following hypothesis is proposed:

H5a-b: Social interaction positively influences positive affect (H5a) and self-efficacy (H5b) when using SWHP.

H5c: Positive affect mediates the relationship between social interaction and health promotion behaviors when using SWHP.

H5d: Self-efficacy mediates the relationship between social interaction and health promotion behaviors when using SWHP.

Esthetic pleasure. Hekkert (2006) argues that any type of experience has an esthetic component. The technology and functionality of SWHP used to be the sole factors driving user purchases. Nowadays, users are beginning to incorporate design features and their associated psychological benefits into the scope (Pateman et al. 2018; Maragiannis and Ashford 2019). A pleasant subjective experience focused on an object that is unaffected by outside reasoning and has the potential to raise the object's evaluation as a favorable esthetic response is known as esthetic

pleasure (Reber et al. 2004). Cho et al. (2019) found that both technical and esthetic features of smartwatches were positively correlated with feelings of enjoyment. From an esthetic point of view, Wang and Hsu (2020) showed how the screen shape and interface design of a smartwatch might influence positive emotional reactions from users. Lee (2022) examined consumer evaluations of the visual esthetics of wearable devices and discovered that the visual experience has a positive impact on consumers' enjoyment.

Furthermore, components like the appearance, fonts, and colors of SWHP can affect someone's feelings toward participation in physical activity. The design and esthetic appeal of wearable devices may draw in young individuals (Dehghani et al. 2018). The size, configuration, and unique characteristics of a device can have an enormous effect on the user's propensity to keep using it (Hsiao and Chen 2018; Jung et al. 2016). In a general way, an individual's sensory impressions of themselves can trigger suitable actions. Self-efficacy is a measure of one's capacity toward performing some particular action. Some fields have corroborated this in both directions. For instance, Lee et al. (2015) discovered that the self-efficacy of wearable AR users was positively correlated with esthetic experience. Miller (2011) noticed that esthetic design interventions increased users' selfassessment time and task performance, and this ultimately affected users' competence and behaviors. Thus, the following hypothesis is proposed:

H6a-b: Esthetic pleasure positively influences positive affect (H6a) and self-efficacy (H6b) when using SWHP.

H6c: Positive affect mediates the relationship between esthetic pleasure and health promotion behaviors when using SWHP.

H6d: Self-efficacy mediates the relationship between esthetic pleasure and health promotion behaviors when using SWHP.

The model relies on the assumption that health promotion behaviors may be influenced by the technical and esthetic elements of SWHP (see Fig. 1). It is proposed that the relationship between technical esthetic elements and HPB is mediated by the user's positive affect and self-efficacy.

Methods and analysis

Data collection. Data were collected on the star platform by online questionnaire between 23 July and 9 September 2024 (https://www.sojump.com). Participants were recruited through (1) targeted postings in WeChat health-related groups and (2) electronic invitations sent to university students and faculty. Before accessing the questionnaire, all participants were required to read an informed consent page stating the purpose of the study, the voluntary nature of participation, and measures of anonymity. Only those who ticked the checkboxes to obtain explicit consent were allowed to proceed. The questionnaire took approximately 8 min to complete. The study was ethically approved, no personally identifiable information was collected, and participants could withdraw at any stage without penalty. Participants who meet the user criteria and complete the questionnaire will get extra prizes. It includes (1) a red packet worth 8.80 yuan; (2) a red packet worth 5.50 yuan; (3) six bottles of yogurt; or (4) thank you for participation. A total of 542 questionnaires were returned. Excluding the questionnaires with abnormal answer times and overly consistent responses, the final valid data was 506, with an effective recovery rate of 93.4%. Fulfilling the suggested criteria for statistical evaluation (Hair et al. 2012).

In the survey, most participants had attained advanced education (Bachelor degree and above, n = 435, 86%). And the female respondents were in a greater percentage (n = 318, 62.8%), which reflected the current marketing trend that women's

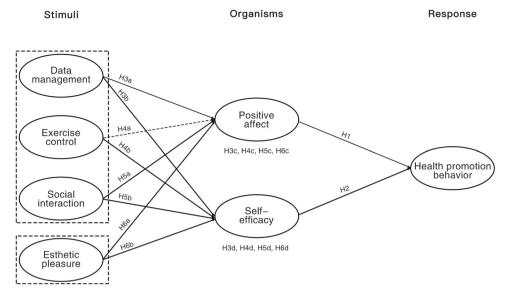


Fig. 1 Research model. The path relationships of the constructed research model. This figure is self-drawn by the author.

ownership of wearable devices is significantly higher than men's (Shandhi et al. 2024). Meanwhile, over half of the users had been with SWHP for less than a year (n = 265, 52.4%, shown in Table 1).

Measurement development. The study's structure was assessed by a five-point Likert scale that ranged from "1 = totally disagree" to "5 = totally agree". Each of the selected measures came from previous empirical research and was appropriately adapted for the SWHP setting. In particular, the technical elements of the SWHP were derived from the research executed by James et al. (2019). The esthetic elements were derived from the research executed by Blijlevens et al. (2017). In terms of the user's psychological variables, positive affect was measured by Watson et al. (1988), and self-efficacy was measured by Becker et al. (1993). Finally, the HPB scale was obtained from Walker et al. (1995). All of the variables' data were collected before the demographic information.

Results

Common method bias test. As all variables measured in the study were self-reported by SWHP users, there is a possibility of common method bias in the data obtained from the analyzes. According to Podsakoff et al. (2003), the Harman's one-factor analysis was conducted (software package: IBM SPSS Statistics 27.0). We extracted seven factors with eigenvalues greater than 1, and the first factor accounted for 35.367% of the total variance, illustrating the data did not exhibit serious common method bias. Meanwhile, the fit data of the one-factor model and measurement model were compared through the Amos 28.0. The fit of the one-factor model ($X^2/df = 10.496$, RMSEA = 0.137) was much lower than the proposed model ($X^2/df = 1.710$, RMSEA = 0.037). It further supports that the control of common method bias in this paper is appropriate.

Reliability and validity. The research used the software IBM SPSS Statistics 27.0 and Amos 28.0 to test the reliability and validity. Table 2 showed that Cronbach's alpha and CR values for all variables exceeded the acceptable standard of 0.7, indicating a satisfactory level of internal reliability for the scale (Nunnally and Bernstein 2010). The factor loadings exceeded 0.6 (Jia et al. 2024;

Ozdemir et al. 2022; Polyportis and Pahos 2025; Sang et al. 2023; Sivarajah et al. 2024; Song and Kim 2022), and AVE exceeded 0.5 (Bagozzi et al. 1991; Fornell and Larcker 1981), suggesting an adequate convergent validity.

Then, we examined the model fit. The following is the overall index: $X^2/df = 1.710$, RMSEA = 0.037, TLI = 0.963, CFI = 0.967, IFI = 0.967, SRMR = 0.038. As posited by Byrne et al. (1998), the model is deemed satisfactory if the CFI exceeds 0.9 and the RMSEA is below 0.08. This indicates that the measurement and the model are well aligned. In accordance with Fornell and Larcker (1981), Table 3 presents data's discriminant validity. And HTMT (Henseler et al. 2015) was additionally conducted to avoid the limitations (shown in Table 4). Table 5 shows the correlation coefficients, the Means, and SD.

Test of structural model. After controlling the age variable in demographic traits (Chandrasekaran et al. 2020), the path relationships were investigated. The influence elements of SWHP still have a significant impact on HPB. Figure 2 displays the findings. Data management ($\beta = 0.138$, p < 0.01), social interaction $(\beta = 0.254, p < 0.001)$, and esthetic pleasure $(\beta = 0.388, p < 0.001)$ significantly influence user's positive affect, which verifies H3a, H5a, H6a respectively. H4a is not supported by the limited correlation between exercise control and positive affect ($\beta = 0.069$, p > 0.05). Data management ($\beta = 0.198$, p < 0.001), exercise control ($\beta = 0.213$, p < 0.001), social interaction ($\beta = 0.169$, p < 0.001), and esthetic pleasure ($\beta = 0.319$, p < 0.001) were discovered to have an outstanding effect on self-efficacy, indicating H3b–H6b. Meanwhile, both positive affect ($\beta = 0.148$, p < 0.01) and self-efficacy ($\beta = 0.221$, p < 0.001) noticeable impact on HPB, confirming H1 and H2 (summarized in Table 6).

