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Recent development of artificial intelligence (AI) technology has resulted in the fruition of machine
learning-based weather prediction (MLWP) systems. Five prominent global MLWP model, Pangu-
Weather, FourCastNet v2 (FCN2), GraphCast, FuXi, and FengWu, emerged. This study conducts a
homogeneous comparison of these models utilizing identical initial conditions from ERA5. The
performance is evaluated in the Eastern Asia and Western Pacific from June to November 2023. The
evaluation comprises Root Mean Square Error and Anomaly Correlation Coefficients within the
designated region, typhoon track and intensity predictions, and a case study for Typhoon Haikui.
Results indicate that FengWu emerges as the best-performing model, followed by FuXi and
GraphCast, with FCN2 and Pangu-Weather ranking lower. A multi-model ensemble, constructed by
averaging predictions from the five models, demonstrates superior performance, rivaling that of
FengWu. For the 11 typhoons in 2023, FengWu demonstrates the most accurate track prediction;
however, it also has the largest intensity errors.

Turing’s1 pioneerwork “ComputerMachinery and Intelligence” introduced
The Turing Test, used by experts tomeasure computer intelligence even up
to date. The term “artificial intelligence” (AI) was coined in 1956 at a
Dartmouth summer workshop and machine learning (ML) was referred to
by Arthur Samuel2. The advancements in AI/ML have experienced inter-
mittent periods of stagnation over the past few decades. Significant progress
in AI applications recently stems from vast datasets, rapid computational
capabilities, and the availability of improved AI tools. Achievements of AI
includes speech and vision recognizers, autonomous vehicles, cognitive
computing, and expert systems, etc. These applications are increasingly
penetrating various scientific and engineering communities. Many ML
algorithmscanbe thoughtof as optimizing anonlinear regression,withdeep
learning utilizing an extremely high-dimensional model. ML has proven to
be an excellent tool for addressing complex, nonlinear, or stochastic chal-
lenges encountered in fields such as physics and Earth science.

Numerical weather prediction (NWP) models using nonlinear pri-
mitive equations with parameterizations accounting for sub-grid scale
physical processes have been developed in the last 70 years. The success of
NWP comes from supercomputing capabilities allowing high resolutions,
improvements of physical parameterization, data assimilation strategy, and
satellite retrievals. Recently, the Earth science community is adept at

embracing AI/ML, as many AI concepts align closely with meteorology
challenges, particularly data assimilation. Progress in AI meteorology has
seen exponential growth since 2016, driven by achievements in ML tech-
niques and sufficient computing resources, such as GPUs. There are many
AI applications in Earth science such as PDE solving3,4 and NWP post
processing5–7.

Recently, there was a growing interest in utilizingAI/ML techniques to
build ML-based (data-driven) weather and climate prediction (MLWP)
models directly from atmospheric data. A variety proof of concept studies
based on a few atmospheric variable comparisons has reveal that MLWP
may have a great potential competing with traditional physical-based
numerical weather predictionmodels8–12. However, the rather coarse spatial
resolution data (~5o) used in these studies limited their forecast perfor-
mances and applications. A chronicle review of theMLweather and climate
modeling is given by de Burgh-Day and Leeuwenburg13.

Significant breakthroughemerged starting in2022 for thedevelopment
of global MLWP models applying to weather and climate predictions.
FourCastNet system (FCN)14 is the first MLWP model producing 0.25o

resolution forecasts using ECMWF ERA5 reanalysis15 as its training data.
The system applying Vision Transformer (ViT)16 with the Fourier Neural
Operator (FNO)17 and Adaptive Fourier Neural Operators (AFNO)18 for
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efficient computation in long-range dependencies in spatial-temporal data.
A vision transformer is a deep learning model that breaks down an image
into patches, processes them using transformers, and aggregates the infor-
mation for object detection. FourCastNet was subsequently upgraded to
version 2, FCN2, that uses Spherical Harmonics Neural Operators (SFNO)
to build a more stable autoregressive model for weather prediction19.
SwinRDM20 is the first MLWP system to outperform ECMWF’s determi-
nistic operational forecasting system, IFS-HRES, in 5-day forecasts at a
spatial resolution of 0.25o. Pangu-Weather21 acquires promising medium-
range performance that surpasses IFS-HRES with a multi-timescale model
combination strategy based on 3DEarth-Specific Transformers (3DEST) in
which the upper-air variables and the surface variables are embedded into a
single deep network. The 3D data are propagated through an
encoder–decoder architecture derived from the Swin transformer22, a var-
iant of the vision transformer. GraphCast23 takes the approach of applying
the graph neural networks (GNN)12 to a six-layer icosahedron grids with
increasing resolution globally in which a set of objects and the connections
between them are expressed as a graph. A 12-step autoregressivefine tuning
is employed as the strategy for increasing the long-lead prediction accuracy.
The model is more accurate in predicting 90% of the atmospheric variables
compared with the IFS-HRES.

FuXi24model backbone is basedonSwin transformerv225with 3Dcube
embedding (called U-transformer) and is designed as a cascade of models
(short for 0 ~ 5 days, medium for 5 ~ 10 days, and long for 10 ~ 15 days)
optimized for different forecast lead times that is similar to themultiple time
steps used in Pangu-Weather21. FengWu forecast system is constructed
from a multi-modal and multi-task perspective in which each atmospheric
state variable is treated as an individual modal and a cross-modal fuser
transformer is applied to connect them26. To solve the long-lead prediction
issue, the replay buffer mechanism is used, which is inspired by the rein-
forcement learning study27. The replay buffer stores the predicted results
from previous optimization iterations and uses them as the current model’s
input, whichmimics the intermediate input error during the autoregressive
inference stage.

