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Land use and cover change accelerated
China’s land carbon sinks limits
soil carbon
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Yue Cheng1,2, Peng Luo1,2 , Hao Yang1, Mingwang Li3, Ming Ni1,2, Honglin Li1,2, Yu Huang1,2,
Wenwen Xie1,2 & Lihuan Wang2,4

Land use and cover change (LUCC) significantly impacts global carbon cycles and land surface
properties, accounting for 25% of the historical atmospheric CO2 increase. We explore a previously
overlooked role of LUCC indriving the landcarboncycle byusing a three-levelmeta-analysis andLand
Use Harmonization data to drive an ecosystem model. Our findings reveal that a loss of 39.2% of soil
organic carbon (SOC) change inChina due to LUCC,mitigated byafforestation, doubles grossprimary
productivity at 0.02 Pg C yr−1, countering central China’s urbanization decline. Indirect climate effects,
especially soil bulk density, significantly impact SOC compared to direct climate effects. LUCC has
significantly increased the Chinese terrestrial carbon sink, with net ecosystem productivity reaching
0.02 ± 0.12 Pg C yr−1. Our study underscores the importance of reforestation and afforestation in
addressing climate change and enhancing carbon sinks in future carbon management.

Contemporary terrestrial ecosystemsundergo extensive transformationdue
to human land use and management practices1. Anthropogenic land use
and cover change (LUCC) have significantly altered global element cycles,
water cycles, and the land surface at various scales2–4. LUCC plays a pivotal
role in shaping Earth’s ecological environment and the carbon cycle of
terrestrial ecosystems by altering land-atmosphere interactions and surface
attributes5. LUCC-induced carbon emissions, accounting for 25% of the
historical atmospheric CO2 increase, were estimated with large uncertainty
at 1.3 ± 0.7 PgC yr−1 for the last decade6, complicating the global Carbon
budget7–9.

Soil organic carbon (SOC) is vital for soil health, foodproduction,water
supply regulation, and climate change mitigation10,11. With a carbon storage
capacity exceeding that of vegetation biomass and atmospheric carbon
stocks, SOC provides significant benefits to both human societies and the
environment12,13. LUCC driven by population growth, has significantly
impacted SOCdynamics, leading to a decline in storagedue to intensive land
management14. Furthermore, the land carbon cycle can be dissected into two
distinct components: LUCC-C-cycle, representing the carbon balance over
lands under direct human land use, and NO-LUCC, which characterizes
carbon dynamics over lands unaffected by direct human alterations, influ-
enced instead by global environmental changes such as atmospheric CO2

concentration, climatic variations, and nitrogen deposition1.

Currently, methodologies for assessing the impacts of LUCC on the
carbon cycle at regional andglobal scales primarily employ a combinationof
approaches. These include list methods such as the Tier 1 method outlined
by the Intergovernmental Panel on Climate Change (IPCC), which are
simplified approaches for estimating greenhouse gas emissions or removals
that requireminimal data and resources.Additionally,modeling techniques
utilizing remote sensing and process-based ecosystemmodels are utilized in
this assessment15,16. Dynamic Global Vegetation Models (DGVMs) are
integral components of the Global Carbon Budget (GCB8), facilitating
simulations of carbon uptake and release processes, focusing on various
drivers suchas rising atmosphericCO2, climate change, nutrient deposition,
land use, land use change, and carbon sinks17. The Land-Use Harmoniza-
tion (LUH2) dataset serves as a foundation for carbon modeling, drawing
from country-level agricultural reports provided by the Food and Agri-
culture Organization (FAO) and integrating the History Database of the
Global Environment (HYDE) land use model17,18. Models accurately
simulate terrestrial carbon uptake but are uncertain due to initial input
parameters, model error, and forecast differences19. This leads to significant
differences in the effect of LUCC on land carbon among different
models20,21. Meta-analyses have proven effective in statistically assessing the
impact of LUCC on SOC22–24. To address inherent uncertainties and dis-
crepancies among different models, a combined approach integrating
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meta-analysis and modeling offers a comprehensive framework for evalu-
ating the effects of LUCC on the land carbon cycle.

China has undergone large-scale LUCC, including deforestation,
cropland expansion, and afforestation since 190017. Initiatives such as the
“Grain forGreen” project, initiated in 1999, have aimed to convert cropland
into forest, shrubland, or grassland to mitigate the impacts of population
growth and increasing demands for agricultural resources22,24. National
policies such as the Three-North Shelterbelt Forest, Natural Forest Con-
servation Program, and Grain For Green Project (GFGP) have led to sig-
nificant land use and cover transformations, particularly in the Loess
Plateau23. However, the precise impact of LUCC on China’s carbon budget
remains to be determined, primarily due tomethodological inconsistencies,
the absence of comprehensive long-term LUCC databases, oversimplified
models depicting forest carbon dynamics, and inadequate consideration of
various forest typesormanagementpractices17.Addressing these limitations
is crucial to understanding the relationship between LUCC and carbon
dynamics in China1,23,25.