Mediation effects. Finally, the study used a Bootstrap mediation effects test to further examine whether the impact of the technical and esthetic components of SWHP on health promotion behaviors is contributed by positive affect and self-efficacy. If the confidence interval excludes zero, it will indicate a significant mediation effect (Hayes 2017). Tables 7 and 8 show that self-efficacy was a partial mediation between the technical esthetic elements of SWHP and HPB. The association between HPB and data management, social interaction, and esthetic pleasure was

Demographics	Categories	Frequency	Percentage
Sex	Male	188	37.2%
	Female	318	62.8%
Education	Junior high and	5	1.0%
	below		
	High school	5	1.0%
	Associate degree	61	12.1%
	Bachelor degree and	435	86.0%
	above		
Age(Years)	18-30	368	72.7%
	31-40	54	10.7%
	41-50	20	4.0%
	51-60	17	3.4%
	Above 60	47	9.3%
Occupation	Government-	83	16.4%
	sponsored		
	institution		
	Private sector	58	11.5%
	State-owned sector	46	9.1%
	Self-employed sector	45	8.9%
	Retirees	39	7.7%
	Student	229	45.3%
	Others	6	1.2%
Monthly disposable	3000 Chinese yuan	128	25.3%
income	and below		
	3001-6000 Chinese	171	33.8%
	yuan		
	6001-9000 Chinese	109	21.5%
	yuan		
	Above 9000 Chinese	98	19.4%
	yuan		
health status	Healthy or in good	340	67.2%
	condition	100	10.00/
	Average health	100	19.8%
	Chronic patient	63	12.5%
CVAULID	Major disease	3	0.6%
SWHP brands	Xiaomi	120	23.7%
	Huawei	103	20.4%
	Apple	209	41.3%
	Samsung	27	5.3%
	Keep	45	8.9%
F	Others	2	0.4%
Exercise frequency	3 times/month and	136	26.9%
	below	142	20.20/
	4-8 times/month	143	28.3%
	9-16 times/month 16 times/month and	144	28.5%
		83	16.4%
Hango oversiteres	above	1.41	27.00/
Usage experience	6 months and below	141	27.9%
	6-12 months	124	24.5%
	13-18 months	79 48	15.6%
	19-24 months	48	9.5%
	24 months	114	22.5%
	and above		

partially mediated by positive affect, but there was no evidence of a link between exercise control and HPB.

Discussion

Key findings. Many organizations have been compelled to develop and refine technological capabilities that exceed consumer expectations, driven by dependence on advanced mobile technologies (Jocevski et al. 2020). Yet, for health technologies to deliver real impact, users must begin to internalize the benefits of physical activity. The halo effect describes a situation where the visual appeal of an interface, device, or on-screen character

positively influences users' perceptions of a product's intelligence and reliability (Fogg 2003; Kwak et al. 2019; Lindgaard et al. 2011). This suggests that the use of fitness equipment can be shaped by internal psychological factors triggered by external cues. To explore how technical and esthetic elements affect users' affective responses, sense of efficacy, and HPB, this study introduces a theoretical model.

First, both positive affect and self-efficacy had a significant impact on HPB (H1, H2). This indicates that positive affect can trigger immediate behavioral outcomes. Organisms are selforganizing systems (Colombetti 2003); emotionally charged information from the outside world becomes embedded in the individual and, once internalized, can lead to behavioral benefits. These benefits strengthen the user's affective feedback loop, creating a circular mechanism that helps sustain HPB over time. Additionally, the observed link between self-efficacy and HPB aligns with the findings of Ebstrup et al. (2011) and Morowatisharifabad et al. (2006). In the context of fitness technologies, once individuals believe they can successfully carry out a healthrelated activity, they not only experience a shift in motivational intent but also follow through with actual behavioral execution. This mirrors attribution theory (Weiner 1985), where attributing success to one's own abilities leads to continued effort and longterm behavioral commitment.

Second, data management was found to have a strong influence on users' positive affect and self-efficacy (H3a, H3b). This result shows a slight departure from earlier studies (Andersen et al. 2020). While the unpredictability of data collection and the ambiguity in task feedback can provoke negative emotions like fear or anxiety, enjoyment emerges when the presented data aligns with the user's self-concept. This lends further support to the work of Boldi et al. (2024). Additionally, users' expectations regarding self-regulation are met through data presentation (Lim and Noh 2017). This supports the value of wearables for activity monitoring, which can prompt users to form health-related cognitive responses. When given sufficient time and motivation, individuals tend to engage with persuasive information in a more deliberate and detailed way (Petty and Cacioppo 1986).

Third, exercise control had difficulty triggering positive affect in users, though it showed a strong association with self-efficacy (H4a, H4b). This indicates that device functions such as rewards, reminders, and goal management did not meet expectations in terms of stimulating positive affect, and in some cases may have led to unintended emotional responses. For instance, overly frequent or mechanistic reminders can cause resistance. According to digital common sense, users tend to prefer services that feel personalized (Kim 2021). The emotional responses tied to reward anticipation differ from those evoked by reward satisfaction. A product will contribute to positive affect only when it aligns closely with the user's individual needs and preferences (Hassenzahl et al. 2015). Meanwhile, external control mechanisms can encourage users to engage in health-related activities (Azizan et al. 2013; Gür et al. 2020). This subtle behavioral shaping reflects the influence of ISA, which steers behavioral decisions and can increase user autonomy in pursuing desired outcomes (Burr et al. 2018). When users deviate from expected behaviors, they may experience small penalties, such as increased cognitive burden or information overload.

Fourth, social interaction was found to stimulate both positive affect and self-efficacy (H5a, H5b). This supports the idea that emotional support can be cultivated within online fitness communities (Zellars and Perrewé 2001). The stability and quality of social relationships play a key role in emotional regulation and balance (Lopes et al. 2011). Those with strong social ties are more likely to respond positively to exercise-related stress and emotional fluctuations. Additionally, individuals tend

Construct	Items	Factor loading	Cronbach's α	AVE	CR
Data management	DM1: Gather my exercise data.	0.816	0.887	0.612	0.888
	DM2: Analyze my exercise data.	0.738			
	DM3: Provide me with messages about my exercise progress.	0.807			
	DM4: Search for exercise information (e.g., exercise routes, new exercise routines, etc.).	0.769			
	DM5: Browse exercise information (e.g., exercise routes, new exercise routines, etc.).	0.780			
Exercise	EC1: Set my exercise goals.	0.821	0.893	0.628	0.894
control	EC2: Establish my exercise goals.	0.821			
	EC3: Remind me to do an exercise activity.	0.814			
	EC4: Prompt me when I need to perform an exercise activity.	0.786			
	EC5: Receive rewards (e.g., discounts, points, badges, etc.) for my exercise activities.	0.714			
Social interaction	SI1: Share my exercise data in a public forum (e.g., leaderboard, ranking, social media).	0.817	0.884	0.655	0.884
	SI2: Receive encouraging messages regarding my exercise activities from others.	0.789			
	SI3: Receive expert advice about my exercise regimen from a live coach.	0.815			
	SI4: Have exercise contests with other individuals.	0.816			
Esthetic pleasure	AP1: This is an attractive design	0.791	0.887	0.663	0.887
	AP2: This is representative of a design	0.843			
	AP3: This is a novel design	0.823			
	AP4: This is an orderly design	0.801			
Positive	PA1: I feel attentive	0.777	0.899	0.642	0.900
affect	PA2: I feel enthusiastic	0.812			
	PA3: I feel excited	0.813			
	PA4: I feel proud	0.804			
	PA5: I feel strong	0.799			
Health self-efficacy	SE1: Do exercises that are good for me	0.847	0.884	0.669	0.890
	SE2: Fit exercises into my regular routine	0.802			
	SE3: Eat a balanced diet	0.717			
	SE4: Watch for negative changes in my body's condition	0.896			
Health promotion	HP1: Discuss my health concerns with health professionals.	0.661	0.875	0.540	0.875
behavior	HP2: Get exercise during usual daily activities (such as walking during lunch, using stairs instead of elevators, parking car away from destination, and walking).	0.780			
	HP3: Choose a diet low in fat, saturated fat, and cholesterol.	0.711			
	HP4: Feel I am growing and changing in positive ways.	0.781			
	HP5: Maintain meaningful and fulfilling relationships with others.	0.721			
	HP6: Take some time for relaxation each day.	0.749			

Table 3 Construct correlations and discriminant validity.								
Variable	DM	EC	SI	AP	PA	SE	НРВ	
DM	0.782							
EC	0.338	0.792						
SI	0.193	0.385	0.809					
AP	0.324	0.417	0.425	0.815				
PA	0.328	0.369	0.466	0.554	0.801			
SE	0.401	0.474	0.414	0.528	0.606	0.818		
HPB	0.465	0.529	0.516	0.639	0.606	0.648	0.735	

correlations between constructs. To confirm discriminant validity, diagonal elements should

exceed the off-diagonal elements.

to cluster into groups. Social feedback strengthens users' confidence in their capabilities (Kashian and Liu 2020), making social interaction a meaningful mechanism for sustaining behavioral engagement rather than a peripheral feature.

