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ARTICLE
Hurricane stalling along the North American coast and

implications for rainfall

Timothy M. Hall@®' and James P. Kossin?

The average speed of tropical cyclone (TC) translation has slowed since the mid 20th century. Here we report that North Atlantic
(NA) TCs have become increasingly likely to “stall” near the coast, spending many hours in confined regions. The stalling is driven
not only by slower translation, but also by an increase in abrupt changes of direction. We compute residence-time distributions for
TCs in confined coastal regions, and find that the tails of these distributions have increased significantly. We also show that TCs
stalling over a region result in more rain on the region. Together, increased stalling and increased rain during stalls imply increased
coastal rainfall from TCs, other factors equal. Although the data are sparse, we do in fact find a significant positive trend in coastal
annual-mean rainfall 1948-2017 from TCs that stall, and we verify that this is due to increased stalling frequency. We make no

attribution to anthropogenic climate forcing for the stalling or rainfall; the trends could be due to low frequency natural variability.
Regardless of the cause, the significant increases in TC stalling frequency and high potential for associated increases in rainfall have

very likely exacerbated TC hazards for coastal populations.
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INTRODUCTION

A TC's trajectory largely determines its hazard. The most obvious
example is whether or not a TC makes landfall and, if so, where.
Another factor affecting hazard is the length of time a TC resides
in a region near the coast; i.e, whether the TC “stalls” near the
coast. A stalling TC inflicts strong winds on the same region for a
longer time, potentially driving greater storm surge and deposit-
ing more rain.

Recent analysis of observations indicates that the average
translation speed of TCs has slowed globally since the mid 20th
century, including overland regions of the North Atlantic (NA)
domain." TC trajectories are largely determined by the steering of
large-scale mid-tropospheric circulation patterns and a generally
smaller beta effect due to gradients in planetary vorticity that
induces a poleward drift.? Research is conflicted concerning the
evolution of the atmospheric circulation in response to anthro-
pogenic climate forcing. Some modeling and observational
analyses suggest a weakening of general atmospheric circulation
patterns, including those of the tropics.3™ In one study, simulated
TCs using climate-model-projected circulation changes indicate
reduced westward steering flow in the NA subtropics and a
consequential reduction in westward moving tracks compared to
recurving tracks,” though elsewhere in the NA the projected
changes in the magnitude of steering flow are negligible. Another
recent study found that the translation speed of NA TCs is reduced
under climate-change scenarios.® By contrast, other work, includ-
ing high-resolution doubled-CO, modeling experiments® and
downscaled CMIP3 and CMIP5 late-21st-century modeling experi-
ments,'® find no significant change in TC track speed.

In the mid-latitudes, some results suggest that a reduction in
meridional temperature gradients due to arctic amplification has
reduced the speed and increased the waviness of mid-
tropospheric zonal winds''™"® in winter as well as summer.'

These weaker and more variable winds provide less robust
steering flow for TCs and allow blocking patterns to persist longer.
However, there is considerable debate on the robustness of the
signal and the physical mechanisms.'>'®

Taken together, there is not at present a clear mechanism
explaining the observed TC speed reduction. Nonetheless, the
observation of slower TC translation' has the potential for
elevating hazard, and it is worthwhile exploring its impacts. One
key impact is that slower TCs are more prone to stalling, and
stalling TCs have the potential for depositing damaging amounts
of rain. This trajectory-induced increase in rainfall is exacerbated
by the climate-warming impact on the hydrologic cycle. Increased
atmospheric moisture enhances the likelihood of extreme rainfall
events of all types.'”'® Close to the center of a TC, the increases in
rain rate can reach 10% per degree C of warming in some model
projections,'® exceeding the 7% dictated by the Clausius-
Clapeyron relationship. There is evidence that TC rainfall has
increased over the southeastern US in recent decades, both
absolutely and as a fraction of extreme rainfall on the Continental
United States (CONUS).?° Hurricane Harvey's catastrophic flooding
of 2017 was a tragic example of a stalled TC over extremely warm
ocean water that produced record rainfall.?' According to recent
studies, a significant fraction (9-37%) of Harvey’s rainfall was due
to a warming climate,??* and the frequency of Harvey-like rainfall
events is projected to increase substantially by the late 21st
century.?*

Here we define a stalling metric for TCs and report that the
stalling frequency of NA TCs has increased significantly in coastal
regions since the mid 20th century. We then show that
accumulated TC rainfall increases with increased TC residence
over a coastal region. Together, the observations that the
frequency of stalls has increased and that stalling TCs accumulate
more rain imply an increase in rainfall from TCs, other factors
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equal. We find a positive trend from 1948-2017 in annual rainfall
from stalling TCs on CONUS, and we show that increased stalling
frequency drives the trend.