Bouallegue et al.28 conducted a comprehensive comparison between
Pengu-Weather simulation and ECMWF operational IFS using the same
initial conditions. The results are very promising for theMLWPmodel, with
comparable accuracy from Pengu-Weather for both global metrics and
extreme events, when verified against the IFS analysis and synoptic obser-
vations. Meanwhile, overly smooth forecasts, increasing bias with forecast
lead time, and poor performance in predicting tropical cyclone intensity are
identified as current drawbacks of ML-based forecasts. Charlton-Perez
et al.29 conducted a quantitative evaluation for FCN, Pangu-Weather,

GraphCast, and FCN2 on the prediction of StormCiaran (2023), which has
caused significant casualties and damage in Europe. The simulations of four
MLWPmodels accurately capture the synoptic-scale structure of the winter
cyclone including the position of the cloud head, shape of the warm sector
and location of the warm conveyor belt jet. Meanwhile, all of the MLWP
models underestimate the peak amplitude of winds associated with the
storm. This appears to be the commonality of existing machine learning
models with resolution limited by ERA5 as their training data.

The new developments on MLWP systems initiated a new era on
weather predictions30. While all the aforementioned MLWP models have
demonstrated performance compatible with or superior to conventional
NWPmodels, and some comparisons between individualmodels have been
analyzed, a homogeneous, comprehensive comparison among them is
lacking. Additionally, the illustrations of tropical cyclone prediction skills,
which serve as examples of extremeweather events, are selectively presented
in their major publications.

An essential aspect of global weather prediction models is their role in
generating initial and boundary conditions for regional weather forecast
systems31. High resolutions in regional models facilitates representing of
complexmulti-scale processes crucial for high-impactweathers that directly
affect human society directly. Biases and model errors present in the global
forecast fields are thus inherited by regional models32. The influence of
uncertainty in initial conditions usually diminishes over the course of the
simulation length, whereas the impact of variations in lateral boundary
forcing does not exhibit a clear trend.

As an operational weather prediction agency, the Central Weather
Administration (CWA) is responsible for weather forecasts in Taiwan,
encompassing a broad spectrum of temporal scales ranging from now-
casting to climate predictions. We utilize global forecast fields to drive our
regional models, which feature high resolutions specifically tailored for the
East Asia and western Pacific region33. The performance of the driving
global forecast model significantly influences the accuracy of a limited area
significantly34. Therefore, performance of the driving globalmodel is critical
for the success of our regional models. This study aims to contribute to this
understanding.

Result
Synoptic-scale predictions
In this section we present the performance of the five MLWP models and
IFS in the area shown in Fig. 1, covering the evaluation period from June to
November 2023. Note that IFS is the operational NWP system at ECMWF
and our MLWP simulations used ERA5 as the initial conditions, which is
different from the IFS. We compute the standard metrics of latitude-

Fig. 1 | The regional domain for evaluating the five
MLWP models includes the best tracks of the 11
typhoons that occurred during June to Novem-
ber 2023. The best tracks are categorized as straight
(blue), curving (black), recurve (red), or irregular
(green), with the names of the typhoons indicated
beside their respective tracks. Track data interval is
6-h, and the dots shows 00 UTC of the day.
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weighted Root Mean Square Error (RMSE) and Anomaly Correlation
Coefficient (ACC), commonly used in themeteorological community.ACC
measures the spatial correlation between a forecast anomaly relative to
climatology and is widely used for synoptic-scale prediction assessment.

Figure 2 shows the RMSE andACC for various variables, including the
500 hPa geopotential height, temperature at 850 hPa and at 2m height, and
zonal component of the wind at 10m height. Based on RMSE, the best
model is FengWu, followed by FuXi and GraphCast, with FCN2 trailing
behind, and Pangu-Weather ranking last. IFS with a resolution of 9 km, lies
in the middle of the group. Near the surface, there is a slight variation
between FCN2 and FuXi. It is worth noting that ERA5 contains more
observational data post-analysis data, while IFS uses the operational real-
time analysis without the post-analysis data. This is reflected by the larger
RMSE of IFS compared to the other fivemodels at the initial time.With this
in mind, we focus on the error trends when comparing IFS with the other
models rather than the absolute magnitudes. In general, the slope of the
RMSE from IFS aligns with the others, except for Pangu-Weather, which
exhibits a larger upward trend.RegardingACC(Fig. 2e–h), theperformance
of the five MLWP models is similar to their RMSEs, with FengWu leading
and Pangu-Weather trailing, and IFS falling in the middle of the group.

Weather forecasting inherently carries uncertainties due to the chaotic
nature of weather systems and imperfect initial conditions. To address this
uncertainty, ensemble forecasting is employed throughperturbing the initial
conditions and physical parameterizations35,36. There is also a multi-model
ensemble approach that is widely recognized for its improved performance
over individual models in various fields, including weather forecasting,
climate modeling, and machine learning37. Hagedorn, et al.38 provided a
comprehensive analysis of why multi-model ensembles outperform indi-
vidualmodels in seasonal forecasting. Amulti-agency effort was established
for the North American Multi-Model Ensemble (NMME) prediction sys-
tem targeted at the seasonal forecasts that showed better performance
compared to individual models39.