Table 4 Heterotrait-monotrait ratio (HTMT).								
Variable	DM	EC	SI	AP	PA	SE	НРВ	
DM								
EC	0.299							
SI	0.169	0.344						
AP	0.288	0.380	0.374					
PA	0.294	0.331	0.414	0.499				
SE	0.350	0.426	0.384	0.476	0.552			
HPB	0.398	0.471	0.465	0.567	0.543	0.576		

Fifth, consistent with earlier research (Phillips and Baumgartner 2002), esthetic pleasure was found to contribute to users' positive affect and self-efficacy (H6a, H6b). Esthetic attributes stimulate cognitive engagement, which may affect how individuals act and feel. This mirrors hedonism, where user experience is shaped by item's utilitarian standards. When a product's core features meet hedonic expectations, users often

	Means	SD	DM	EC	SI	AP	PA	SE	HPE
DM	3.337	0.941	1						
EC	3.262	0.935	0.299**	1					
SI	3.071	0.965	0.170**	0.345**	1				
AP	3.355	0.956	0.287**	0.379**	0.375**	1			
PA	3.206	0.868	0.294**	0.330**	0.415**	0.498**	1		
SE	3.318	0.880	0.349**	0.425**	0.386**	0.475**	0.551**	1	
HPB	3.259	0.802	0.399**	0.470**	0.464**	0.567**	0.542**	0.577**	1

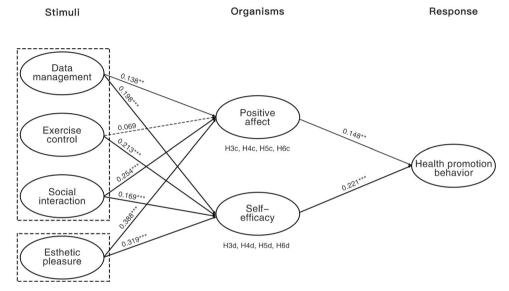


Fig. 2 Estimates of a path analysis. The test results of the model's path relationships. ***p < 0.001, *p < 0.05. This figure is self-drawn by the author.

Table 6 Summary of the hypotheses testing results.								
Hypothesis	Path	Standardized estimates	C.R.	p	Result			
H1	$PA \rightarrow HPB$	0.148	3.079	0.002	Accepted			
H2	$SE \rightarrow HPB$	0.221	4.481	***	Accepted			
НЗа	$DM \rightarrow PA$	0.138	3.067	0.002	Accepted			
НЗЬ	$DM \rightarrow SE$	0.198	4.454	***	Accepted			
H4a	$EC \rightarrow PA$	0.069	1.418	0.156	Rejected			
H4b	$EC \rightarrow SE$	0.213	4.366	***	Accepted			
H5a	$SI \rightarrow PA$	0.254	5.182	***	Accepted			
H5b	$SI \rightarrow SE$	0.169	3.576	***	Accepted			
Н6а	$AP \rightarrow PA$	0.388	7.256	***	Accepted			
H6b	$AP \rightarrow SE$	0.319	6.298	***	Accepted			
***p < 0.001.								

Table 7 The result of direct effects.									
Construct	Effect	Boot SE	95% LLCI	95% ULCI	p value				
DM → HPB	0.165	0.042	0.081	0.244	0.001				
$EC \rightarrow HPB$	0.148	0.044	0.058	0.236	0.001				
$SI \rightarrow HPB$	0.160	0.045	0.072	0.250	0.001				
AP → HPB	0.258	0.055	0.153	0.368	0.001				

Table 8 The result of mediating effects.								
Construct	Effect	Boot SE	95% LLCI	95% ULCI	p value			
$DM \rightarrow PA \rightarrow HPB$	0.020	0.011	0.004	0.045	0.007			
$DM \rightarrow SE \rightarrow HPB$	0.044	0.017	0.015	0.082	0.002			
$EC \rightarrow PA \rightarrow HPB$	0.010	0.009	-0.004	0.031	0.185			
$EC \rightarrow SE \rightarrow HPB$	0.047	0.018	0.015	0.084	0.002			
$SI \rightarrow PA \rightarrow HPB$	0.038	0.016	0.010	0.072	0.004			
$SI \rightarrow SE \rightarrow HPB$	0.037	0.016	0.011	0.074	0.002			
$AP \rightarrow PA \rightarrow HPB$	0.057	0.022	0.018	0.106	0.004			
$AP \rightarrow SE \rightarrow HPB$	0.070	0.022	0.030	0.115	0.001			

experience excitement and satisfaction, encouraging positive word-of-mouth (Chitturi et al. 2008). Interestingly, numerous studies have shown that wearables with appealing designs and distinctive visual structures, viewed as fashion items, significantly increase both adoption rates and usage time (Karahanoğlu and Erbuğ 2011; Bölen 2020). This supports findings related to self-efficacy.

Finally, the link between HPB and technical esthetic aspects was significantly mediated by self-efficacy (H3d, H4d, H5d, H6d), indicating that individuals with higher self-efficacy are more likely to adopt positive HPB and express confidence in the technical esthetic of SWHP (Silva and Lautert 2010). This suggests that users are more inclined to take action when they hold strong beliefs in the effectiveness of the product itself.

Moreover, using exercise control features to promote HPB requires more than just the presence of positive affect (H4c). Combined with earlier findings (H4a), this points to a weak connection between positive affect and exercise control. When HPB falls short of expectations, the influence of positive affect is reduced. However, positive affect served as a meaningful mediator between other technical esthetic elements and HPB (H3c, H5c, H6c). This indicates that the motivational value of HPB increases when positive affect is experienced within the functional design (Van Cappellen et al. 2018). As a result, SWHP may consider this when designing emotion centered approaches aimed at supporting lasting behavioral change.

Theoretical implications. This study contributes to theory in several ways: First, in contrast to earlier research that focused primarily on technical features, this work includes esthetic pleasure to examine how both internal and external elements impact users' affect, efficacy, and HPB. Esthetics have been shown to capture users' attention and maintain interest in system use (Mirdehghani and Monadjemi 2009). A comprehensive assessment of a product's design characteristics helps shape the dimensions of self-expression, which in turn shapes behavior (Kumar and Noble 2016). Second, this study extends the scope of the SOR model by broadening the interpretation of stimuli and organism components to fit the current dataset. Previous investigations into user interaction with SWHP have largely relied on frameworks such as social cognitive theory, self-regulation, selfdetermination, and the theory of planned behavior (Fallon et al. 2019; Gowin et al. 2019; Kerner and Goodyear 2017; Shafique et al. 2019). In contrast, research using the SOR model remains limited. Furthermore, the traditional input-mechanism-output (IMO) framework has often failed to give adequate consideration to users' psychological mechanisms. Many existing studies have reduced user psychology to a single metric—such as motivation or attitude—overlooking how emotional cognition contributes to decision-making biases. To address this, the present study incorporates positive affect into the model, expanding its explanatory depth. Finally, this work improves the literature by highlighting the importance of technical esthetic in shaping HPB and demonstrating the mediating roles of positive affect and selfefficacy in driving users' engagement in HPB.