To examine the stalling behavior of NA TCs and its impact on
rainfall, we use observational records to compute annual time
series of TC translation speed, directional variability, stall
frequency, and rainfall. For TC track characteristics, we use the
National Hurricane Center HURDAT2 data® from 1944 to 2017.
HURDAT2 track points labeled as extra-tropical are excluded, in
order to focus on TCs only. The start date of 1944 roughly
corresponds to the era of routine aircraft reconnaissance. Our
primary focus is coastal regions, due to the hazard. In addition,
pre-satellite era HURDAT2 data are more reliable near the coast;?®
nearly all landfalling TCs are likely to have been monitored in
some form after about 1900.%’ For rainfall we use the CPC 0.25°
daily gridded CONUS precipitation data from 1948-2017, a dataset
derived from the CONUS rain-gauge network.?®

RESULTS

Translation speed and directional deviations

For TC translation speed, we compute the annual-mean 6-hourly
rate of translation, that is, the distance the TC center translates in
6 h divided by 6 h, averaged over all the 6-hourly TC increments in
a year. We restrict attention to HURDAT2 track points within
200 km from the North-American coast (both water and land
sides), defined by 50 km coastal segments spanning Yucatan to
Maine. In addition, we exclude HURDAT2 track points indicated as
extra-tropical in order to focus on TCs. Over the 1944-2017 period,
the annual mean coastal NA TC speed has fallen from 18.6 to
155kmh™", about 17% (Fig. 1a). This speed reduction is
consistent with previous results,’ which showed a translation
speed reduction over North American land. We also compute the
annual values of the 0.05 quantile; i.e., the 6-hourly speed that is
slower than all but 5% of the 6-hourly speeds in a year. The

reduction in speed of these very slow coastal track segments is
more pronounced: the 0.05 quantile has decreased from 7.7 to
4.8kmh~", about 38% (Fig. 1b). According to bootstrap tests and
Student’s t-tests, the negativity of these trends is significant (see
Methods).

In addition to the translation speed, we find an increasing
tendency for abrupt changes in NA TC track direction. Such
changes can be measured by a “displacement angle,” the angle
between one 6-h track increment and the next. (The dot products
between successive 6-h vectors are computed and converted to
angles.) In the coastal NA, the annual-mean displacement angle
has increased by about 27%, from 17.8° to 22.6°. Meanwhile, the
annual 0.95 quantile (the angle that is greater than 95% of
displacement angles in a year) has increased by about 32%, from
43.6° to 57.7°. The positivity of the mean-angle trend is significant
by bootstrap and Student's t-tests. The significance of the
positivity of the 0.95-quantile angle trend is marginal; 96.2% of
bootstrap resamples have a positive trend, but the Student'’s t-test
does not quite reject the non-positive-trend null hypothesis (p =
0.061, see Methods).

To check sensitivity to changes in observations before and
during the satellite era, we also compute trends starting from the
years 1970-1979 (Fig. 1, blue). Trends in the mean translation
speed and mean and quantile angular deviations from the
1970s-2017 all exhibit the same sign as 1944-2017. The exception
is the quantile translation speed, for which 1970s-2017 trend
magnitudes are reduced, and 3 of 10 of the 1970s-2017 trends
switch sign. As for the stall-fraction time series (Fig. 3b), the
1970s-2017 trends (not shown) are in fact more positive than the
1944-2017 trend.