Here,we used a combinationofmeta-analysis andprocess-basedEarth
systemmodelingusing theU.S.NationalCenter forAtmosphericResearch’s
Community Earth System Model version 2 and the data-driven machine
learning approach to generate a comprehensive estimate of the impacts of
LUCC on land carbon dynamics in China. Initially, we conducted a thor-
ough analysis using previous observations, employing a three-level meta-
analysis and a data-drivenmachine learning approach to assess the effects of
LUCC on changes in SOC and to identify key influencing factors in China.
Subsequently, we used the LUH2 dataset to drive a process-based land
ecosystem model, deriving the resultant carbon cycle. These simulations
were then comparedwith fluxdata collected fromnineChinaFlux sites. Our
objective was to evaluate the impacts of LUCC on carbon storage dynamics
and carbon fluxes in Chinese terrestrial ecosystems from 1979 to 2014. This
is particularly relevant given the intensive expansion of forests observed
since 198017. Conversely, the LUCC-free scenario (no LUCC) primarily
considered the impacts of climate, nitrogendeposition, andCO2 fertilization
on the carbon cycle.

Methods
Meta-analysis of previous studies on the SOC in China
We conducted a comprehensive three-level meta-analysis to examine the
impact of LUCC on SOC dynamics across various land-use types in China.
Our analysis synthesized the findings of 132 publications (1248 observa-
tions) pairedmeta-analyses on SOC (Supplementary Fig. 1, Supplementary
Fig. 2) on different climate zones and regional types (Supplementary Fig. 3).
We first performed a systematic search for peer-reviewedmeta-analyses on
SOCstocks or concentrations using various databases, including theWebof
Science (Core Collection; http://www.webofknowledge.com), Scopus, the
China National Knowledge Infrastructure (CNKI; https://www.cnki.net)
and theGoogle Scholar (http://scholar.google.com).The searchwasdoneon
November 9th, 2023, and updated on January 1st, 2024, using the following
search string: (“meta*analysis” OR “systematic review”) AND (“land use
change”OR “land cover”) AND (“soil organic carbon”OR “SOC”OR “soil
organic matter” OR “SOM” OR “soil carbon”) in title, abstract, and key-
words fields. We screened the titles and abstracts of the 3125 identified
papers for their potential inclusion in our study. A paper had to (i) analyze
the effect of one or several factors on bulk SOC stocks or concentrations, (ii)
the same stratified method for soil sampling must have been employed for
reference plots, and samples must be collected to a depth of at least 10 cm,
(iii) present indicators of precision of the effect sizes (standard errors or
confidence intervals). Finally, a total of 132 studies were retained. A list of
the publications considered in this systematic review with meta-analysis is
given in Supplementary Data. The literature review was conducted fol-
lowing the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines26. A PRISMA flow diagram depicting the
literature selection procedure is provided in Supplementary Fig. 2. When
different publications included the same data, we recorded the data only
once. Some studies exclusively reported soil organic matter (SOM). Soil

organic carbon concentration (SOC) (g/kg) values were calculated as
follows27:

SOC ¼ SOM x0:58 ð1Þ

All effect sizes extracted from the 132 meta-analyses included in our
studyweremeticulouslydigitized fromtextual descriptions, tables, orfigures
using the Plot Digitizer software (http://plotdigitizer.sourceforge.net/) and
systematically recorded in an Excel spreadsheet. Following IPCC standards,
we carefully documented the corresponding land-use types for each effect
size. Additionally, we collected relevant metrics such as ratios, percentage
changes, potential transformations (e.g., logarithm), confidence intervals,
and other variability indicators, along with the number of primary studies
and observations used for effect size calculations. By compiling lists of
primary studies for each meta-analysis, we were able to identify common
primary studies among different pairs ofmeta-analyses. Finally, we assessed
themeta-analyses included in our study against eight quality criteria related
to the literature search, statistical analyses, and potential bias analysis. It is
crucial to note that a flawedmethodology in retrieving primary studies and
analyzing data can lead to biased and misleading results.

In estimating the impact of LUCC on SOC in China, we explored
several meta-analytical models, varying in the structure of their random
effects, the inclusion or exclusion of the quality score of thefirst-ordermeta-
analyses, and the redundancy of primary studies between meta-analyses.
The optimal model for each factor was selected based on the Akaike
information criterion (AIC)28. The most intricate model is a three-level
meta-analytical model, incorporating a variance-covariance matrix con-
sidering the precision, quality, and redundancy of the first-order meta-
analyses. This model is formulated as follows:

Level 1model : Y ij ¼ λij þ eij
Level 2model : λij ¼ κj þ μð2Þij
Level 3model : κj ¼ β0 þ μð3Þj

ð2Þ

The three-level random effects model uses three sources of variances:
sampling variance of observed effect sizes, variance within the same study,
and variance between studies. The Yij represents the ith effect size in the jth
study, λij represents the true effect size, Var(eij) represents the known
sampling variance, κj represents the average effect, β0 represents the average
population effect, and Var and Var are the study-specific level 2 and level 3
variances.