Managerial implications. This study identified three key technical elements of SWHP that influence users' HPB via positive affect or self-efficacy. In terms of data management, developers should consider users' current behaviors and personal histories, delivering contextualized data analysis in a clear and intuitive manner. Doing so helps maintain positive affect and build selfefficacy. Information should be streamlined—limited to one or a few SWHP pages—so users can make timely, accurate behavioral decisions with ease. For instance, Solos outdoor sunglasses allow users to adjust displayed content and alerts based on fitness level and cycling habits. Beginners can focus on basic metrics like speed and heart rate, while advanced users may prefer detailed cycling statistics. Implementing a feedback system based on regular surveys can help tailor advice to specific user needs. Finetuning data to reflect user perception can lead to more effective emotional and behavioral outcomes. In terms of exercise control, reducing the psychological distance between user and designer is essential for achieving high performance and positive affect. Personalized settings should allow users to fully adjust the device's rewards and notification functions. For example, Fitbit offers more than just points or badges, users who complete targeted challenges can unlock apps that would otherwise require payment. Sustained self-efficacy can also be supported by reinforcing

behavioral cues. The BreatheWear Shawl, for example, applies gentle pressure during deep breathing, creating a sensation similar to a "hug" that reassures the user and promotes calm breathing. This kind of subtle connection to behavioral performance can be one of the most effective ways to activate dormant motivation and encourage consistent health promotion. In the area of social interaction, incorporating social media into health interventions can help maintain user engagement and lead to improved adherence to healthy behaviors (Stragier et al. 2016). Real-time mood analysis systems, along with dedicated emotional feedback panels, can encourage participation by offering timely, supportive responses. As shown in MIT's EQ-Radio, which uses electrical skin activity (EDA) combined with AI to assess emotional states, integrating existing social platforms can increase user confidence and translate it into sustained HPB. Though still a novel idea, we suggest that future work explore the development of features such as "emotional mates."

Second, the findings on esthetic components show that the visual appeal of wearable products is closely tied to both pleasure and meaning, acting as a source of user satisfaction. Users were drawn to SWHP due to its distinctive appearance and design structure. Unlike core technical functions such as alerts and monitoring, the visual identity of the device may play a vital role in distinguishing and shaping the uniqueness of SWHPs. Designers can tap into multi-sensory experiences to increase product character and appeal, incorporating contemporary design elements and distinctive product details such as textures or patterns that contribute to customer satisfaction, brand loyalty, and behavioral engagement. Furthermore, to consistently highlight user effort and progress, the device's structural design could integrate materials and colors that convey positivity and achievement. For example, the RM 65-01 McLaren W1 draws on the visual language of the iconic W1 supercar, presenting a bold, high-performance esthetic that symbolizes a pursuit of speed and boundaries.

Limitations and future research

This study has several limitations. First, it was conducted in China and distributed online. The sample concentrated on young, healthy individuals mostly, which restricts the generalizability of the findings. Future research could compare the role of psychological variables in influencing HPB across different demographic groups and cultural settings. Second, although this research was intended to cover all SWHP, most participants belonged to the bracelet group, largely due to the commonality of these devices. As SWHP continue to evolve, changes in their functions may affect how they are assessed. Third, in aiming for clarity and reliability, the study limited the broader applicability of some items. Future work could focus on refining these items through improved formulation or by dividing them into clearer subdimensions, which may help sharpen their distinctiveness. Additional evaluations could also be made using separate scales for certain items. For instance, Gibbons and Buunk's (1999) Social Comparison Disposition Scale could be used to further examine individual differences. Finally, while the study controlled for the impact of age on the relationship between SWHP elements and HPB, it did not apply detailed stratified sampling or subgroup analysis. Future studies may broaden the sampling scope to examine how dynamic changes in age and health conditions interact to influence the outcomes of wearable device usage.

Conclusion

By integrating the SOR model with the IMO framework of mobile health development, the technical and esthetic elements of SWHP are identified in this study as a significant influencing factors for the psychological mechanisms and health promotion behaviors of users. Data management, social interaction, and esthetic pleasure induce positive affect in users, with such affect exerting influence on health promotion behaviors through the partial mediating effect. Exercise control plays no role in the prediction of positive affect, nor is any significant mediating effect observed between the two. Self-efficacy is significantly related to the technical and esthetic elements of SWHP (data management, exercise control, social interaction and esthetic pleasure), playing a partial mediating role in the relationship between the above elements and HPB.

These findings provide valuable reference for the practical implications of SWHP. In terms of product development, it is crucial not only to focus attention on the professionalism in functionalities and shape esthetics, but also to enhance the positive affect and sustainable self-efficacy brought about by the technical and esthetic characteristics of the product. In terms of brand marketing, it is necessary to carry out the intervention of positive affect and self-efficacy through data management, exercise control, social interaction and esthetic pleasure elements for a direction shift in brand marketing from focusing a tool or product to a health partner, which extends brand marketing dimension. In terms of industrial development, the results of this study gain insights into the sustainable development of SWHP and the long-term impact of users' health promotion behaviors.

Data availability

Data supporting the findings of this article will be made available by the authors, without undue reservation.

Received: 9 December 2024; Accepted: 2 September 2025; Published online: 15 October 2025

References

- Abernethy A, Adams L, Barrett M et al. (2022) The promise of digital health: then, now, and the future. NAM Perspect 6:108–116. https://doi.org/10.31478/202206e
- AI-Emran M, Al-Maroof R, Al-Sharafi MA et al. (2022) What impacts learning with wearables? An integrated theoretical model. Interact Learn Environ 30(10):1897–1917. https://doi.org/10.1080/10494820.2020.1753216
- Amaya Rivas A, Liao YK, Vu MQ et al. (2022) Toward a comprehensive model of green marketing and innovative green adoption: application of a stimulus-organism-response model. Sustainability 14(6):3288. https://doi.org/10.3390/su14063288
- Andersen TO, Langstrup H, Lomborg S (2020) Experiences with wearable activity data during self-care by chronic heart patients: qualitative study. J Med Internet Res 22(7):e15873. https://doi.org/10.2196/15873
- Araujo T (2018) Living up to the chatbot hype: the influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Comput Hum Behav 85(85):183–189. https://doi.org/ 10.1016/j.chb.2018.03.051
- Asimakopoulos S, Asimakopoulos G, Spillers F (2017) Motivation and user engagement in fitness tracking: heuristics for mobile healthcare wearables. Informatics 4(1):5. https://doi.org/10.3390/informatics4010005
- Azizan A, Justine M, Kuan CS (2013) Effects of a behavioral program on exercise adherence and exercise self-efficacy in community-dwelling older persons. Curr Gerontol Geriatr Res 2013(1):282315. https://doi.org/10.1155/2013/282315
- Bagozzi RP, Yi Y, Phillips LW (1991) Assessing construct validity in organizational research. Admin Sci Quart 36(3):421–458. https://doi.org/10.2307/2393203
- Bandura A (1997) Self-efficacy: the exercise of control. W.H. Freeman and Company, New York. https://doi.org/10.5860/choice.35-1826
- Bandura A (2014) Self-efficacy mechanism in psychobiologic functioning. In: Schwarzer R (ed) Self-efficacy: thought control of action, 1st edn. Taylor & Francis, New York, pp 355–394
- Becker H, Stuifbergen A, Oh HS et al. (1993) Self-rated abilities for health practices: a health self-efficacy measure. Health Val J Health Behav Educ Promot 17(5):42–50

- Beg S, Handa M, Shukla R et al. (2022) Wearable smart devices in cancer diagnosis and remote clinical trial monitoring: transforming the healthcare applications. Drug Discov Today 27(10):103314. https://doi.org/10.1016/j.drudis. 2022.06.014
- Berriche M, Altay S (2020) Internet users engage more with phatic posts than with health misinformation on Facebook. Palgrave Commun 6(1):1–9. https://doi.org/10.1057/s41599-020-0452-1
- Blijlevens J, Thurgood C, Hekkert P et al. (2017) The aesthetic pleasure in design scale: the development of a scale to measure aesthetic pleasure for designed artifacts. Psychol Aesthet Creat 11(1):86–98. https://doi.org/10.1037/ aca0000098
- Boldi A, Silacci A, Boldi MO et al. (2024) Exploring the impact of commercial wearable activity trackers on body awareness and body representations: a mixed-methods study on self-tracking. Comput Hum Behav 151:108036. https://doi.org/10.1016/j.chb.2023.108036
- Bölen MC (2020) Exploring the determinants of users' continuance intention in smartwatches. Technol Soc 60(1):101209. https://doi.org/10.1016/j.techsoc. 2019.101209
- Burr C, Cristianini N, Ladyman J (2018) An analysis of the interaction between intelligent software agents and human users. Mind Mach 28(4):735–774. https://doi.org/10.1007/s11023-018-9479-0
- Byrne BM, Baron P, Balev J (1998) The beck depression inventory: a cross-validated test of second-order factorial structure for Bulgarian adolescents.