Due to their exceptional computational efficiency,MLWPmodels have
been proposed as ideal for ensemble predictions from a single-model
ensemble perspective. Here, we investigate the potential benefits of a multi-

model ensemble approach by taking a simple multi-model ensemble
strategy. We compute the RMSE and ACC of the ensemble by averaging
forecast fields from all five MLWP models. Notably, when averaging the
forecasts from the first three low-scoringmodels, the ensemble outperforms
the individual models (figure not shown). As moremodels are added to the
ensemble, the additional benefits become less pronounced. Ultimately, the
performance of the ensemble comprising all five models approaches that of
the best-performing model, which is FengWu in this study. The primary
advantage of using a multi-model ensemble is the reduction in the error
range. Specifically, for tropical cyclone track predictions, the ensemble
consistently stayswithin the error range, preventing outliers from individual
models. This point will be addressed further when evaluating typhoon
predictions. Note that in this simple multi-model ensemble strategy, the
uncertainty associated with initial conditions from different models is not
accounted for. However, the ensemble strategy still demonstrates its con-
ceptual advantage.

Another important metric for assessing model performance is the
model bias, which represents the difference between themean forecast state
and the verification. In this study, we examine the position and strength of
thewesternPacific subtropical high (WPSH) system, a key feature ofHadley
circulation’s substance. The variation of the WPSH is primarily influenced
by central Pacific cooling/warming and positive atmosphere-ocean feed-
backs between the WPSH and the Indo-Pacific warm pool oceans40. The
position and strength of this system significantly influences various regional
weather features such as monsoon circulations and TC movements. Inter-
actions between a TC and the WPSH can lead to changes in cyclone tra-
jectories, making themmore prone to recurvature ormaintaining a straight
path based on the strength and position of the WPSH41.

We use the 500 hPa geopotential height contour as a measurement of
the system, with the 5880m line serving as a common reference in local
operational communities and predicting of it from different models can be
easily assessed. Figure 3 illustrates the averageof the 168 h forecasted5880m
contours in summer (JJA) and fall (SON) from each MLWP model,
alongside the three-month mean from ERA5 serving as the verification.
There is a seasonal migration of the WPSH westward from summer to fall.

Fig. 2 | The evaluation includes RMSE and ACC of five MLWP models, their
ensemble, and IFS. RMSE for a 500 hPa geopotential, b 850 hPa temperature,
c temperature at 2 m height, and d zonal component wind at 10 m height of Pangu-

Weather (red), FCN2 (green), GraphCast (orange), FuXi (light brown), FengWu
(brown), the ensemble (light blue) of the five MLWP models, and IFS (blue),
e–h ACC correspond to the same variables.
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In both periods, the 5880m contour line from ERA5 encompasses all lines
from theMLWPmodels, indicating that all thesemodels exhibit aweak bias
for the WPSH. Among them, Pangu-Weather shows the largest weak bias,
while FengWu exhibits the smallest bias, consistent with their RMSE and
ACC scores. This observation holds significant importance in the maritime
continent, where theMadden-Julian Oscillation (MJO)42,43 is active, leading
to large variabilities and far-reaching influences across the globe.

Additionally, the 5760m contour lines at higher latitudes from the five
MLWP models are more closely clustered in both seasons. In general, tro-
pical regions present greater challenges in weather prediction compared to
mid-latitudes44, primarily due to more vigorous convective activities45. The
simple analysis presented here suggests that MLWP models may also face
greater challenges at lower latitudes, likely due to limitations inherited from
their training data, which is the reanalysis relying on NWP model as its
backbone.

Typhoon predictions
We assess the performance of the five MLWP models alongside IFS in
predicting the 11 typhoons occurring between June and November 2023,
excluding three short-lived ones (see best tracks in Fig. 1). The positions of
the typhoons are identifiedby the stormcenter, determinedas theminimum
sea-level pressure in the forecastfields. Typhoon best track data providedby
CWA was utilized for this analysis, and they are similar to those from the
International Best Track Archive for Climate Stewardship (IBTrACS)
database46,47. Track and intensity errors from the 7models, including thefive
MLWPmodels, their ensemble, and IFS are depicted in Fig. 4. Note that the
averages are taken by the forecast lead time, which likely represent different
stages of the life cycle for individual storms. In a case study presented later,

we will illustrate how predictions for a storm can vary significantly in dif-
ferent stage.

Among the compared MLWP models, Pangu-Weather exhibited the
largest track error, followed by FCN2, GraphCast, FuXi, and FengWu,
progressively with smaller error up to 144 h. Subsequently, FengWu’s track
error is higher than FuXi and slightly higher than GraphCast at 168 h.
Overall, errors of IFS lie roughly in the middle of the group even though it
has the smallest position error at the initial time (in the zoomed inlet). The
ensemble performance was very close to FengWu. The benefit of using a
multi-model ensemble is to reduce the range of error in tropical cyclone
trackprediction inwhich the ensemble is alwayswithin the range so that one
would not get outliers (to be discussed more using Table 1). Comparing
Fig. 4 with Fig. 2 indicates that, in general, track prediction performance
aligns with the ranking by RMSE andACC. Because TCs are steered, to first
order, by the large-scale flow at mid-tropospheric levels48. Therefore, a
weather prediction model with better ACC and RMSE scores usually also
has better TC track prediction.