We used the inverse variance to weight each effect size, following
recommendations by Marín-Martínez and Sánchez-Meca29. We also
adjusted the weight of lower-quality meta-analyses based on criteria from
Doi et al.30. Quality assessment was conducted by evaluating the percentage
of eight quality criteria met by each meta-analysis, with detailed criteria
explanation available in ref.31. To address non-independence between effect
sizes of different meta-analyses, we calculated a variance-covariancematrix
based on pseudo correlation32. The proxy for correlation between each pair
of meta-analyses was estimated as (2 ×m)/(n1+ n2), where m represents
the number of common primary studies, and n1 and n2 denote the total
number of primary studies in each respective meta-analysis.

The maximum likelihood estimation method is used to compute
parameter estimates, including the Q statistic and I2 statistic. To address the
“file-drawer problem,” thepresence of publicationbias inmeta-analyseswas
examined. A funnel plot was employed to assess the presence of bias, with a
symmetric distribution indicating its absence. Publication analyses were
conducted using the Tandem Procedure, and Rosenthal’s “fail-safe N”
method, Egger’s regression test, and Begg’s correlation test were applied to
evaluate potential bias. The p values from these tests, all exceeding 0.05,
indicate a lack of sufficient evidence to suggest publication bias. These
analyses were performed using the rma.mv function of themetafor package
within the R statistical software environment, facilitating the modeling of a
three-level random-effects model.
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Statistical analyses
We employed a combination of Random Forest modeling, simple linear
regression, correlation analyses, and Structural Equation Modeling (SEM)
to analyze ourmeta-analysis results. Specifically, we utilized RandomForest
Models for visualizing patterns and determining variable importance.
Simple Linear Regression and SEM were employed to assess the statistical
significance anddirectionality of patterns.Additionally, correlation analyses
were carried out to evaluate the linear relationships between pairs of
variables.

First, we used Simple Linear Regression to explore the relationship
between the Response Ratio of SOC (RRSOC) and various environmental
conditions. We specifically analyzed six environmental variables: (1) Mean
Annual Temperature (MAT), (2) Mean Annual Precipitation (MAP), (3)
elevation, (4) bulk density (BD), (5) soil background pH, and (6) duration.

Next, we included seven environmental predictors to derive a meta-
forest model, a machine learning-based random forest model adapted for
meta-analysis, to map the response of SOC stock/content to LUCC in
China. These factors included climate conditions, soil properties (e.g., bulk
density and initial soil pH), and conversion management (duration).
Missing data were imputed using the missForest Package in R Studio. The
importance of each variable was ranked using mean decrease accuracy
(IncMSE%). Missing data were imputed using themissForest Package in R
Studio, with the mean decrease accuracy (IncMSE%) utilized for ranking
variable importance3.

Then, we conducted correlation analyses to assess the associations
between RRSOC and each examined variable. Similar to previous studies5,6,
we also used SEM to investigate the direct and indirect impacts of climate,
soil characteristics, and duration on RRSOC. The modeling criteria for
evaluating SEM fit, including comparative fit index, root mean square error
of approximation, chi-square value (χ2), and p-value were taken into
account in this modeling7. SEMwas conducted using the R package lavaan
(version 4.3.2)8.

Model overview
The Community Land Model. In order to demonstrate the effects of
LUCC on plant productivity, carbon sink dynamics, and carbon storage
in China, we utilized the CESM33, which incorporates the Community
LandModel (CLM) as its land component. Two experiments were carried
out using CLM5, producing outcomes at a resolution of 0.25 × 0.25 for
the time period from 1979 to 2014. The CESM, with its integrated CLM,
allowed us to accurately simulate the biogeochemical and biogeophysical
processes necessary for assessing the impacts of LUCC. TheCLM5model
partitions the land surface into various categories including glacier, lake,
wetland, urban, and vegetated land. Employing plant functional types
(PFTs) instead of biomes, the model characterizes vegetation based on
physiological and structural attributes, incorporating 16 PFTs such as
bare ground, trees, crops, temperate/boreal shrubs, arctic/cool C3 grasses,
and warm C4 grasses. These experiments, detailed in Supplementary
Table 1, were undertaken with CLM5 to explore the influence of LUCC
on the land carbon cycle34. We used the China Meteorological Forcing
Dataset (CMFD) for meteorological data (Supplementary Table 2), while
the LUCC data were sourced from the LUH2 dataset. The LUH2 dataset
is derived from reports by the FAO which provide a breakdown of
agricultural areas at the country level. This dataset integrates the HYDE
and uses the model with the Miami-LU model in order to forecast the
extent of forest coverage prior to human intervention35. Furthermore, it
includes a simulation of secondary forest areas that are influenced by
logging activities and expansion of agricultural land. A detailed overview
of the method steps in CLM5 is provided in Supplementary Fig. 4.