 Educ Psychol Meas 58(2):241–251. https://doi.org/10.1177/0013164498058002007
- Canhoto AI, Arp S (2017) Exploring the factors that support the adoption and sustained use of health and fitness wearables. J Market Manag 33(1–2):32–60. https://doi.org/10.1080/0267257x.2016.1234505
- Castiello U, Becchio C, Zoia S et al. (2010) Wired to be social: the ontogeny of human interaction. PLoS ONE 5(10):e13199. https://doi.org/10.1371/journal.pone.0013199
- Chandrasekaran R, Katthula V, Moustakas E (2020) Patterns of use and key predictors for the use of wearable health care devices by US adults: insights from a national survey. J Med Internet Res 22(10):e22443. https://doi.org/10.2196/22443
- Cheng JW, Mitomo H (2017) The underlying factors of the perceived usefulness of using smart wearable devices for disaster applications. Telemat Inf 34(2):528–539. https://doi.org/10.1016/j.tele.2016.09.010
- Chiang JH, Yang PC, Tu H (2014) Pattern analysis in daily physical activity data for personal health management. Pervasive Mob Comput 13:13–25. https:// doi.org/10.1016/j.pmcj.2013.12.003
- Chib A, Lin SH (2018) Theoretical advancements in mHealth: a systematic review of mobile apps. J Health Commun 23(10–11):909–955. https://doi.org/10. 1080/10810730.2018.1544676
- Chiou WB, Wan CS (2007) The dynamic change of self-efficacy in information searching on the internet: influence of valence of experience and prior selfefficacy. J Psychol 141(6):589–603. https://doi.org/10.3200/jrlp.141.6.589-604
- Chitturi R, Raghunathan R, Mahajan V (2008) Delight by design: the role of hedonic versus utilitarian benefits. J Mark 72(3):48–63. https://doi.org/10. 1509/JMKG.72.3.048
- Cho WC, Lee KY, Yang SB (2019) What makes you feel attached to smartwatches? The stimulus-organism-response (S-O-R) perspectives. Inf Technol People 32(2):319–343. https://doi.org/10.1108/itp-05-2017-0152
- Choe EK, Lee B, Munson S et al. (2013) Persuasive performance feedback: the effect of framing on self-efficacy. AMIA Annu Symp Proc 2013:825–833
- Cohen S, Pressman SD (2006) Positive affect and health. Curr Dir Psychol Sci 15(3):122–125. https://doi.org/10.1111/j.0963-7214.2006.00420.x
- Colombetti G (2003) Complexity as a new framework for emotion theories. Log Philos Sci 1(1):1–16
- Dehghani M, Kim KJ, Dangelico RM (2018) Will smartwatches last? Factors contributing to intention to keep using smart wearable technology. Telemat Inf 35(2):480–490. https://doi.org/10.1016/j.tele.2018.01.007
- Diener E, Chan MY (2011) Happy people live longer: subjective well-being contributes to health and longevity. Appl Psychol Health WellBeing 3(1):1–43. https://doi.org/10.1111/j.1758-0854.2010.01045.x
- Dimou E, Manavis A, Papachristou E et al. (2017) A conceptual design of intelligent shoes for pregnant women. In: Rinaldi R, Bandinelli R (eds) Business models and ICT technologies for the fashion supply chain. IT4Fashion 2016. Lecture notes in electrical engineering, vol 413. Springer, Cham, pp 69–77. https://doi.org/10.1007/978-3-319-48511-9_6
- Dunn J, Runge R, Snyder M (2018) Wearables and the medical revolution. Pers Med 15(5):429–448. https://doi.org/10.2217/pme-2018-0044
- Ebstrup JF, Eplov LF, Pisinger C (2011) Association between the five factor personality traits and perceived stress: is the effect mediated by general self-efficacy? Anxiety Stress Copin 24(4):407–419. https://doi.org/10.1080/10615806.2010.540012
- Fallon M, Spohrer K, Heinzl A (2019) Wearable devices: a physiological and self-regulatory intervention for increasing attention in the workplace. In: Davis F,

- Riedl R, Vom Brocke J, Léger PM, Randolph A (eds) Information systems and neuroscience. Lecture notes in information systems and organisation, vol 29. Springer, Cham, pp 229–238. https://doi.org/10.1007/978-3-030-01087-4_28
- Fan C, Forlizzi J, Dey A (2012) Considerations for technology that support physical activity by older adults. Paper presented at the 14th international ACM SIGACCESS conference on Computers and accessibility, Carnegie Mellon University, Pittsburgh, 22–24 Oct 2012. https://doi.org/10.1145/2384916. 2384923
- Fogg BJ (2003) Persuasive technology: using computers to change what we think and do. Morgan Kaufmann, Amsterdam
- Fang Y, Gao X, Sun C et al. (2024) The mediating role of health consciousness in the relation between time-related personality and health-promoting behavior. Curr Psychol 43(4):3649–3656. https://doi.org/10.1007/s12144-023-04617-x
- Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Mark Res 18(1):39–50. https:// doi.org/10.2307/3151312
- Gibbons FX, Buunk BP (1999) Individual differences in social comparison: development of a scale of social comparison orientation. J Pers Soc Psychol 76(1):129. https://doi.org/10.1037/0022-3514.76.1.129
- Gowin M, Wilkerson A, Maness S et al. (2019) Wearable activity tracker use in young adults through the lens of social cognitive theory. Am J Health Educ 50(1):40–51. https://doi.org/10.1080/19325037.2018.1548314
- Grembowski D, Patrick D, Diehr P et al. (1993) Self-efficacy and health behavior among older adults. J Health Soc Behav 34(2):89. https://doi.org/10.2307/2137237
- Gualtieri L, Rosenbluth S, Phillips J (2016) Can a free wearable activity tracker change behavior? The impact of trackers on adults in a physician-led wellness group. JMIR Res Protoc 5(4):e237. https://doi.org/10.2196/resprot.6534
- Guntzviller LM, King AJ, Jensen JD et al. (2017) Self-efficacy, health literacy, and nutrition and exercise behaviors in a low-income, Hispanic population. J Immigr Minor Health 19(2):489–493. https://doi.org/10.1007/s10903-016-0384-4
- Gür F, Gür GC, Ayan V (2020) The effect of the ERVE smartphone app on physical activity, quality of life, self-efficacy, and exercise motivation for inactive people: a randomized controlled trial. Eur J Integr Med 39:101198. https:// doi.org/10.1016/j.eujim.2020.101198
- Hair JF, Sarstedt M, Ringle CM et al. (2012) An assessment of the use of partial least squares structural equation modeling in marketing research. J Acad Mark Sci 40(3):414–433. https://doi.org/10.1007/s11747-011-0261-6
- Hassenzahl M, Wiklund-Engblom A, Bengs A et al. (2015) Experience-oriented and product-oriented evaluation: psychological need fulfillment, positive affect, and product perception. Int J Hum Comput Int 31(8):530–544. https:// doi.org/10.1080/10447318.2015.1064664
- Hayes AF (2017) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guilford Publications, New York
- Hekkert P (2006) Design aesthetics: principles of pleasure in design. Psychol Sci 48(2):157
- Henseler J, Ringle CM, Sarstedt M (2015) A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci 43:115–135. https://doi.org/10.1007/s11747-014-0403-8
- Hosseinpour M, Terlutter R (2019) Your personal motivator is with you: a systematic review of mobile phone applications aiming at increasing physical activity. Sports Med 49(9):1425–1447. https://doi.org/10.1007/s40279-019-01128-3
- Hsiao KL, Chen CC (2018) What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telemat Inf 35(1):103–113. https://doi.org/10.1016/j.tele.2017.10.002
- Hu X, Huang Q, Zhong X et al. (2016) The influence of peer characteristics and technical features of a social shopping website on a consumer's purchase intention. Int J Inf Manag 36(6):1218–1230. https://doi.org/10.1016/j.ijinfomgt.2016.08.005
- Huang D, Chen Q, Huang S et al. (2024) Consumer intention to use service robots: a cognitive-affective-conative framework. Int J Contemp Hosp Manag 36(6):1893–1913. https://doi.org/10.1108/IJCHM-12-2022-1528
- Ilioudi S, Lazakidou A, Tsironi M (2010) Information and communication technologies for better patient self-management and self-efficacy. Int J Electron Health 5(4):327. https://doi.org/10.1504/ijeh.2010.036205
- Intille SS (2004) A new research challenge: persuasive technology to motivate healthy aging. IEEE Trans Inf Technol Biomed 8(3):235–237. https://doi.org/ 10.1109/titb.2004.835531
- Iyawa GE, Herselman M, Botha A (2016) Digital health innovation ecosystems: from systematic literature review to conceptual framework. Procedia Comput Sci 100:244–252. https://doi.org/10.1016/j.procs.2016.09.149
- Jackson ES, Tucker CM, Herman KC (2007) Health value, perceived social support, and health self-efficacy as factors in a health-promoting lifestyle. J Am Coll Health 56(1):69–74. https://doi.org/10.3200/jach.56.1.69-74
- Jafarlou S, Lai J, Azimi I et al. (2023) Objective prediction of next-day's affect using multimodal physiological and behavioral data: algorithm development and validation study. JMIR Form Res 7(1):e39425. https://doi.org/10.2196/39425