In terms of intensity prediction, the absolute errors are displayed to
avoid cancellation of positive and negative relative errors, and all models
exhibit weak biases. Although FengWu exhibited the smallest overall track
errors, it had the largest intensity errors.Meanwhile, GraphCast andPangu-
Weather tied for the lowest intensity errors. It is noteworthy that IFS
exhibited a much lower initial intensity bias compared to the five MLWP
models, which used ERA5 as their initial conditions. Nevertheless, the trend
of intensity errors was similar across all models. When comparing Pangu-
Weather’s performance with IFS on TC intensity prediction, Boualleguea
et al.28 also demonstrated that Pangu-Weather performed poorly than IFS.

Fig. 3 | The analysis (ERA5) and 168 h predicted 5880mand 5760 mgeopotential
height at 500 hPa for the five MLWPmodels and their ensemble. Contours show
the period of (a) June, July, and August and (b) September, October, and November
2023 of Pangu-Weather (red), FCN2 (green), GraphCast (orange), FuXi (light
brown), FengWu (brown), the ensemble (light blue) of those MLWP models
mentioned above, and ERA5 (black).

Fig. 4 | Averaged track and absolute intensity errors for the five MLWP models,
their ensemble, and IFS. a track errors (km), b absolute intensity errors (hPa). The
total number of cases are listed at the bottom. Colors according to themodels are the
same as Fig. 2. The filled squares show averaged track and intensity error every 24 h
starting from the initial time.
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Their Fig. 8b suggests that the superiority of IFSmay stem frombetter initial
(higher) intensity due to its higher resolution. However, the slope of the
error does not necessarily indicate that IFS predicts intensity changes better
thanPangu-Weather.An interesting observation is that allmodels exhibited
a decreasing intensity error from 120 to 168 h. This is because TCs near the
end of their life cycle are usually weak and the ranges of predicted intensities
are smaller.

We conducted two sets of statistical significance tests for typhoon track
and intensity predictions: one comparing Pangu-Weather (PW) with the
other models, and one comparing FengWu (FW) with the other models.
Since the typhoon track and intensity errors do not follow a normal dis-
tribution, we adopted the Mann-Whitney U test49,50 to assess statistical
significance. The results indicate a 95% confidence level in the comparison
of track errors between the selected model (PW or FW) and other MLWP
models. Additionally, there is a 90% confidence level in the difference in TC
intensity errors between FW and the other MLWP models.

It is widely acknowledged that TC track predictions can exhibit sig-
nificant diversification for individual typhoons. Instead of displaying pre-
dicted tracks for all typhoons from all models, Table 1 offers further
statistical insights into our evaluations. We subjectively classify track
characteristics into 4 categories: straight, curving, recurve, and irregular, as
illustrated in Fig. 1. Evaluation is conducted at 96 h due to its substantially
higher number of verifications available, as the number of cases decreases
significantly with longer lead times. The best-performing model for track
prediction is FengWu, with one typhoon prediction leading in all 4 cate-
gories, consistent with the averaged track errors shown in Fig. 4. Interest-
ingly, despite Pangu-Weather exhibiting the largest average track error, it
performs the best for three individual typhoons. Additionally, IFS achieves
the highest scores for two typhoons in the recurving category, while
GraphCast and FuXi each lead in one storm.

While TC intensity predictionmay not be the primary focus of a global
model, it is still pertinent to discuss the performance of the five models.
FengWu, despite excelling in track prediction, exhibits a reversal in the
performance for intensity prediction, failing to rank as first for any indivi-
dual typhoon—a result consistent with its largest absolute average errors
depicted inFig. 4b.Conversely, Pangu-Weather leads in intensity prediction
for 4 typhoons,while bothFuXi andGraphCast lead for 3 typhoons each. It’s
worth noting that the numbers shown in column 7 of Table 1 for the best-

performing model are significantly smaller than the averages displayed in
Fig. 4b, which range from 25 to 35 hPa. These more detailed performance
assessments on track and intensity predictions from different models fur-
ther underscore the diversification of TC predictions. The IFS is not
included in the intensity evaluation (columns 7 and 8) due to its advantage
of low intensity bias at the initial time, attributed to its high resolution.

Case Study-Typhoon Haikui (2023)
TyphoonHaikui (blue track inFig. 1)was thefirstmajor storm tohitTaiwan
sinceBailu in 2019. BehindTyphoonSaola (left green track inFig. 1),Haikui
began its life as abroad low-pressure systemonAugust 27near theNorthern
Mariana Islands. The system intensified to a tropical storm the next day and
was named Haikui by the Japan Meteorological Agency (JMA). In the
subsequent days, Haikui reached a tropical storm strength and eventually
became a typhoon, before making landfall near Taitung City, Taiwan, on
September 3. Haikui also enhanced the southwest monsoon in the Phi-
lippines, causing extensive rainfall in Luzon. As it stalled over Pearl River
Delta in China, the remnants of Haikui induced torrential rain in Hong
Kong resulting in the issuance of a Black Rainstorm Signal for 16 h, the
longest duration ever since the rainstormwarning systemwas implemented
in 1992. Overall, Haikui caused US$2.31 billion worth of damage during its
onslaught.

As listed inTable 1, the prediction of the track for TyphoonHaikuiwas
the most inaccurate (average and individual errors) among all typhoons in
thewesternNorth Pacific in 2023.We present the track predictions from 12
UTC on August 28 to 12 UTC on September 4 for Typhoon Haikui from
individual models, including IFS and the five MLWP models (Fig. 5).
Among them, IFS exhibited the largest average track error, exceeding
1000 kmat 96 hwith a significant poleward bias,mainly from the early stage
(Fig. 5f). Both GraphCast and FCN2 (Fig. 5b, c) also showed substantial
track errors for the first two watches, with their predicted tracks resembling
that of IFS.Meanwhile, FengWu’s predicted trackswere closely alignedwith
the best track (Fig. 5e), with the averaged track error of only 41 km at 96 h,
making it the best-performing model for Haikui’s track prediction. The
second best is Fuxi (Fig. 5d), followed by Pengu-Weather (Fig. 5a).