All of the 1970s-2017 trends in Fig. 1 have significance levels
below 95%. However, by itself this does not impugn the
significance of 1944-2017 trends. A characteristic of subsets of a
time series with a trend plus noise is that the subset trends are less
significant. To demonstrate this, for each variable, we construct
1000 1944-2017 synthetic time series, specified to have the
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Fig. 1 Time variation of tropical cyclone track speed and angular deviation. a The annual-mean North Atlantic TC translation speed for track
steps within 200 km from the North-American coast from 1944-2017. b The 6-hourly speed at the 0.05 quantile. ¢ The annual-mean angle
between successive 6-hourly coastal TC track vectors from 1944-2017. d The angle between successive 6-hourly TC track vectors at the 0.95
quantile. In each panel, a trend line is shown (dashed). The signs of the trends are significant according to bootstrap tests. According to
Student’s t-tests the signs of trends are also significant, expect for the 0.95-quantile angle, which is marginally insignificant (see Methods). Also
shown (blue) are trend lines computed starting from each of the years 1970-1979, representing the start of the era of satellite observation
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Fig. 2 Examples of four TCs (blue) that stalled near the coast:
Unnamed (1968), Isidore (2002), Harvey (2017), and Florence (2018).
Also shown are the 200-km coastal impact regions lining the coast
in which residence-time distributions and stalls are computed. In the
impact regions shown in red the illustrative TCs resided for at least
48 h. Longitude and latitude are labeled at bottom and right

observed 1944-2017 trend, but differing due to randomization of
the annual residuals about the trend. For each synthetic time
series we compute trends on the 1970s-2017 subsets. The 5-95%
spread on each of the 1970s-2017 trends across the 1000 samples
indicates the uncertainty expected when computing trends on a
subset of a longer time series with a significant trend plus noise.
For all four variables, the 5-95% synthetic trend intervals span the
observed 1970s-2017 trends. It is possible that observational
sampling changes affect the time series, but their impacts cannot
be distinguished from the 1944-2018 trend plus noise. We
conclude that 1970s-2017 trends are consistent with 1944-2017
trends.

Coastal stalling frequency

Reduced speed and increased directional deviations both play a
role in increasing the probability that a track “stalls” near the coast,
spending many hours over a confined region. Reduced speed has
the obvious effect of increasing the time over a region, while
directional deviations elevate the chance of meandering within
the region before exiting. Examples of four NA TC tracks exhibiting
stalls near the North American coast are shown in Fig. 2.

In order to quantify changes in the frequency of stalling, we
construct a distribution of impact-region track residence times. An
impact region is defined as the region encompassed by a circle of
radius R about a fixed point of interest x. The time, 7, that a track
resides inside the region is recorded. Most tracks don’t cross
through a specified impact region, and =0 for those tracks; for
the few tracks that do cross through the region, 7> 0. We form a
distribution of residence times, F(7,x), over the tracks in a season
and average over the points x in a domain of interest to obtain F
(). We are interested in the behavior of tracks that actually pass
through impact regions, so we only use values at 7= 1 h for the
distribution. We normalize each year's averaged distribution, to
remove the impact of varying seasonal TC number. The resulting
diagnostic—an annual impact-region residence-time distribution
—represents the distribution of time spent residing in an impact
region in a given year, among the tracks that cross into the region,
averaged over all the impact regions in the domain.

To examine trends in stalling in North-American coastal regions
of the NA, we average 162 impact regions of 200-km radius
centered on coastal mileposts spaced at 50 km spanning Yucatan
to Maine (Fig. 2). In this domain, of the 1110 HURDAT2 TCs
1944-2017, there are 130 TCs and 831 total instances in which a
track spends 7> 36 h in a coastal impact region. (A single track can
reside for 36 + hours in several overlapping or disjoint regions.) Of
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these 831 instances, 452 experience a 6-hr direction deviation of
at least 45°. Using a more stringent residence-time threshold of
48 h, there are 66 TCs and 358 total instances, of which 235 have
direction deviations of at least 45°. Note that as the residence-time
threshold is increased, a greater fraction of the instances displays
large directional deviations. Longer stalls are more likely to
incorporate meanders.

Figure 3a shows residence-time distributions averaged over the
coastal impact regions. The distributions are accumulated over
1944-1980 (blue) and 1981-2017 (red), the first and second halves
of the period. Both distributions peak around = 10h; if a track
enters within R of x, it's more likely to spend at least a few hours,
than just barely graze the circle for 1 h.

It is the behavior of the tail of F(1), however, that is of most
interest to us, because it represents the frequency of stalling TCs.
Residing more than 48 h inside a 200 km region can be taken as a
reasonable definition of a TC “stall,” and the 1981-2017 tail crosses
above the 1944-1980 for T between 36 and 48 h. We integrate the
annual distributions above 48 h to form the time series shown in
Fig. 3c. These values represent the annual fraction of the TCs that
pass through a 200 km impact region that spend at least 48 h
inside the region, averaged over the coastal regions.