- James TL, Wallace L, Deane JK (2019) Using organismic integration theory to explore the associations between users' exercise motivations and fitness technology feature set use. MIS Q 43(1):287–312. https://doi.org/10.25300/ misq/2019/14128
- Jia G, Fan DX, Xu J et al. (2024) Tourist prosocial behavior: scale development and its role between tourist destination social exclusion and wellbeing. J Sustain Tour 32(12):2518–2539. https://doi.org/10.1080/09669582.2023.2289357
- Jia M, Cheng J (2024) Effect of teacher social support on students' emotions and learning engagement: a U.S.-Chinese classroom investigation. Humanit Soc Sci Commun 11(1):1–9. https://doi.org/10.1057/s41599-024-02634-0
- Jocevski M, Arvidsson N, Ghezzi A (2020) Interconnected business models: present debates and future agenda. J Bus Ind Mark 35(6):1051–1067. https://doi.org/ 10.1108/jbim-06-2019-0292
- Jung Y, Choi B, Cho W (2021) Group satisfaction with group work under surveillance: the stimulus-organism-response (SOR) perspective. Telemat Inf 58(3):101530. https://doi.org/10.1016/j.tele.2020.101530
- Jung Y, Kim S, Choi B (2016) Consumer valuation of the wearables: the case of smartwatches. Comput Hum Behav 63:899–905. https://doi.org/10.1016/j. chb.2016.06.040
- Karahanoğlu A, Erbuğ Ç (2011) Perceived qualities of smart wearables: determinants of user acceptance. In: Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces, Middle East Technical University, Ankara/Turkey, 22–25 June. https://doi.org/10.1145/2347504. 2347533
- Kashian N, Liu Y (2020) Posting exercise activity on social media for self-efficacy and well-being. South Commun J 85(2):1–12. https://doi.org/10.1080/ 1041794x.2019.1658801
- Kerner C, Goodyear VA (2017) The motivational impact of wearable healthy lifestyle technologies: a self-determination perspective on fitbits with adolescents. Am J Health Educ 48(5):287–297. https://doi.org/10.1080/19325037. 2017.1343161
- Kettunen E, Kari T, Makkonen M et al. (2020) Young elderly and digital coaching: a quantitative intervention study on exercise self-efficacy. Paper presented at the 33rd Bled eConference: enabling technology for a sustainable society, University of Maribor, Slovenia, 28–29 June 2020. https://doi.org/10.18690/978-961-286-362-3.32
- Kim EA, Chung YK, Kim KS (2000) A study on the relations of health promoting daily life style and self-efficiency in boys' high. J Korean Soc Sch Health 13(2):241–259
- Kim HI (2024) Exploring the interplay of language mindsets, self-efficacy, engagement, and perceived proficiency in L2 learning. Humanit Soc Sci Commun 11(1):1–9. https://doi.org/10.1057/s41599-024-03783-y
- Kim M (2021) Conceptualization of e-servicescapes in the fitness applications and wearable devices context: multi-dimensions, consumer satisfaction, and behavioral intention. J Retail Consum Serv 61(4):102562. https://doi.org/10. 1016/j.jretconser.2021.102562
- Koh A, Swanepoel DW, Ling A et al. (2021) Digital health promotion: promise and peril. Health Promot Int 36(Suppl 1):i70–i80. https://doi.org/10.1093/heapro/ daab134
- Kranz M, Möller A, Hammerla N et al. (2013) The mobile fitness coach: towards individualized skill assessment using personalized mobile devices. Pervasive Mob Comput 9(2):203–215. https://doi.org/10.1016/j.pmcj.2012.06.002
- Kumar M, Noble CH (2016) Beyond form and function: why do consumers value product design? J Bus Res 69(2):613–620. https://doi.org/10.1016/j.jbusres. 2015.05.017
- Kuonanoja L, Langrial S, Lappalainen R et al. (2015) Treating depression with a behavior change support system without face-to-face therapy. AIS Trans Hum Comput Interact 7(3):192–210. https://doi.org/10.17705/1thci.00072
- Kwak DH, Ramamurthy KR, Nazareth DL (2019) Beautiful is good and good is reputable: multiple-attribute charity website evaluation and initial perceptions of reputation under the halo effect. J Assoc Inf Syst 20(11):3. https://doi. org/10.17705/1jais.00580
- Langrial SU, Lappalainen P (2016) Information systems for improving mental health: six emerging themes of research. Paper presented at the 20th Pacific Asia Conference on Information Systems, University of Jyväskylä, Finland, 27 June 2016. https://aisel.aisnet.org/pacis2016/16
- Lee B, Kim J (2019) The effect of health promotion behavior on emotional happiness. Int J Adv Cult Technol 7(1):20–27. https://doi.org/10.17703/ijact. 2019.7.1.20
- Lee EJ (2022) Do tech products have a beauty premium? The effect of visual aesthetics of wearables on willingness-to-pay premium and the role of product category involvement. J Retail Consum Serv 65(2):102872. https://doi. org/10.1016/j.jretconser.2021.102872
- Lee H, Chung N, Koo C (2015) Moderating effects of distrust and social influence on aesthetic experience of augmented reality: motivation-opportunity-ability model perspective. Paper presented at the 17th International Conference on Electronic Commerce 2015, Kyung Hee University, Seoul, 3–5 August 2015. https://doi.org/10.1145/2781562.2781588