Next, we examine the potential link between the predicted tracks and
the position of the WPSH. For consistency and ease of comparison among
model predictions, theWPSH system is represented by the 5880mheight at

Table 1 | Comparison of TC track and intensity forecasts at 96 h by IFS, Pangu-Weather (PW), FCN2, GraphCast (GC), FuXi,
FengWu (FW), and IFS for 11 typhoons in 2023 in the western North Pacific

Storm name
No 
of 

cases

Track 
types

Storm 
maximum 
intensity 

(hPa)

Best track 
performer

@ 96 h (km)

Worst track 
performer 

@ 96 h 
(km)

Best 
intensity 

performer 
@ 96 h 
( hPa)

Worst 
intensity 

performer 
@ 96 h 
( hPa)

Average track 
error 

from all models
@ 96 h 

(km/No of cases)

Average intensity 
error

from all models
@ 96 h

(hPa/No of cases)

Haikui 15 straight 945 FW (41.3) IFS (1012.5) FuXi (5.2) P-W (46.6) 442.4/48 26.0/42

Dora @ 72 h 7 curving 975 FW (63.7) P-W (195.7) P-W (16.0) FW (16.8) 111.0/3 14.9/3

Kirogi @ 72 

h
8 curving 985 GC (19.3) P-W (458.9) P-W (6.5) FuXi (9.7) 287.7/8 7.2/8

Koinu 19 curving 930 P-W (49.9) FW (441.8) FuXi (27.7) GC (63.3) 179.1/61 44.6/55

Guchol 13 recurve 960 FW (22.3) IFS (533.8) P-W (0.4) FW (23.0) 162.4/30 8.7/30

Doksuri 14 recurve 935 FuXi (0.0) FW (642.4) GC (0.2) FuXi (50.8) 158.9/42 32.2/42

Lan 19 recurve 940 IFS (24.3) FuXi (599.3) P-W (0.1) FCN2 (41.6) 268.4/66 14.9/66

Damrey 8 recurve 985 IFS (102.5) FuXi (447.5) GC (10.9) FW (20.0) 303.6/6 14.1/6

Bolaven 14 recurve 900 P-W (38.0) IFS (575.8) GC (1.1) FuXi (93.7) 222.8/36 53.6/36

Khanun 28 irregular 930 FW (19.4) P-W (760.1) FuXi (0.2) FW (60.5) 256.2/120 15.5/120

Saola 19 irregular 915 P-W (43.2) GC (618.8) FCN2 (0.4) FW (79.3) 263.6/66 46.8/66

Averages -----

-

---------

-
945.5 (38.5) (571.5) (2.9) (45.9) 251.1/486 27.9/474

IFS is excluded from the intensity comparison (columns 7 and 8) but included in the average result (column 10). For Typhoon Dora and Kirogi, due to their short lifespans, the comparison is based on the 72 h
forecasts. The colors used for the track types are the same as those shown in Fig. 1, while the colors used for the models are the same as those shown in Fig. 2.
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500 hPa, as referenced for its seasonal verification (Fig. 3). Figure 6 illustrates
two 96 h forecasts, starting at 00 UTC 29 August and then 6 h later at 06
UTC on 29 August, from IFS and the five MLWP models. For the first
forecast, all models exhibit a poleward bias in their predictions, with the IFS
showing the largest and FengWu and Fuxi the smallest (Fig. 6a).While only
the 96-h geopotential pattern are displayed (Fig. 6b), the distribution of the
western edges of theWPSH generally aligns with their individual tracks. In
the second example, starting 6 h later, the WPSH predicated by the five
MLWPmodels have all migrated westward, while in IFS, the system lagged
and remained close to its position predicted 6 h earlier (blue lines in Fig.
6b, d). Following the movement of the WPSH, all five MLWP models
adjusted their predicted tracks to be mainly westward, in line with the best
track, while the IFS maintained its northwestward track (Fig. 5f). The pre-
dicated tracks by IFS are very similar in these two forecasts, showing a
significant poleward bias (blue lines in Fig. 6a, c), which contributed to its
overall large track error for Haikui (Table 1).

Tropical cyclone movement can be influenced by many surrounding
synoptic-scale and mesoscale features51,52. The analysis presented here only
provide the first-order influence by the WPSH, as commonly assessed by
operational weather prediction centers in eastern Asia and western Pacific
region. As shown in Fig. 5f, the IFS eventually adjusted its predicted track to
be mainly westward after the first four bad forecasts. Further in-depth
analysis is required to fully understand the dynamics behind it.

High-resolution data and model configuration are critical for repre-
senting and simulating complex mesoscale phenomena. Thus, we rely on
regional models for local area weather predictions, and for extreme weather
systems such as typhoons. Thesemodels can offer significant benefits where
local weather is influenced by factors like islands, coastlines, topography,
and land/sea contrast.WhileMLWPmodels have demonstrated impressive
performance in synoptic-scale systems, their effectiveness can vary for
systems involving multiple scales (such as typhoons) and remain to be
thoroughly examined. The TWRF (Typhoon WRF) system is a regional
NWP system developed by CWA based on the ARW WRF model53,54,

dedicated for typhoon prediction in East Asia with a focus on Taiwan.
TWRF is two-way nested regional model with 15 km and 3 km resolutions
in the outer and inner domain. Previous studies have verified its superior
performance33,34, and its predictions are currently displayed on the NOAA
hurricane analysis and forecast system website. In the following analysis of
Haikui during its passage over Taiwan, we also include the prediction from
TWRF (15 km version) for comparison.