There is considerable variability in the annual coastal stalling
fraction of Fig. 3¢, in part due to poor sampling. To contribute to
the stalling fraction, a TC has to both pass into a coastal impact
region and spend 48 + hours within the region. Although all 74
years have had TCs that enter coastal impact regions, only 66 TCs
have resided 48 + hours in a region, for a total of 358 stalling
events accumulated over the regions. For many of the years, no
stalls occur. Nonetheless, the distribution of stalling TCs across the
74-year period shown in Fig. 3e indicates an increase in frequency.
For example, 30 of the 66 stalling TCs occur in the last-third of the
period (1993-2017), while only 17 occur in the first-third
(1944-1968). Assuming a random distribution of 66 events in 74
years, the probability that the final 25 years has at least 13 more
events than the first 25 years is only 0.03.

Bootstrap tests, Student’s t-tests, first-half/second-half tests, and
generalized jackknife tests in which the coastal impact regions are
randomly subsampled, all confirm the significance of the stalling
fraction shown in Fig. 3c (see Methods). We have also tested the
sensitivity to the possibility of underreporting in sparsely
populated regions in the early part of the record. We compute
the stalling-fraction time series restricted to just US coastal regions
(light blue, Fig. 3b), representing a 109-region subset of the full
162 coastal impact regions. The result is very similar and also
displays a significant positive trend. We conclude that NA TCs are
stalling near the coast with increasing frequency.

The 200 km radius of the impact zones represents a subjective
balance between resolving geographic structure and including
sufficient events. To examine sensitivity to the impact region size,
we also perform the analysis using smaller coastal impact regions,
R=150km. The distributions (not shown) decline more rapidly
with T. It's more difficult for a TC to reside for long periods in a
smaller region, and there are fewer TCs (32) that reside 48 + hours
in a region. The inter-annual time variation in the distribution tail,
however, is qualitatively similar to the R =200 km case, showing a
positive trend for the frequency of 48 + hour stalls. For R=
100 km, however, there are only 8 TCs that spend 48 +hours
inside the regions, too few to calculate trends.

We have focused on trends in TC stalls in coastal regions,
because TCs pose the greatest hazard to coastal regions, and
because the HURDAT2 track data from the pre-satellite era are
more reliable near the coast.?” However, we have also performed
a basin-wide NA analysis. We define 200 km impact regions
centered on the 2511 points of a 1° grid from 100°W-20°W and 10°
N-40°N, a domain spanning the TC-active NA. The results for the
residence-time distributions, the 48 4 hour stalling time series,
and annual stalling TC count time series (Fig. 3b, d, f) are similar to
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Fig. 3 Analysis of tropical cyclone stalling. a Distributions of residence time, averaged over the 200 km coastal impact regions shown in Fig. 2.
Blue is accumulated over 1944-1980 and red over 1981-2017, the first-half and second-half of the 1944-2017 period. The vertical dashed lines
indicates the 48-h residence-time threshold. b As in panel a, but averaged over 200 km impact regions that span the TC-active North Atlantic,
100°W-20°W and 10°N-40°N. ¢ The time series of the annual coastal distributions integrated above 48 h (black). This represents the annual
fraction of the TCs that pass through a 200 km coastal impact region that reside at least 48 h inside the region, averaged over the coastal
regions. Also shown (light blue) is the same time series, but restricted to impact regions along the US coast. d As in panel ¢, but for the basin-
wide North Atlantic distributions illustrated in panel b. In panels ¢ and d linear trends are indicated as dashed lines, and they are significantly
positive (see Methods). e Annual count of TCs that reside at least 48 h in a coastal impact region (symbols) and the annual-mean counts over
the time periods 1944-1968, 1968-1993, and 1993-2017, roughly equal thirds of the 1944-2017 period (blue). f As in panel (e), but for TCs that
reside at least 48 h in one of the impact region spanning the TC-active North Atlantic

the coastal analysis. On a basin-wide scale, as well as near the
coast, TCs are stalling with increasing frequency, though there is
less confidence in data quality.