- Lemola S, Gkiouleka A, Read B et al. (2021) Can a "rewards-for-exercise app" increase physical activity, subjective well-being and sleep quality? An open-label single-arm trial among university staff with low to moderate physical activity levels. BMC Public Health 21(1):782. https://doi.org/10.1186/s12889-021-10794-w
- Li C, Lin SH, Chib A (2021) The state of wearable health technologies: a transdisciplinary literature review. Mob Media Commun 9(2):353–376. https://doi. org/10.1177/2050157920966023
- Li P, Wu C, Spence C (2023) Comparing the influence of visual information and the perceived intelligence of voice assistants when shopping for sustainable clothing online. Humanit Soc Sci Commun 10(1):1–12. https://doi.org/10.1057/s41599-023-02244-2
- Lim JS, Noh GY (2017) Effects of gain-versus loss-framed performance feedback on the use of fitness apps: mediating role of exercise self-efficacy and outcome expectations of exercise. Comput Hum Behav 77(12):249–257. https://doi. org/10.1016/j.chb.2017.09.006
- Lindgaard G, Dudek C, Sen D et al. (2011) An exploration of relations between visual appeal, trustworthiness and perceived usability of homepages. ACM Trans Comput Hum Int 18(1):1–30. https://doi.org/10.1145/1959022. 1959023
- Liu JYW, Kor PPK, Chan CPY et al. (2020) The effectiveness of a wearable activity tracker (WAT)-based intervention to improve physical activity levels in sedentary older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr 91(6):104211. https://doi.org/10.1016/j.archger.2020.104211
- Lopes PN, Nezlek JB, Extremera N et al. (2011) Emotion regulation and the quality of social interaction: does the ability to evaluate emotional situations and identify effective responses matter? J Pers 79(2):429–467. https://doi.org/10.1111/j.1467-6494.2010.00689.x
- Luo H, Gao B (2021) Development of smart wearable sensors for life healthcare. Eng Regen 2(1):163–170. https://doi.org/10.1016/j.engreg.2021.10.001
- Mantello P, Ho MT, Nguyen MH et al. (2023) Machines that feel: behavioral determinants of attitude towards affect recognition technology—upgrading technology acceptance theory with the mindsponge model. Humanit Soc Sci Commun 10(1):1–16. https://doi.org/10.1057/s41599-023-01837-1
- Maragiannis A, Ashford R (2019) Diversity and inclusivity in the age of wearables: a buzzword, a myth, an uncertain reality. Body Space Technol 18(1):198–214. https://doi.org/10.16995/bst.320
- Mattila É, Orsama AL, Ahtinen A et al. (2013) Personal health technologies in employee health promotion: usage activity, usefulness, and health-related outcomes in a 1-year randomized controlled trial. JMIR Mhealth Uhealth 1(2):e2557. https://doi.org/10.2196/mhealth.2557
- McCormack GR, Petersen JA, Ghoneim D et al. (2022) Effectiveness of an 8-week physical activity intervention involving wearable activity trackers and an ehealth app: Mixed methods study. JMIR Form Res 6(5):e37348. https://doi. org/10.2196/37348
- McLeroy KR, Bibeau D, Steckler A et al. (1988) An ecological perspective on health promotion programs. Health Educ Q 15(4):351–377. https://doi.org/10.1177/ 109019818801500401
- Mehrabian A, Russell JA (1974) An approach to environmental psychology. The MIT Press, Cambridge, MA
- Miller C (2011) Aesthetics and e-assessment: the interplay of emotional design and learner performance. Distance Educ 32(3):307–337. https://doi.org/10.1080/01587919.2011.610291
- Mirdehghani M, Monadjemi SA (2009) Web pages aesthetic evaluation using low-level visual features. Proc World Acad Sci Eng Technol 49:811–814. https://doi.org/10.5281/zenodo.1082371
- Morowatisharifabad MA, Ghofranipour F, Heidarnia A et al. (2006) Self-efficacy and health promotion behaviors of older adults in Iran. Soc Behav Personal Int J 34(7):759–768. https://doi.org/10.2224/sbp.2006.34.7.759
- Muntaner-Mas A, Martinez-Nicolas A, Lavie CJ et al. (2019) A systematic review of fitness apps and their potential clinical and sports utility for objective and remote assessment of cardiorespiratory fitness. Sports Med 49(4):587–600. https://doi.org/10.1007/s40279-019-01084-y
- Musavian AS, Pasha A, Rahebi SM et al. (2014) Health promoting behaviors among adolescents: a cross-sectional study. Nurs Midwifery Stud 3(1):e14560. https://doi.org/10.17795/nmsjournal14560
- Myneni S, Cobb N, Cohen T (2016) In pursuit of theoretical ground in behavior change support systems: analysis of peer-to-peer communication in a health-related online community. J Med Internet Res 18(2):e28. https://doi.org/10.2196/jmir.4671
- Nelson EC, Verhagen T, Noordzij ML (2016) Health empowerment through activity trackers: an empirical smart wristband study. Comput Hum Behav 62:364–374. https://doi.org/10.1016/j.chb.2016.03.065
- Neupert SD, Lachman ME, Whitbourne SB (2009) Exercise self-efficacy and control beliefs: effects on exercise behavior after an exercise intervention for older adults. J Aging Phys Act 17(1):1–16. https://doi.org/10.1123/japa.17.1.1
- Niknejad N, Ismail WB, Mardani A et al. (2020) A comprehensive overview of smart wearables: the state of the art literature, recent advances, and future

- challenges. Eng Appl Artif Intel 90(4):103529. https://doi.org/10.1016/j.engappai.2020.103529
- Noor MHM, Salcic Z, Wang K (2016) Enhancing ontological reasoning with uncertainty handling for activity recognition. Knowl Based Syst 114(24):47–60. https://doi.org/10.1016/j.knosys.2016.09.028
- Nunnally J, Bernstein I (2010) Psychometric theory. McGraw-Hill, New York
- Nylocks KM, Rafaeli E, Bar-Kalifa E et al. (2019) Testing the influence of negative and positive emotion on future health-promoting behaviors in a community sample. Motiv Emot 43(2):285–298. https://doi.org/10.1007/s11031-018-9729-8
- Olander EK, Fletcher H, Williams S et al. (2013) What are the most effective techniques in changing obese individuals' physical activity self-efficacy and behavior: a systematic review and meta-analysis. Int J Behav Nutr Phys 10(1):29. https://doi.org/10.1186/1479-5868-10-29
- Ong AD (2010) Pathways linking positive emotion and health in later life. Curr Dir Psychol Sci 19(6):358–362. https://doi.org/10.1177/0963721410388805
- Ozdemir D, Sharma M, Dhir A et al. (2022) Supply chain resilience during the COVID-19 pandemic. Technol Soc 68:101847. https://doi.org/10.1016/j.techsoc.2021.101847
- Parboteeah DV, Valacich JS, Wells JD (2009) The influence of website characteristics on a consumer's urge to buy impulsively. Inf Syst Res 20(1):60–78. https://doi.org/10.1287/isre.1070.0157
- Park E (2020) User acceptance of smart wearable devices: an expectationconfirmation model approach. Telemat Inf 47(2):101318. https://doi.org/10. 1016/j.tele.2019.101318
- Park J, Kim J, Kim SY et al. (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 4(1):eaap9841. https:// doi.org/10.1126/sciadv.aap9841
- Pascucci MA, Chu N, Leasure AR (2012) Health promotion for the oldest of old people. Nurs Older People 24(3):22–28. https://doi.org/10.7748/nop2012.04. 24.3.22.c9017
- Pateman M, Harrison D, Marshall P, Cecchinato ME (2018) The role of aesthetics and design: wearables in situ. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, University College London, London, 21–26 April 2018. https://doi.org/10.1145/3170427. 3188556
- Peng W, Li L, Kononova A et al. (2021) Habit formation in wearable activity tracker use among older adults: qualitative study. JMIR Mhealth Uhealth 9(1):e22488. https://doi.org/10.2196/22488
- Petty RE, Cacioppo JT (1986) Methodological factors in the ELM. Springer. https://doi.org/10.1007/978-1-4612-4964-1_2
- Phillips DM, Baumgartner H (2002) The role of consumption emotions in the satisfaction response. J Consum Psychol 12(3):243–252. https://doi.org/10. 1207/153276602760335086
- Podsakoff PM, MacKenzie SB, Lee JY et al. (2003) Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol 88(5):879. https://doi.org/10.1037/0021-9010.88.5.879
- Polyportis A, Pahos N (2025) Understanding students' adoption of the ChatGPT chatbot in higher education: the role of anthropomorphism, trust, design novelty and institutional policy. Behav Inf Technol 44(2):315–336. https://doi.org/10.1080/0144929X.2024.2317364
- Popkova EG, De Bernardi P, Tyurina YG et al. (2022) A theory of digital technology advancement to address the grand challenges of sustainable development. Technol Soc 68:101831. https://doi.org/10.1016/j.techsoc.2021. 101831
- Prasopoulou E (2017) A half-moon on my skin: a memoir on life with an activity tracker. Eur J Inf Syst 26(3):287–297. https://doi.org/10.1057/s41303-017-0040-7
- Prestwich A, Conner M, Hurling R et al. (2016) An experimental test of control theory-based interventions for physical activity. Br J Health Psychol 21(4):812–826. https://doi.org/10.1111/bjhp.12198
- Rabin C, Bock B (2011) Desired features of smartphone applications promoting physical activity. Telemed E-Health 17(10):801–803. https://doi.org/10.1089/ tmj.2011.0055
- Raiyat A, Nourani N, SAMIEI SF (2012) Health improving behaviors in students of Qazvin secondary schools in 2011. JOH 3:46–54
- Rao AK (2019) Wearable sensor technology to measure physical activity (PA) in the elderly. Curr Geriatr Rep 8(1):55–66. https://doi.org/10.1007/s13670-019-0275-3
- Reber R, Schwarz N, Winkielman P (2004) Processing fluency and aesthetic pleasure: is beauty in the perceiver's processing experience? Pers Soc Psychol Rev 8(4):364–382. https://doi.org/10.1207/s15327957pspr0804_3
- Resnick B, Nigg C (2003) Testing a theoretical model of exercise behavior for older adults. Nurs Res 52(2):80–88. https://doi.org/10.1097/00006199-200303000-00004
- Rieder A, Eseryel UY, Lehrer C et al. (2021) Why users comply with wearables: the role of contextual self-efficacy in behavioral change. Int J Hum Comput Int 37(3):281–294. https://doi.org/10.1080/10447318.2020.1819669