Rainfall induced by a TC on Taiwan is intricately linked to its track,
which determines how the typhoon interacts with the island’s complex
terrain55. The case study starts on 12 UTC 2 September and the two-day
accumulated rainfalls ending on 12 UTC 4 September will be evaluated.
Here, we focus on the rainfall prediction from two MLWP models,
GraphCast and FuXi, both of which include precipitation forecasts in their
outputs. Also included in the comparison are two NWP models, IFS and
TWRF (15 km resolution), along with the precipitation data from ERA5.
First, we discuss the predicted tracks and intensities for the two-day period
(Fig. 7). The predicted tracks from all models moved westward, hitting
Taiwan on the second day with a small diversion after passing over the
island. Notably, the IFS (blue line) has the best track prediction for this
period, having corrected its significant poleward bias observed in the early
stage (Fig. 5f). All fivemodels place their cyclone centers near the west coast
of the island, to the west of the Central Mountain, at the 24 h forecast. By
48 h, the centers are positioned in the middle of the Taiwan Strait.

Figure 7b, c illustrate the predicted maximum wind speed and mini-
mum sea-level pressure associated withHaikui over the 48 h period starting
at 12 UTC 2 September. Haikui weakened significantly after passing over
Taiwan, with the maximum wind decreasing from 40 to 25m s-1 and the
central pressure increasing from 950 hPa to 987 hPa, according to the best
track data. Among themodel intensity forecasts, IFS and TWRF are similar,
both showing higher intensity and closely matching the best track due to
their higher resolutions. The intensity evolution predicted by GraphCast
nearly aligns with that from ERA5. Meanwhile, Fuxi predicted the weakest
typhoon for the first 24 h. There is a strong relationship between the wind

Fig. 5 | The best (CWA) and the forecast tracks for TyphoonHaikui to 168 h from
five MLWP models and IFS during period from 12 UTC 28 August to 12 UTC 4
September, 2023.The black linewith typhoonmarks represents the best track, while
lines with other colors and marks indicate forecasts at different initial times of (a)

Pengu-Weather, (b) GraphCast, (c) FCN2, (d) FuXi, (e) FengWu, and (f) IFS. The
open typhoonmark shows the best track location at 12 UTC 28 August while closed
typhoon marks show the best track locations at 00 UTC each day with date beside.
Marks in other colors indicate the forecast initial time.
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and pressure profile for this case, which is also observed in other typhoon
cases we examined and at longer lead time (figures not shown). In inves-
tigating the predictionof amid-latitudewinter storm,Charlton-Perez et al.29

did not find as strong a relationship between wind and pressure variations
from the MLWP models they evaluated.

The capability of MLWP models to predict TC formation is also
examined using Haikui as an example. The tropical disturbance that can
be traced as precursor ofHaikui developed into a tropical stormat 00UTC
on28August 2023. This time is referred to as theTC formation time inour
analysis, Table 2 lists the dates in the predictions of eachmodel in which a
disturbance as the precursor of Haikui can be identified, following the
criteria established by Tsai et al.56. Among them, FCN2 was the earliest to
predict Haikui’s formation with the lead time of six days, while the others
demonstrated a predicative ability to forecast formationwithin four tofive
days. Predicting tropical cyclone genesis usually involves more longer
time scales and is best handled by ensemble system57. The single case
presented here only provides a glimpse of the potential capability of
MLWP models. We devote more in-depth research to this topic in
another study.

Figure 8 illustrates the two-day accumulated rainfall from FuXi,
GraphCast, ERA5, IFS, andTWRF (15 km). The last panel (Fig. 8h) displays
the accumulated rainfall retrieved by the Quantitative Precipitation Esti-
mation and Segregation Using Multiple Sensor (QPESUMS) algorithm
fromCWA58, used for verification. Taiwan island is predominantly covered
by the Central Mountain range with e peak about 4000 meters (Fig. 7a). As
Haikui approached Taiwan from the east and passed its southern part, the
rainfalls are accumulated mostly on the upwind side of the Central
Mountain ridge, which in this case on the eastern side.

The maximum accumulated rainfall observed in the QPESUMS ver-
ification exceeds 700mm over two days (Fig. 8h). Among all five models
examined here, only TWRF reached this extreme value (Fig. 8e). The
operational model IFS produced very good result in terms of distribution
(Fig. 8d), with its maximum reaching 600mm. The ERA5 (Fig. 8c) shows a
rainfall pattern similar to IFS but with less details structure and a weaker
peak intensity, in the range of 300–400mm. For comparison, the IFS and
ERA5 have resolutions of 0.25o and TWRF presented here has a 15 km
resolution.

The only two precipitation outputs available from the five MLWP
models areFuxi andGraphCast (Fig. 8a, b).While the general patterns of the
precipitations align with the verification, both AI model-generated rainfall
amounts are smaller than those of the verification and are also less than
those of the two dynamic NWP models (IFS and TWRF). Between them,
GraphCast produced larger amount, reaching 200mm,while Fuxi recorded
rainfall in the range of 130–150mm. Despite a small track difference,
GraphCast predicted higher intensity than Fuxi during the first 24 h (Fig.
7b, c). This intensity bias in Fuxi contributes to its smaller accumulated
rainfall. Additionally, the circular rainfall pattern over Taiwan Strait
between Taiwan Island and south eastern China, is also much weaker in
Fuxi compared to other models. These intensity and precipitation bias may
stem from Fuxi’s longer time step, which prioritizes longer lead time
forecasts.