Model validation. The CLM model was rigorously validated against
observations to ensure a correct estimate of land carbon in this study.
Specifically, simulated Gross Primary Productivity (GPP) was compared
with data from nine carbon flux towers spanning the 2003–2010 period
(Supplementary Table 3). The correlation between observed and

estimated GPP is illustrated (R2 = 0.8, P < 0.001, Supplementary Fig. 5),
indicating a high degree of precision in the estimation.

Data processing. Initially, we calculated the yearly mean values of GPP,
Net Ecosystem Productivity (NEP), and soil carbon stocks (at depths of
20 cm and 100 cm) across China, accounting for both scenarios with and
without land-use change spanning from 1979 to 2014. Subsequently, we
evaluated the escalation in carbon fluxes emanating from wood product
pools to litter and fossil fuels, attributed to land use and land cover
change. TheMann-Kendall method, a nonparametric test for monotonic
trends, was employed to scrutinize trends in carbon cycle variables. This
method, renowned for its resilience to outliers, has garnered favor for
trend analysis. Trends in GPP and NEP were derived utilizing the entire
1979–2014 temporal dataset, with the robustness of trends corroborated
through the non-parametric Mann-Kendall test and Sen’s slope
estimator.

Results
The overall effect of LUCC on SOC dynamics
The 1248 observations collected in our literature search included 132
publications across all major terrestrial ecosystems in China. The climate
conditions sampled in these experiments span a broad range, from 38mm
to 3000mm in mean annual precipitation and from −1.7 °C to 22.5 °C in
mean annual temperature. Additionally, the experiments encompass alti-
tudes ranging from 5m to 4500m, soil bulk densities from 0.62 g/m−3 to
1.66 g/m−3, and soil pH values from 3.8 to 8.84 (Fig. 1). The majority of
experiments were conducted in warm temperate ecosystems (52.41%),
semi-acid areas (85.25%), and the Loess Plateau (54.55%) in China (Sup-
plementary Fig. 3). The predominant land use type in these experiments is
the conversion from crops to forests (38.14%) (Supplementary Fig. 3).

SOC changes had different responses to land use conversion in China.
The overall effects of LUCC resulted in a loss of 39.2% of SOC change in
China (Fig. 2). This study primarily focused on forest ecosystems, com-
prising the highest number of studies (N = 549, Supplementary Fig. 6).
Changes in LUCC exert a negative effect on both SOC concentration and
SOC stocks. Conversion of grassland to cropland (56%) is significantly
higher SOC losses than forest to cropland (37%). The increased SOC was
11%, 13%, and 22%, respectively when the croplandwas recovered to forest,
grassland, and shrubland (Fig. 2). To verify these results and assess the
potential influence of overlappingmeta-analyses, we extracted all accessible
unique effect sizes from the meta-analyses. The final data included 1248
unique effect sizes (SupplementaryFig. 7).Results of a random-effectsmeta-
analysis corroborated results from the three-level meta-analysis (lnRR =
−0.49, 95% CI [−0.32, 0.66], P < 0.001). Next, we tested the subgroup
effects for (a) type of land use change type, (b) soc change, (c) climate zone,
(d) humid and arid zone, (e) regional type, (f) elevation, (g) soil depth, (h)
bulk density and (i) soil pH on SOC, as an approach to explaining the
systematic variance (Supplementary Table 4). Conversions from forest-
lands, grasslands, and other land categories to croplands consistently
resulted in substantial SOC loss, with confidence intervals (CI) of [−2.53,
−0.20], −1.16 (CI [−2.19, −1.30]), −1.74, and −3.1 (CI [−4.46, −1.73]),
respectively (Fig. 3, Supplementary Table 5). Not surprisingly, the impact of
LUCCwas sensitive to climate in the followingorder fromsmallest to largest
in terms of changes in SOC: Tropical (lnRR =−0.31, P < 0.001) < Tempe-
rate (lnRR =−0.54, P < 0.01) < Cold Plateau (lnRR =−0.72, P < 0.001).
These results indicated that LUCC impacts on SOC change
varied depending on climatic conditions influencing the plant and soil
processes driving soil organic matter dynamics. Moreover, our analyses
revealed a decrease in SOC change attributable to LUCC in arid regions of
China, accounting for 21.33% of the total carbon loss in acidic regions.
However, it is important tonote that the specific impactofLUCConSOCcan
vary significantly depending on the type of land use change and local con-
ditions. Conversely, LUCC induced a significant positive effect on SOC
change in the Loess Plateau (CI = 0.56, [−0.75, 1.44]). Notably, land-use
changes negatively impacted SOC change across different elevations and soil
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depths, suggesting minimal influence from elevation and soil depth on
LUCC-induced carbon dynamics. Additionally, the impact of land-use
change on SOC change had a negative effect at bulk weights greater than
1.6 g/cm−3. Besides, LUCC improves SOC in both acidic and neutral soils
(lnRR= 0.38, P < 0.01 and 0.47, P < 0.05). However, it is important to note
that the specific impact of LUCConSOCcanvary significantly dependingon
the type of land use change and local conditions (see the Discussion section).