- Roos LG, Slavich GM (2023) Wearable technologies for health research: opportunities, limitations, and practical and conceptual considerations. Brain Behav Immun 113:444–452. https://doi.org/10.1016/j.bbi.2023.08.008
- Rupp MA, Michaelis JR, McConnell DS et al. (2018) The role of individual differences on perceptions of wearable fitness device trust, usability, and motivational impact. Appl Ergon 70:77–87. https://doi.org/10.1016/j.apergo. 2018.02.005
- Russell JA, Carroll JM (1999) On the bipolarity of positive and negative affect. Psychol Bull 125(1):3–30. https://doi.org/10.1037/0033-2909.125.1.3
- Russell JA, Pratt G (1980) A description of the affective quality attributed to environments. J Pers Soc Psychol 38(2):311–322. https://doi.org/10.1037/ 0022-3514.38.2.311
- Sang G, Wang K, Li S et al. (2023) Effort expectancy mediate the relationship between instructors' digital competence and their work engagement: evidence from universities in China. Educ Tech Res 71(1):99–115. https://doi.org/10. 1007/s11423-023-10205-4
- Schultchen D, Reichenberger J, Mittl T et al. (2019) Bidirectional relationship of stress and affect with physical activity and healthy eating. Br J Health Psychol 24(2):315–333. https://doi.org/10.1111/bjhp.12355
- Schwarzer R, Renner B (2009) Health-specific self-efficacy scales. Freie Universität Berlin. https://userpage.fu-berlin.de/~health/healself.pdf
- Seid M, Varni JW, Jacobs JR (2000) Pediatric health-related quality-of-life measurement technology: intersections between science, managed care, and clinical care. J Clin Psychol Med Settings 7:17–27. https://doi.org/10.1023/A: 1009541218764
- Shafique MN, Khurshid MM, Rahman H et al. (2019) The role of wearable technologies in supply chain collaboration: a case of pharmaceutical industry. IEEE Access 7:49014–49026. https://doi.org/10.1109/access.2019.2909400
- Shandhi MMH, Singh K, Janson N et al. (2024) Assessment of ownership of smart devices and the acceptability of digital health data sharing. Npj Digit Med 7(1):44. https://doi.org/10.1038/s41746-024-01030-x
- Shiota MN, Papies EK, Preston SD et al. (2021) Positive affect and behavior change. Curr Opin Behav Sci 39(3):222–228. https://doi.org/10.1016/j.cobeha.2021. 04.022
- Silva MC, Lautert L (2010) The sense of self-efficacy in maintaining health promoting behaviors in older adults. Rev Esc Enferm USP 44:61–67. https://doi.org/10.1590/S0080-62342010000100009
- Sivarajah U, Kumar S, Kumar V et al. (2024) A study on big data analytics and innovation: from technological and business cycle perspectives. Technol Forecast Soc 202:123328. https://doi.org/10.1016/j.techfore.2024.123328
- Song CS, Kim YK (2022) The role of the human-robot interaction in consumers' acceptance of humanoid retail service robots. J Bus Res 146:489–503. https:// doi.org/10.1016/j.jbusres.2022.03.087
- Soroya SH, Farooq A, Mahmood K et al. (2021) From information seeking to information avoidance: understanding the health information behavior during a global health crisis. Inf Process Manag 58(2):102440. https://doi.org/ 10.1016/j.ipm.2020.102440
- Spook J, Paulussen T, Kok G (2016) Evaluation of a serious self-regulation game intervention for overweight-related behaviors ("Balance It"): a pilot study. J Med Internet Res 18(9):e225. https://doi.org/10.2196/jmir.4964
- Stajkovic AD, Luthans F (1998) Self-efficacy and work-related performance: a meta-analysis. Psychol Bull 124(2):240–261. https://doi.org/10.1037/0033-2909.124.2.240
- Standoli C, Guarneri M, Perego P et al. (2016) A smart wearable sensor system for counter-fighting overweight in teenagers. Sensors 16(8):1220. https://doi.org/10.3390/s16081220
- Stragier J, Abeele MV, Mechant P et al. (2016) Understanding persistence in the use of online fitness communities: comparing novice and experienced users. Comput Hum Behav 64:34–42. https://doi.org/10.1016/j.chb.2016.06.013
- Suh A, Li M (2022) How the use of mobile fitness technology influences older adults' physical and psychological well-being. Comput Hum Behav 131(6):107205. https://doi.org/10.1016/j.chb.2022.107205
- Sun Y, Li YZ, Yuan M (2023) Requirements, challenges, and novel ideas for wearables on power supply and energy harvesting. Nano Energy 115(11):108715. https://doi.org/10.1016/j.nanoen.2023.108715
- Topol E (2011) The creative destruction of medicine: how the digital revolution will create better health care. Basic Books, New York
- Van Cappellen P, Rice EL, Catalino LI et al. (2018) Positive affective processes underlie positive health behavior change. Psychol Health 33(1):77–97
- Venkatesh V, Speier C (1999) Computer technology training in the workplace: a longitudinal investigation of the effect of mood. Organ Behav Hum Dec 79(1):1–28. https://doi.org/10.1006/obhd.1999.2837
- Wakefield RL (2015) The acceptance and use of innovative technology: do positive and negative feelings matter? ACM SIGMIS Database Database Adv Inf Syst 46(4):48–67. https://doi.org/10.1145/2843824.2843828

- Walker SN, Sechrist KR, Pender NJ (1987) The health-promoting lifestyle profile: development and psychometric characteristics. Nurs Res 36(2):76–81
- Walker SN, Sechrist KR, Pender NJ (1995) Health promotion model-instruments to measure health promoting lifestyle: health-promoting lifestyle profile [HPLP II] (Adult version). http://deepblue.lib.umich.edu/handle/2027.42/
- Wang J, Hsu Y (2020) The relationship of symmetry, complexity, and shape in mobile interface aesthetics, from an emotional perspective—a case study of the smartwatch. Symmetry 12(9):1403. https://doi.org/10.3390/sym12091403
- Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54(6):1063. https://doi.org/10.1037/0022-3514.54.6.1063
- Weiner B (1985) An attributional theory of achievement motivation and emotion. Psychol Rev 92(4):548
- Williams SL, French DP (2011) What are the most effective intervention techniques for changing physical activity self-efficacy and physical activity behaviour—and are they the same? Health Educ Res 26(2):308–322. https://doi.org/10.1093/her/cyr005
- Wyer JrRS, Clore GL, Isbell LM (1999) Affect and information processing. Adv Exp Soc Psychol 31:1–77. https://doi.org/10.1016/S0065-2601(08)60271-3
- Yang H, Yu J, Zo H et al. (2016) User acceptance of wearable devices: an extended perspective of perceived value. Telemat Inf 33(2):256–269. https://doi.org/10. 1016/j.tele.2015.08.007
- Zellars KL, Perrewé PL (2001) Affective personality and the content of emotional social support: coping in organizations. J Appl Psychol 86(3):459–467. https://doi.org/10.1037/0021-9010.86.3.459

Acknowledgements

This work was supported by the Humanities Pre-Research Project from Donghua University in China (grant no. 107-10-454 0108013) and the Municipal Key Course Program for Higher Education Institutions in Shanghai (grant no. 107-10-0108072).

Author contributions

CW contributed to the conceptual design of the study; PL guided the questionnaire design and data collection; YF and CW were responsible for collecting and analyzing the data; YF wrote the first draft of the manuscript; All authors revised previous versions of the manuscript and were involved in reading and approving the submitted manuscript.

Competing interests

The authors declare no competing interests.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Donghua University on May 16, 2024 (Ethics approval number: DHUEC-FZ-2024-04).

Informed consent

Written informed consent was not necessary for this survey in compliance with institutional and national regulations (e.g., the Regulations on the Administration of National Network and Data Security require written personal consent only for sensitive financial account information). There was an online informed consent for participation. The study was conducted on 23 July 2024. It was completely voluntary and participants had the right to withdraw at any time without any negative consequences (e.g., prior to starting the survey, participants need to read and select the "accept" option to continue the questionnaire). The scope of the consent includes participation in the study, use of the collected data for academic research purposes only, and publication of the anonymized results. All data will be stored confidentially and used in strict accordance with the restrictions outlined in the consent statement.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1057/s41599-025-05903-8.

Correspondence and requests for materials should be addressed to Chunmao Wu.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License,

which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025