In investigating the capability of AI models in predicting an
extreme weather event of Storm Ciaran (2023), Charlton-Perez et al.29

noted that the four AI models they examined (FCN, Pangu-Weather,
GraphCast, and FCN2) failed to accurately capture the structure and
magnitude of the winds as revealed in ERA5. Their study suggested

Fig. 6 | The 96 h tracks for Haikui and the corresponding 5880 m geopotential
height at 500 hPa at 96 h of the five MLWPmodels, their ensemble, and IFS. The
96 h best track and predicted tracks are starting from 00 UTC 29 September (a) and
from 12UTC 29 September (c). b and d show the corresponding geopotential height
contour line at 96 h forecast of five MLWP models, their ensemble, IFS, and the

analysis of ERA5 at the same time. Colors according to the models are the same as
Fig. 2 and the black line in (a) and (c) show the best track, while it in (b) and (d) show
the geopotential height of ERA5. The open diamonds and the filled squares on (a)
and (c) show Haikui’s location every 24 h starting from the initial time.
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that the weaker winds predicted by these ML models, compared to
NWP model forecasts, are not merely a result of being trained on a
coarse resolution dataset. AI models often produce smoother results
due to several factors: regularization techniques59, data averaging60,
optimization objectives37, and noise reduction61. The analysis pre-
sented in this study and by Charlton-Perez et al.29 may offer AI
modelers insights for future improvements of their models.

Discussion
In the rapidly advancing field of MLWP models, five standout global
weather prediction systems have emerged: Pangu-Weather, FCN2,
GraphCast, FuXi, and FengWu. Despite employing distinct AI/ML tech-
nologies, all five systems use ERA5 for training, spanning approximately 39

years. Publications on these models have demonstrated comparable, and in
some cases, superior performance compared to the ECMWF’s traditional
NWP model, IFS, while exhibiting several orders of magnitude greater
computational efficiencies.

Given the intricacies of local geographic profile in regional areas, high
resolution models are essential for accurately simulating multi-scale pro-
cesses responsible for high-impact weather phenomena. The efficacy of
regional models, however, depends critically on the initial and boundary
conditions provided by global models34,62,63. The recent emergency of
MLWP opened a new avenue for the adoption of these models in opera-
tional forecasting. Therefore, evaluating the performance of global MLWP
models within a limited area is warranted.

This study independently evaluates the performance of the five
aforementionedMLWPmodels in East Asia andWestern Pacific over a six-
month period from June to November in 2023. We conducted our simu-
lations using the codes provided by the respective model developers, which
are available on their websites. The initial conditions for our simulations are
sources from sourced fromERA5, remaining identical for all models, with a
forecast integration period set at 168 h. Additionally, we include compar-
isons with the predictions generated by IFS, noting that IFS has a higher
resolution of 9 km compared to 0.25o resolution of the MLWP models
inherited from ERA5. Using ERA5 for initial conditions is not feasible for
operational purposes, thereby potentially altering the performance com-
parisons when transitioning to an operational environment. Nevertheless,
our primary focus remains on a consistent comparison of MLWP models,
aiming tomitigate uncertainties stemming fromvaried initial conditions. In
future studies, we plan to utilize other reanalysis, such as those fromNCEP,
to further enhance our insights in this endeavor.

We computed the latitude-weighted RMSE and ACC against valid
ERA5 reanalysis for the evaluation in the East Asia and western Pacific
region, which is of significant interest for our operational weather predic-
tion. The region is also of great interest tometeorological community due its
vigorous phenomena across a broad spectrum, including tropical cyclone
activities, monsoon circulations, and theMadden-JulianOscillation (MJO).
The ACC and RMSE scores indicate that the best-performing model is
FengWu, followed by FuXi and GraphCast, then FCN2, with Pangu-
Weather ranking last. Notably, the IFS, with a resolution of 9 km, places it in
the middle of the group. The trends and ranks of RMSE and ACC are
consistent. Additionally, we conducted a simple ensemble average of thefive
MLWP models. The performance of the ensemble is comparable to
FengWu.

We evaluated the prediction skill for TCs as an extreme event example.
For the 11 typhoons (excluding three short-lived ones) that occurred in the
western North Pacific in 2023, FengWu demonstrated the best track pre-
diction among all models and led in four individual typhoons. The per-
formance of the track prediction generally alignedwith theACC andRMSE
scores. While Pangu-Weather has the largest averaged track error, it still
performed best for three individual typhoons. The IFS excelled in the

Table 2 | The capability of MLWP models and IFS to predict
formation of Haikui, occurred at 00 UTC on 28 August

Model The earliest Initial time of the
forecast predicting TC
formation (UTC)

Predicted days before TC
formation (8/28 00
UTC) (days)

IFS 8/23 12 4.5

Pangu-
Weather

8/23 00 5

FCN2 8/22 00 6

GraphCast 8/23 12 4.5

FuXi 8/24 00 4

FengWu 8/24 00 4

The earliest time amodel predicted formation of Haikui, and the number of days predicted ahead of
the formation time.