Driving factors for soil carbon pool due to LUCC
We provided a detailed analysis of the distribution of these influencing
factors acrossChina (Fig. 1).MAPwas correlatedpositivelywith SOCdue to

LUCC (n = 1162, Radj
2 = 0.01). In contrast, MAT showed a negative corre-

lation with SOC due to LUCC (n = 1162, Radj
2 =−0.0008), consistent with

previous studies36,37. Lower SOC changes were observed at higher altitudes
(Fig. 4). The impact of LUCCon SOC changeswas particularly pronounced
in acidic soils (Fig. 4). There was positive correlation between SOCand bulk
density due toLUCC(R2 = 0.03,P < 0.001).Changes in SOCwerenegatively
affected by the timing of LUCC (Fig. 4).

LUCC activities like farming and deforestation accelerated SOC
decomposition, influenced by factors like LUCC type and intensity. To
evaluate the relative significance of climatic factors, soil characteristics, and
other environmental variables, we employed ameta-forest, a random forest
model adapted for meta-analysis, considering interactions among variables
and potential nonlinearity (refer to the Methods section). Soil bulk density
emerged as the most influential variable in explaining the variation in SOC
due to LUCC (Fig. 5a). Following this, the duration became the secondmost
critical factor controlling SOC dynamics, while MAP exhibited a com-
paratively lesser impact on the spatial pattern of SOC. These results suggest
that soil properties played a crucial role in regulating SOC dynamics in
response to land use changes. TheRRof SOCwas negatively correlatedwith
the duration of LUCC. Pearson’s correlation analysis revealed significant
negative correlations among climate variables (MAP, MAT) and latitude
(p < 0.01, Fig. 5b). Moreover, the RR of SOC was significantly positively
correlatedwithMAPandBDbut significantly negatively correlatedwith soil
pHandduration. Todelve deeper into the potentialmechanismsof SOCRR
concerning environmental and climatic factors, along with recovery time
due to LUCC, SEMwas employed (Fig. 5c). The results showed that indirect
climate effects significantly impacted SOC compared to direct climate
effects. Specifically, the SEM for SOC indicated that soil characteristics may
have exerted direct and positive influences on SOC RR following LUCC
(path coefficient = 0.08, Fig. 5c). Conversely, climatic factors appeared to
indirectly influence SOCRR through environmental factors such as latitude
and elevation (Fig. 5c).

Fig. 1 | The distribution of 1248 meta-analysis plots with climate and other parameters in China. aMean annual temperature (MAT), bMean annual precipitation
(MAP), c Altitude, d Bulk density (BD), e Duration, f Soil pH.

Fig. 2 | Conceptual model of SOC dynamics due to LUCC in the meta-analysis.
The yellow arrow indicates an increase, while the blue arrow indicates a decrease.
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Historical Chinese land carbon cycle dynamic due to LUCC
To illustrate the impacts of LUCC on plant productivity, carbon sink
dynamics, and carbon storage in China, we compared scenarios with and
without LUCC from1979 to 2014 using the CESMmodel.We validated the
bias of carbon flux using FLUXNET data in China (Supplementary Fig. 4).
Themodel capturedwell C dynamics in China using inventory-based forest
C stock changes at both national and site levels as the validation dataset
(Supplementary Table 6). The spatial distributions of mean annual GPP in
simulations with andwithout LUCC gradually increased fromnorthwest to
southeast (Fig. 6a, b). Most western regions, characterized by land use types
such as desert or plateau, exhibit GPP values lower than 500 g Cm−2 yr−1.
Conversely, highGPPvalues (>1500 g Cm−2 yr−1)were frequently observed
in southeast China, where both temperature and precipitation favor plant
growth (Fig. 6a, b). Ourfindings showed the substantial impact of LUCCon
the GPP trend, resulting in a cumulative increase of 6.65 PgCwith a growth
rate of 0.03 Pg C yr−1 from 1979 to 2014 (Fig. 6b). In contrast, under a
scenario without LUCC during the same period, GPP was 7.01 PgC, indi-
cating an annual decrease of 0.01 PgC (Fig. 6a). The observed trend of GPP
due to LUCC (0.02 PgC yr−1) was nearly double that estimated by the no
LUCC dataset (0.01 PgC yr−1). The LUCC-free scenario, which primarily
considered climate, nitrogen deposition, and CO2 fertilization, showed that
LUCC has a more significant impact on altering land carbon uptake than
climate (Fig. 6c). TheCLMeffectively captures well-known extreme climate
events and natural disturbances, such as the 1986 drought, the 1991 erup-
tion of Mount Pinatubo, and the strong El Niño of 1998 (Fig. 6c). The
significant positive trends in GPP with LUCC, indicating enhanced carbon
assimilation, were notable from 1979 to 2014 over a wide area (Fig. 7b).
LUCC led to a rapid increase in carbon sinks within China’s terrestrial
ecosystems, particularly in the northwest, central China, and Qinghai-
TibetanPlateau regions following LUCC (Fig. 7b). Conversely, over the past
four decades, the Central China region, along with the Yangtze River Delta
and Pearl River Delta regions, has experienced a substantial reduction in
GPP (Fig. 7a, b).