Reduced translation speed and increased meandering both play
a role in increased TC stalling. To examine further the relationship
among stalling, translation speed, and meandering, we compute
the annual fraction of coastal 48 + hour stalls that exhibit an
angular deviation of 60° or more (Fig. 4). The time series is noisy;
not all years have 48 +hour stalls, and many have only a few, so
that the fraction with large deviations is poorly sampled. The
second half of the 1944-2017 period (from 1981) has a higher
fraction (0.61) than the first half (0.44). Bootstrap tests indicate that
the positivity of this first-second half difference is marginally
significant; 95.1% of re-samples have a fraction greater in the
second half period than first. It is possible that increasingly long
stalls offer increasingly more opportunity for large angular
deviations. It is also possible that the increased fraction is a
reporting artifact, resulting from less accurate TC location
estimates in the earlier data record (see Discussion).

npj Climate and Atmospheric Science (2019) 17

Rainfall analysis

Greater accumulated rainfall is one of the primary hazards of TCs
stalling over coastal regions. If a TC resides longer in a region,
then, on average, it is natural to expect that the TC deposits more
rain on the region. To verify this, we compute the accumulated
rain per TC within 100 km of TC centers on the overland-part of
HURDAT?2 tracks in the CONUS coastal impact regions (Fig. 2).
Typical radial rainfall distributions peak around 50 km from TC
centers,”® so that 100 km should capture the bulk of TC-related
rainfall. Figure 5 shows the accumulated rainfall per TC as a
function of TC residence time in the regions. There is a clear
increase in accumulated rain per TC with residence time. Figure 5
also shows the accumulated rain per TC in the impact regions
partitioned by stalling (t = 48 h) and non-stalling (r <48 h) TCs and
during the first-half (1948-1982) and second-half (1983-2017) of
the CPC data period. Stalling TCs rain more in both the first and
second-half of the period than non-stalling TCs. On the other
hand, there is little variation in rain per TC between the time
periods for either stalling or non-stalling TCs.
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The observations that, 1, accumulated rainfall increases with
residence time and, 2, TCs are stalling more over coastal regions
imply an increase in annual rainfall from stalling TCs. To check this,
for each TC that stalls (r > 48) inside a coastal impact region of Fig. 2,
we accumulate the rainfall over the CONUS CPC 0.25° grid cells
that lie within 100 km of the TC center. We average the values
annually and compute the linear trend in time (Fig. 6a, red curve).
From 1948 to 2017 this annual-mean coastal rainfall from stalling
TCs has a positive trend of 0.026 km3yr~', and the positivity is
significant at the 96.5% level by bootstrap tests (see Methods).
This trend corresponds to a factor 3.2 increase in annual-mean rain
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Fig. 4 Angular deviation stalling fraction. Annual fraction of 48 +
hour stalls in coastal impact regions (Fig. 2) that exhibit angular
deviations of 60° or more (symbols). Values are only plotted for years
that have at least one such stall. Horizontal line segments indicate
the mean fractions before and after 1981 (dashed line), the first half
and second half of the period
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from stalling TCs from 1948 to 2017, roughly consistent with the
factor 2.6 increase in TC coastal stalling frequency (Fig. 3b).

Comparing the first-half and second-half of the data period, we
find that annual-mean rain for stalling TCs has more than doubled
from 0.97 km®yr~" for 1948-1982 to 2.01 km® yr™' for 1983-2017.
This increase could be due to increased rain per stalling TC or
increased frequency of stalling TCs. To distinguish between these
possibilities we compute the mean rain per stalling TC, which is
2.65 km? for the first half and 2.56 km*/stall for the second half,
essentially unchanged, as shown in Fig. 5. By contrast, the annual-
mean stalling fraction per coastal impact region (Fig. 3b) is
0.024yr~" for the first half and 0.038yr ' for the second half, a
58% increase. We conclude that increased stalling is causing the
increased annual-mean coastal rain from stalling TCs.

The stalling-TC rain signal is noisy; several factors contribute to
annual variability in rainfall, and there are only 50 stalling-TC
landfalls on CONUS over the 1948-2017 period. To test sensitivity
of the stalling-TC rain trend to individual events, we remove the
single largest event (Tropical Storm Allison, 2001) and find that the
trend drops from 0.026 to 0.020 km® yr~'. When the second, third,
and fourth largest events, Georges (1998), Fay (2008), and Harvey
(2017), are removed one at a time the trend drops to 0.022, 0.018,
and 0.015 km?® yr~', respectively. When all of these top four events
are removed, the positive trend vanishes. Overall, bootstrap tests
indicate that 96.3% of resamples have a positive sign, but clearly
sampling is poor, and there is high sensitivity to the few largest
events. However, the probability that the top 4 out of 50 events
randomly occur in the most recent 20 of 70 years is only 0.007.
Thus, a null hypothesis that these intense rain events are
randomly distributed over the 1948-2017 period is violated,
corroborating the straightforward expectation that increased TC
stalling frequency enhances annual-mean rain from stalling TCs.