Fig. 7 | Best (CWA), analysis (ERA5), and predicted tracks, 10-mmaximumwind
speed, and minimum sea-level pressure of Typhoon Haikui of MLWP and NWP
models. a best, analysis, and predicated tracks for two days starting on 12 UTC 2
September 2023 on map with terrain height (m). The open diamonds and the filled
squares on (a) show Haikui’s location every 24 h starting from the initial time.
b shows the 10-mmaximumwind speed (m s-1) and c shows the minimum sea-level
pressure (hPa) corresponding to (a). The open diamonds and the filled squares on
(b) and (c) show Haikui’s intensity every 6 h starting from the initial time. Colors
according to the models are the same as Fig. 2 with ERA5 in color gray.
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intensity prediction, attributed to its higher resolution and minimal initial
intensity bias. Surprisingly, FengWu exhibited the poorest intensity pre-
diction skill. A more detailed examination of typhoon prediction for indi-
vidual cyclones highlights diversification in model performance, indicating
potential for future improvements.

The seasonal average of the 7-day prediction of theWPSH for the five
MLWP models all indicates weak biases. A case study of Typhoon Haikui
demonstrated close relationship between the predicted track and the posi-
tion of the WPSH. Haikui was a mostly westward-moving typhoon that
made landfall in Taiwan, causing significant rainfall in countries it
encountered. The challenge presented in the early stage of Haikui led to
largest track errors for some models, with IFS showing the largest among
them.While these models can closely approximate the typhoon’s track and
somemodels generate reasonably accurate rainfall patterns, their resolution
may not suffice for regional applications. Consequently, there remains a
necessity for high-resolution regional models to offer detailed meteor-
ological information, encompassing not only rainfall predictions but also
variables such as temperature extremes. It is evident thatMLWPmodels are
progressing towards higher resolution predictions, whether through
enhanced training techniques or downscaling predictions64,65. Another
consideration for future development is the adoption of additional data
within the existing reanalysis data. Further rigorous verifications of these
models are still required.

The pace of development in MLWP is truly remarkable, with new
systems emerging rapidly. Oskarsson et al.66 have notably introduced a
regionalmodel basedonGraphCast for regionalweather forecasting around
the Nordic area. However, a significant challenge in daily short-term pre-
diction arises from the lack of high-resolution regional reanalysis data for
training purposes. To address the challenge of insufficient resolution in
ERA5 for TC intensity prediction, the FengWu group has developed the
Multi-modal multi-Scale Causal AutoRegressive model (MSCAR)67. This
innovative approach combines satellite images for TCs with ERA5 reana-
lysis data allowing for the extraction of causal relationships across these
multi-modal datasets to enable global TC intensity autoregressive fore-
casting. The results of MSCAR show promising short-term performance,
indicating a new pathway for the development of high-resolution AI/ML
models in the fields of extreme weather predictions.

In October 2023, ECMWF launched its own AI prediction system68,
AIFS (where “I” denotes both AI and IFS), marking a significant advance-
ment in the field. AIFS utilizes Graph Neural Networks technology and
shares the same grid structure as IFS. The current iteration ofAIFS boasts 13
vertical levels and a 0.25o resolution69, with preliminary results indicating its
superior performance compared to IFS.

As with conventional NWP models, MLWP models are continually
evolving, with efforts focused on extending forecast lead times into sub-
seasonal, to seasonal prediction, and ultimately climate predictions. A

Fig. 8 | Estimated and predicted 48 h accumulated rainfalls on Taiwan and its
vicinity during the passage of Typhoon Haikui, with an initial time at 12 UTC 2

September 2023. Predicted rainfalls (mm) of (a) FuXi, (b) GraphCast, (c) ERA5, (d)
IFS, (e) TWRF (15 km), and estimated rainfalls (mm) of (f) QPESUMS.
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notable advantage of the MLWP models is their ability to generate large
numbers of ensemblemembers by perturbing the initial fields in the current
state, all while benefiting from their extremely high computational effi-
ciency. We also advocate for the utilization of multi-model ensembles in
addition to single-model ensembles, with direct applications including the
use of multi-model ensemble predictions as boundary conditions for high-
resolution regionalmodels. Given thatMLWP systems heavily rely on data,
collaborationbetween theAI andmeteorological communities is essential to
enhance the prediction of extreme weather events by leveraging high-
resolution and reliable localized data.

Methods
In this study, we conduct an independent evaluation of the following pro-
minent MLWP models: Pangu-Weather, FCN2, GraphCast, FuXi, and
FengWu (Table 3), all with horizontal resolution of 0.25o. While some
models have multiple versions with different numbers of vertical levels, we
use a 13-level configuration and 6 h time step for all models.We conducted
our own simulations for each model using the codes published by model
developers, available on arXiv (http://arxiv.org). ERA5 reanalysis are used as
the initial condition in our simulations, which is the training data for all five
MLWP models. The ML algorithm (backbone) used in these five MLWP
models are briefly summarized in Table 3.

We compare independently performances of the five global MLWP
systems in a region covering East Asia andwesternNorth Pacific. This is the
area for which CWA is responsible for daily operation of weather predic-
tions. The area also covers the region ofmost rigorous tropical cyclone (TC)
or typhoon activities. Our evaluation period spans from June to November
2023, during which predictions of 11 typhoon cases will be assessed, with
three short-lived ones excluded from the analysis. We conduct simulations
of eachmodel with identical initial conditions from ERA5 and the forecasts
are also verified against ERA5 reanalysis at the valid time. The forecast lead
time is 168 h (7 days) for the simulation.

The evaluation matrix includes RMSE, ACC of representative atmo-
spheric variables, and predicted track and intensity errors. The ERA5 rea-
nalysis are used as verification for the forecast fields.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.
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