The LUCC-induced annual NEP in China was observed to be
2.53 g Cm−2 yr−1 for the period from 1979 to 2014, contributing to a total
terrestrial carbon uptake of 0.02 ± 0.12 PgC yr−1 (Fig. 6e). Compared to the
period without LUCC, the NEP was estimated at −0.06 ± 0.16 Pg C yr−1

(Fig. 6d). Carbon sink density exhibited an increase from northwest to
southeast, with the largest carbon sink primarily distributed in southwest
China (Fig. 6e). Additionally, mountainous regions such as Daxing’anling,
Xiaoxing’anling, and the Changbai Mountains showed relatively high car-
bon sink values, exceeding 200 gCm−2 yr−1 (Fig. 6e). However, terrestrial
ecosystems inmost of InnerMongolia, northwest China, and the hinterland
of the Tibetan Plateau acted as carbon sources (Fig. 6d, e). Overall, our
estimations suggest that approximately 80% of the area functions as a car-
bon sink inChina (Fig. 6e). In terms of temporal trends, the LUCC-induced
annualNEPdemonstrated significant increasing patterns (Fig. 6f). Spatially,
the notable trend of NEP predominantly manifested in high latitudes
(Fig. 6d). LUCC positively influenced carbon sinks in China, leading to a
significant enhancement in carbon sequestration compared to scenarios
solely driven by climatic factors (NO LUCC). The average NEP trend value
of 0.02 g Cm−2 yr−1 indicated an upward trend in carbon sink capacity
across most regions (Fig. 7d). Increased trends were primarily found in the
Qinling Mountains and Loess Plateau, while declining trends were mainly
concentrated in the southwest and northeast regions of China, especially in
the southern Tibetan Plateau.

The spatial variations of land-induced carbon cycle
Soil carbon stock in topsoil (0–20 cm) was 73.33 ± 0.45 Pg C, while land-
induced SOC stock in land-use-disturbed topsoil was 71.73 ± 0.56 Pg C
(Supplementary Fig. 8). LUCC in the upper 0.2m of soil resulted in a 1.6 Pg
C carbon loss, indicating a significant decrease in SOC density due to
anthropogenic LUCC from 1979 to 2014. Our findings revealed that there
was no statistically significant disparity in soil organic carbon (SOC) storage
between the surface (0–20 cm) and deeper layers (20−100 cm) influenced
by LUCC. The maximum SOC content in surface soil (0–20 cm) was

Fig. 3 | Weighted effect sizes for soil organic car-
bon (SOC) changes under different land use
changes. Error bars indicate the 95% confidence
interval, with statistical significance denoted as fol-
lows: ***, p < 0.001; **, p < 0.01; *,
p < 0.05; p < 0 0.1.
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Fig. 4 | Meta-regression results (red line) showing relationships between soil
(bulk density, pH), geographical elevation, latitude, mean annual temperature
(MAT), mean annual precipitation (MAP), and land management factor

(duration) and response ratios (RR) of SOC following LUCC in China. Indivi-
dual data points showRR values for each observation. aMAP, bMAT, c elevation,
d soil pH, e duration, f latitude, g bulk density.

Fig. 5 | The abiotic and biotic drivers of SOC changes following LUCC. a The
relative importance of environmental variables in influencing the response of SOC to
LUCC.MAP,mean annual precipitation;MAT,mean annual temperature; BD, bulk
density, (b) Correlations between climate, soil, duration, environmental factors, and
SOC, (c) SEM for SOC, showing the relationships between climate, soil, duration,

environmental factors and SOC. Significant paths are shown in blue if positive or in
orange if negative. Numbers near the pathway arrow indicate the standard path
coefficients. The portion of variance explained by the model (R2) is shown for the
response variable.
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300 kg Cm−2, while the average SOC in subsurface layer (20–40 cm) soil
was 200 kg Cm−2. Soil carbon pools (0–100 cm) exhibit large spatial var-
iations at the national scale (Supplementary Fig. 9c). Both No-LUCC and
LUCC SOC density exhibited the highest soil carbon densities in regions
such as the Xing’anling Mountains in Northeast China, the Qilian

Mountains in Qinghai, the Tian ShanMountains in northern Xinjiang, and
the Tibetan Plateau (Supplementary Fig. 9a, b). However, the SOC density
displayed complex variations: the land-induced SOC density has sig-
nificantly decreased in regions observed in Jilin, Xinjiang, and Shanghai,
with a minimum value of −1.69 kg Cm−2 (Supplementary Fig. 9c). The

Fig. 6 | Land–atmosphere carbon fluxes over No LUCC and LUCC in China. The
annual mean values for 1979–2014 were shown. a Spatial distributions of GPP over
No LUCC, b Spatial distributions of GPP over LUCC, c The temporal variations of

GPP over No LUCC and LUCC, d Spatial distributions of NEP over No LUCC,
e Spatial distributions of NEP over LUCC, fThe temporal variations of NEP over No
LUCC and LUCC.