Annual-mean rain from all TCs is a combination of the rain from
stalling and non-stalling TCs (Fig. 6b). In contrast to stalling TCs,
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Fig. 5 TC rain variation with residence time. (left) Accumulated rain per TC within 100 km of TC centers while TCs are in the CONUS coastal
impact regions of Fig. 2 as a function of residence time in the regions. Box and whisker plots show the medians (solid), means (dotted),
25-75% quantiles (box), and 2.5-97.5% quantiles (whiskers) over all TCs and regions at each 10-hr residence time bin. (right) Box and whisker
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Fig.6 Annual TC rain. a Annual-mean accumulated CONUS TC rainfall within 100 km of the TC center while TCs are in coastal impact regions.
Red indicates stalling TCs; i.e., TCs that reside at least 48 h in an impact region. Blue indicates TCs that do not stall. Dashed lines indicate linear
trends. b The total annual-mean rain per TC from both stalling and non-stalling TCs (solid) and its linear trend (dashed)
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annual-mean rain from non-stalling TCs has not increased
significantly (Fig. 6a, blue curve). The combined effects of an
increase in annual rainfall from stalling TCs and no increase from
non-stalling TCs is a weaker overall increase: from 1948 to 2017
annual-mean coastal rainfall from all TCs has increased by about
40% with a linear trend of 0.0059 km*yr™". However, the positivity
is not significant; only 91% of bootstrap re-samples have a positive
trend, and the Student’s t-test does not reject the non-positive-
trend null hypothesis (p =0.14). Knight and Davis*® also found
evidence of increases in TC rainfall extremes, as well as increases
in the fraction of CONUS rainfall extremes due to TCs. These
researchers attribute the increase to TC intensity and frequency,
but as their focus was extreme one-day rain events, they would
not have picked up stall-driven rain signals accumulated over
several days.

In addition to sampling uncertainty, there are uncertainties
driven by features of the CPC dataset, such as changes in rain-
gauge density and technology through time®® and the errors
associated with gauge-based rain collection at high wind
speeds.' It is also possible that weak coherent low-frequency
variability in the TC-rainfall time series (see below) may
compromise the bootstrap tests somewhat, which assume
statistical independence of the regression residuals. Thus, 96%
for stalling TCs and 91% for all TCs are upper bounds on the
significance of the respective annual-mean TCs rainfall trend.

DISCUSSION

We have found evidence for an increase in the frequency of NA
TCs stalling over coastal regions, as well as throughout the NA
basin. It is important to note, however, that the HURDAT2 data on
which the analysis is based are not homogenized for trend
analysis.?®%7323% They are “best track” data; that is, they are based
on the best observational sources available at the time. Since
these observational sources have changed over time, sampling
artifacts can be an issue in trend analysis. This is less so for TC
position, which is easier to observe than intensity.?® Still, it is worth
examining possible biases.

It is possible that TC locations have been reported with
increasing precision over time. For example, observations to fix
the location of TC centers were enhanced in the 1970s, the dawn
of the satellite era. In the earlier portion of our 1944-2017 record, a
poorly-known 6-hourly position might have been assigned an
interpolated value between better-known positions,>*>° a report-
ing practice that would have become less common as monitoring
improved. Such a reporting bias would underestimate translation
speed in the early years, because it would result in smoother
tracks (less gross distance traveled) over the same amount of time,
thus creating an artificial speed increase through time. Such an
increase is in contrast to the decrease we report. Thus, to the
extent such a bias exists, its correction would only further enhance
the reduction in translation speed.

An early-record bias toward smoother tracks could indeed cause
an artificial positive trend in track directional deviations. However,
it wouldn’t cause an artificial trend in stalling frequency. It would
merely shift the stalls from straight-line speed-reduction to speed-
reduction plus meandering, a hint of which is seen in Fig. 4. In
addition, the fact that the positive stalling trend is seen in coastal
regions, as well as over the full NA, supports the validity of the
result. In the pre-satellite era, TCs were better observed near the
coast than over open ocean,”®?” and their positions were more
accurately known. However, we see a positive trend in stalling
frequency in coastal regions, as well as over the full NA.

We make no attribution to anthropogenic forcing of the trends
in TC stalling frequency and associated annual-mean coastal TC
rainfall, and the trends reported here could be due to low-
frequency natural variability. Many factors influence TC rainfall,
including sea-surface temperature (SST). In the time series of Fig. 6
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the reduction below the trend line from roughly 1970 to 1990 and
the elevated values before and after are reminiscent of the
Atlantic Multidecadal Oscillation (AMO),*® a mode of climate
variability defined by multi-decadal variations in NA SST. In fact,
annual-mean non-stalling TC rain is 64% higher when the AMO is
above average than below, a difference that is significant at >99%
level by bootstrap tests. (For this analysis, the AMO has been
detrended over 1948-2017.) The AMO-associated difference in
annual-mean stalling TC rain, however, is a smaller 34%, and is not
significant. The annual stalling-frequency (Fig. 3b) also displays no
significant AMO relationship according to this test.

Our work has revealed a significant increase since the mid 20th
century in the stalling frequency of TCs near the North-American
coast. We have also found that annual-mean rainfall from stalling
TCs on the U.S. has risen significantly due to the increased stalling
frequency. The increased stalling is due to both a reduction in TC
translation speed and a trend toward large and abrupt deviations
in direction. Even as the original version of this article was being
prepared for submission, Hurricane Florence was stalling over
coastal North Carolina and dropping record amounts of rain on
the region. Our analysis on the National Hurricane Center’s
preliminary Public Advisory reporting of Florence’s track indicates
that the hurricane’s center spent 53 h in the 200km-radius coastal
impact region centered on 78.0°W and 33.9°N (Bald Head Island,
North Carolina), qualifying as a stall. Hurricane Harvey in 2017, and
now Hurricane Florence in 2018, are archetypical of the hazard
that stalling hurricanes pose for coastal populations. A positive
trend in stall frequency and the possibility of increased rain may
need to be taken into account in planning for future TC flood risk.

METHODS

Translation speed and angular deviations were computed from the
HURDAT2 1944-2017 archive downloaded from https://www.nhc.noaa.gov/
data/hurdat/hurdat2-1851-2017-050118.txt. The translation speed was
computed as the distance between successive 6-hourly storm center
latitude-longitude positions divided by 6 h. The angular deviation between
two  successive  6-hourly  track vectors v; and v, is
6 = cos~' (v - va/|v4||v2]). Daily accumulated 0.25° gridded CONUS rainfall
data were downloaded from https://www.esrl.noaa.gov/psd/data. The daily
accumulated values were divided by four when summing over regions
surrounding 6-hourly HURDAT2 locations. The rest of our methodology
addresses issues related to the trend analysis of time series, as
described below.

Significance of trend signs

To test the significance of the sign of time-series trends we use a block-
bootstrap approach,>’® as well as one-tailed Student’s t-test. In block-
bootstrap tests, time series are first segmented into a series of N adjacent
time windows or blocks, choosing the blocks such that regression residuals
whose times are centered at adjacent blocks are uncorrelated. Then,
multiple N-block series are randomly re-sampled with replacement from
the original series. A re-sampled series consists of N randomly selected
blocks, with the ith block consisting of the time-series value, Y;, associated
with the block’s center. Note that some blocks may be selected multiple
times, and others not at all. For example, in the case of annual blocks, a re-
sampled time series might have three copies of the pair (1965, Y;965) and
none of (2013, Y50;3). In this way, the sequence in time of the of the
original series is maintained, but various re-sampled values in the series
will randomly receive more or less (or no) weight.

We check for serial correlation of the regression residuals by computing
lag-one autocorrelation coefficients (ACCs). For lag-one auto-correlated
processes, correlations decrease exponentially with time, and the timescale
to de-correlate is Tpc = —At/In(C), where At is the time step, here one year,
and C is the ACC. Within time intervals Tpc, residuals are correlated, but at
greater temporal separations they are approximately uncorrelated. For all
of the time series discussed here Tpc <1 year, so that bootstrap re-
sampling of annual values is appropriate. For each series being tested we
generate 100,000 annual-bootstrap re-samples, and compute the trend for
each re-sample. We then count the fraction of the re-samples whose trend
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Fig. 7 QQ plots of speed and angular deviation. QQ plots of regression residuals of (@) mean translation speed, (b) 0.05 quantile translation
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is the same sign as the trend in the original time series. We call the trend’s
sign significant if at least 95% of the re-sample trends have the same sign.