Fig. 7 | Trends of land carbon fluxes over No LUCC and LUCC in China. a Spatial distributions of GPP trends over No LUCC, b Spatial distributions of GPP trends over
LUCC, c Spatial distributions of NEP trends over No LUCC, d Spatial distributions of NEP trends over LUCC.
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maximum differences in SOC density occurred in Tianjin, Jiangsu, and
Henan provinces, with a maximum value of 3.65 kg Cm−2 (Supplementary
Fig. 9c). LUCC activities also decreased soil carbon pools (100 cm) sig-
nificantly, with a minimum value of −1.06 kg Cm−2. However, LUCC in
Tianjin, Jiangsu, Henan, and Shandong had a positive impact on surface
SOC storage (Supplementary Fig. 9d, e, f).

China’s land use practices significantly influence carbon fluxes
within its ecosystems. Our analysis of carbon fluxes associated with litter
and coarse woody debris (CWD) across China revealed a subtle spatial
pattern (Supplementary Fig. 10). Generally, carbon fluxes were higher in
southeastern China but lower in northwestern China, with most regions
averaging 200 Tg C yr−1 (Supplementary Fig. 10a). However, the north-
east region surpassed this average, with Shanghai and Jiangsu registering
a peak flux of 96 Tg C yr−1 (Supplementary Fig. 10b). We observed a
notable increase in wood product pools due to land cover change, par-
ticularly pronounced in Hainan, where it surged to 4.31 Pg C yr−1. The
cumulative addition to wood product pools due to land cover change
unfolds as a substantial 40.16 Pg C yr−1 from 1979 to 2014 in China
(Supplementary Table 7).

Understanding historical changes in land use and land cover further
enriches our understanding of carbon dynamics in China. The results
showed that the area of grasslands and forests changed from 1979 to 2014
(Supplementary Fig. 11). Specifically, while the overall area of grasslands
increased, the area of C3 non-arctic grasslands increased by 66,100m2, and
the area of C4 grasslands increased, to 56,100m

2 (Supplementary Table 8).
In contrast, forest area in general shows complex dynamics. Different types
of forests, including temperate evergreen conifers, arctic evergreen conifers,
arctic deciduous conifers, tropical evergreen broadleaf, temperate evergreen
broadleaf, tropical deciduous broadleaf, temperate deciduous broadleaf,
arctic deciduous broadleaf, temperate deciduous broadleaf shrubs, and
arctic deciduous broadleaf shrubs, have undergone changes in area of
varying degrees. Overall, there has been a decrease in the total forest area,
especially in the boreal region.

Discussion
Understanding the impact of LUCC on global elements, carbon cycles,
and surface properties is crucial for addressing regional carbon balances.
We report a previously overlooked role of LUCC in driving the land
carbon cycle in China by using a three-level meta-analysis and taking the
commonly used LUH2 to drive an ecosystem model. The meta-analysis
serves a dual purpose: it validates themodel results by providing empirical
data, ensuring alignment between observed and simulated outcomes,
while also minimizing uncertainties. By integrating meta-analytic data
with modeling, we enhance the reliability of our findings without sig-
nificantly impacting the conclusions drawn. This approach not only
strengthens the robustness of our results but also underscores the
importance of incorporating empirical data alongside modeling efforts to
gain a comprehensive understanding of the complex interactions driving
the land carbon cycle38.

We found that LUCC caused a 39.2% loss of SOC change in China,
with grassland conversion to cropland resulting (56%) in significantly
higher losses than forest to cropland conversion (37%). This is consistent
with previous studies8,39,40, indicating that LUCC is a significant contributor
to land carbon loss. Huang et al.40 reported that forest-to-cropland con-
version led to a global reduction in SOC of 24.5% ± 1.53%, while grassland-
to-cropland conversion resulted in a reduction of 22.7% ± 1.22%. However,
our study, which specifically focused on China, revealed a more precise loss
percentage of 39.2% due to LUCC. This disparity highlights the heightened
magnitude of SOC loss in China compared to the global averages40. This
discrepancy can be attributed to several factors: previous studies primarily
examined SOC stocks41, whereas our study also considered SOC con-
centrations. Moreover, grasslands typically begin with higher initial SOC
stocks compared to forests. For example, converting grassland to forest
resulted in an 18% decrease in SOC stocks42, suggesting that natural
grasslands may maintain greater soil carbon stocks than natural forests.