For Student’s t-tests the same criterion of uncorrelated residuals applies.
The degrees of freedom used for the t-tests is N2, where Ngg is the
number of independent time-series blocks. We use one-tailed testing
because we are testing whether the observed sign of a positive (negative)
trend is significantly greater (less than) than zero. For example, for a
positive observed trend the null hypothesis of non-positive trend is
violated for our significance criterion if the t statistic corresponds to a
probability p < 0.05, in which case we say the trend is significantly positive.

Translation speeds and angular deviations

For the annual mean translation speed (Fig. 1a), from the bootstrap tests, of
the 100,000 re-samples, 99.2% of the trends are negative. For annual 0.05
quantile track speed (Fig. 1b) 97.3% of the trends are negative. For the annual
mean angular deviation (Fig. 1c), of the 100,000 re-samples, 97.9% of the
trends are positive. For annual 0.95 quantile angular deviation (Fig. 1c), 96.2%
of the trends are positive. Using the Student’s t-tests, the trend in mean
translation speed is significantly negative (p =0.014), the trend in 0.05
quantile track speed is significantly negative (p =0.013), and the trend in
mean angular deviation is significantly positive (p = 0.037). By the t-test,
however, the positive trend in 0.95 quantile angular deviation is marginally
insignificant (p =0.061). We have also computed quantile-quantile (QQ)
plots for the translation speed and angular deviation residuals (Fig. 7). No
large deviations from normality are indicated.

Stalling frequency
For the R =200 km coastal stalling frequency time series (Fig. 3b), of the
100,000 bootstrap re-samples, 99.0% of the trends are positive. For the R =
200 km basin-wide stalling frequency time series (Fig. 3d), 99.8% of the
bootstrap trends are positive. By the Student’s t-test the coastal and basin-
wide stalling time series are also both significantly positive (p = 0.02 and p
=0.005 respectively). The QQ plot of the residuals, however, shows large
deviations from normality (Fig. 8). This is not surprising, as the annual stall
fraction is restricted to lie between zero and one, and hence the
distribution cannot be normal.

As an alternative test of the sign of the stall frequency trend, we
compare the first half of the period (1944-1980) to the second half
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Fig. 8 QQ plot of regression residuals of the coastal stalling
frequency (Fig. 3b). Residuals are plotted on y axes and standard
normal deviates on x axes

(1981-2017). Across 100,000 bootstrap re-samples of the complete
1944-2017 stall-frequency time series, we compute the means of these
first-half and second-half 37-year periods. In 98.6% of the re-samples, the
1981-2017 mean is greater than the 1944-1980 mean.

To further test the significance of the time series trend, we perform a
generalized jackknife test on the coastal impact regions. First, we select
every 8th 200-km impact region to form a subset of regions that do not
overlap. (The full set of 200 km-radius regions have centers that are spaced
at 50 km along the coast; the new set of 200 km-radius regions have
centers that are spaced at 400 km making them approximately non-
overlapping.) Then, among this 20-region non-overlapping set, we
construct 1000 subsets, each consisting of 16 randomly-selected distinct
regions (80% of the complete non-overlapping set), and compute the
48 + hour stalling trends on each. We find that 97.4% of the 1000 subsets
display positive trends.

Annual TC-track CONUS rainfall time series

For the stalling-TC rainfall time series of Fig. 6a, 96.5% of the 100,000
annual time-series re-samples have positive slopes. The Student’s t-test
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also shows significant positivity (p = 0.027). We also compare the average
annual-mean stalling-TC rain between the first-half (1948-1982) and
second-half (1983-2017) periods: across the 100,000 bootstrap resamples,
97.8% have a higher value in the second-half period. As a further test, in
addition to performing the bootstrap analysis by re-sampling among the
annual-mean stalling-TC rainfall values, we have also re-sampled among
the individual stalling TC rain values and constructed the annual-mean
rainfall time series from these resamples. The results are very similar: 95.9%
of the 100,000 time series formed in this way exhibit a positive trend.
Sensitivity tests to removing individual high-rain TCs are described in the
main text. For the full TC rain series (stalling plus non-stalling) of Fig. 6b,
only 91% of 100,000 re-samples have a positive sign, and the Student’s t-
test does not reject the non-positive-trend null hypothesis (p = 0.14).
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