Total soil profile carbon stocks are 13% higher in grasslands compared to
forests43, and grasslands possess significantly greater soil organic matter
content44. Additionally, our approach utilized a three-level meta-analysis,
providing amore comprehensive understanding of the impact of LUCC on
SOC. Unlike traditional meta-analyses, our method allowed for the inte-
gration of multiple levels of data, thereby enhancing the accuracy and
precision of our results.

Our study also found that LUCC has had a notably positive impact on
SOC change in the Loess Plateau compared to other regions in China. This
can be attributed to several factors. National policies, including the Three-
North Shelterbelt Forest, Natural Forest ConservationProgram, andGFGP,
have significantly enhanced ecological conditions and brought about sub-
stantial LUCC changes45. Specifically, the GFGP has proven particularly
effective in the Loess Plateau by converting farmland into grassland or forest
and transforming barren land into productive areas46,47. Overall, the con-
version of cropland to forest, grassland, and shrubland increased SOC by
11%, 13%, and 22%, highlighting the effectiveness of afforestation in climate
change mitigation and biodiversity conservation17,48,49.

LUCC-induced SOC losses were relatively minor in tropical climates
compared to Temperate and Cold Plateau, indicating that climate plays a
crucial role in shaping SOCdynamics39,48,50.Moreover, our results reveal that
indirect climate effects, particularly soil bulk density, significantly impact
SOCcompared to direct climate effects, consistentwith the previous study36.
This can be explained by the fact that soil bulk density affects soil properties
such as porosity, structure, andmoisture retention, which in turn influence
gas exchange and water movement, crucial for SOC decomposition and
stabilization51.

Based on LUH2 driving an ecosystem model, our study underscores
the dominant role of LUCC in shaping the terrestrial carbon sink in China
from 1979 to 2014. Our results reveal that the land-induced GPP trend of
0.02 PgC yr−1 is twice as large as the GPP trend without land disturbance.
However, certain regions (e.g., central China and Yangtze River Delta,
Beijing-Tianjin wing) experienced a decline in GPP from 1979 to 2014,
highlighting the spatial heterogeneity of carbon dynamics affected by rapid
urbanization17,48,52.

Our results also indicate that the NEP is sensitive to LUCC, resulting
in enhanced carbon sink capacity within China’s terrestrial
ecosystems17,22, especially in regions such as the northwest, central China,
and Qinghai-Tibetan Plateau. Additionally, we found that carbon stocks
in soils significantly decreased by 1.6 Pg C due to anthropogenic LUCC
from 1979 to 2014 in China. It is important to note that China has
implemented the Natural Forest Conservation Program (NFCP) and the
Green Grain Program (GGP) to combat carbon loss from LUCC53. The
NFCP focuses on banning logging in the southwest and reducing logging
in other areas, while the GGP aims to increase grasslands and planted
forests on sloping cropland and degraded grasslands54. However, since
1978, forest restoration policies have varied across China’s provinces due
to different management styles, resulting in inconsistencies in LUCC
impact on the carbon cycle.

Our findings underscore the significant role of LUCC in shaping the
historical carbon dynamics in China, emphasizing the imperative for
afforestation and conservation practices to enhance carbon sequestration
and mitigate the impacts of climate change. Our study also provides sci-
entific guidance for future carbon management and climate change, high-
lighting the significant contribution of reforestation and afforestation in
combating global climate change and enhancing carbon sinks. Through an
ensemble of a three-level meta-analysis and state-of-the-art DGVMs, we
have effectively depicted the long-term evolution of the land carbon cycle in
China. Our results elucidate that LUCChas acceleratedChina’s land carbon
sinks, despite the limitation of soil carbon.

A comprehensive process-based understanding remains elusive due to
several model and data limitations. Notably, the CESM and LUH2 datasets
contain uncertainties in historical land-use data, initial input parameters,
and physical processes. To address these limitations, we incorporated 1248
observed data points through a meta-analysis, employing a more
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scientifically robust cross-scale approach. This methodological framework
enhances the scientific rigor of our assessment, providing a more accurate
understanding of how land-use changes have influenced China’s terrestrial
carbon cycle over historical periods.

For future research, it is crucial to prioritize efforts aimed at improving
the accuracy of input parameters and refining the representation of physical
processes within models. The uncertainty surrounding the above/below-
ground partitioning of the carbon sink is attributable to the oversimplified
representationof internal carboncyclingmechanisms55. Toaddress this gap,
enhancingmodels with improved plant allocation algorithms, refined tissue
lifespan and mortality dynamics, and the incorporation of process-based
soil carbon and nutrient cyclingmechanisms should be prioritized in future
research endeavors.

Data availability
CMFD data are available at https://www.nature.com/articles/s41597-020-
0369-y. The CESM data are available fromNCAR (https://www.cesm.ucar.
edu/).

Code availability
All computer codes for the analysis of the data are available from the cor-
responding author upon reasonable request.
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