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Skillful subseasonalensemblepredictions
of heat wave onsets through better
representation of land surface
uncertainties
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Uncertainties in land surface processes notably limit subseasonal heatwave (HW) onset predictions. A
better representation of the uncertainties in land surface processes using ensemble prediction
methods may be an important way to improve HW onset predictions. However, generating ensemble
members that adequately represent land surface process uncertainties, particularly those related to
land surface parameters, remains challenging. In this study, a conditional nonlinear optimal
perturbation related to parameters (CNOP-P) approach was employed to generate ensemble
members for representing the uncertainties in land surface processes resulting from parameters. Via
six strong and long-lastingHWevents over themiddle and lower reaches of the Yangtze River (MLYR),
HW onset ensemble forecast experiments were conducted with the Weather Research and
Forecasting (WRF) model. The performance of the CNOP-P approach and the traditional random
parameter perturbation ensemble predictionmethod was evaluated. The results demonstrate that the
deterministic and probabilistic skills of HW onset predictions show greater excellence using the
CNOP-P approach, leading to much better predictions of extreme air temperatures than those using
the traditional method. This occurred because the ensemble members generated by the CNOP-P
method better represented the uncertainties in important land physical processes determining HW
onsets over the MLYR, notably vegetation process uncertainties, whereas the ensemble members
generated by the random parameter perturbation method could not. This finding suggests that the
CNOP-P method is suitable for producing ensemble members that more appropriately represent
model uncertainties through more reasonable parameter error characterization.

As global temperatures increase, heat waves (HWs) are increasingly
occurring in areas where they have not occurred before, and many
researchers havedemonstrated that the intensity, frequency, anddurationof
global and regional HW events are gradually increasing1–4. HW events are
also referred to as silent killers owing to their negative impact on human
health. The HW event in western Russia in 2010 caused more than 50,000
fatalities5. Moreover, the record-breaking European HW event in 2022

resulted in approximately 60,000 deaths6. Therefore, accurately predicting
the onset of HWevents in advance provides enormous social and economic
benefits.

Skillful subseasonal predictions are extremely important for disaster
preparedness, riskmanagement, and agricultural planning7,8. Early warning
or forecasting of high-impact weather events, particularly HW events, can
considerably prevent the loss of life and property.With the advancement of
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numerical models and data assimilation technologies, as well as the wide-
spread application of radar technology and satellites, forecasts at the typical
timescale have substantially improved9. However, compared with those for
weather forecasts and climate predictions, the forecast skills at the sub-
seasonal to seasonal (S2S) timescales are much lower10. Many studies have
demonstrated that the S2Smodel canhardly successfully predictHWonsets
at the subseasonal timescale. Lin et al.11 employed 10 subseasonal models to
predict HW events that occurred in western North America in 2021 and
noted that while most models could predict HWs two weeks in advance,
their intensity was greatly underestimated. In China, the middle and lower
reaches of the Yangtze River (MLYR), which is one of the most densely
populated regions, also exhibit high uncertainty in subseasonal HW pre-
diction. Xie et al.12 demonstrated that the prediction skill for HWs over the
MLYR decreased substantially after two weeks.

To improve the subseasonal prediction skills for HWs over theMLYR,
the sources of HW predictability were investigated. Qi and Yang13

demonstrated that the uncertainty in midlatitude intraseasonal oscillations
was one of the primary reasons for underestimating the intensity of theHW
event over the MLYR in 2012. Furthermore, Xie et al.12 indicated that
accurately describing the phase development and amplitude of high-
pressure anomalies associated with intraseasonal oscillations may facilitate
more accurate prediction of the intensity and duration of HWs over the
Yangtze River Valley.

Moreover, the above studies have also revealed that the land surface is
one of the main factors influencing subseasonal HW predictions, which is
generally consistent with the findings of Koster et al.14, Guo et al.15 and
Dirmeyer et al.16. Many researchers have demonstrated that soil moisture
errors, soil temperature errors17,18, snow cover errors19, and vegetation status
errors20 are among the key factors leading to uncertainties in subseasonal
HW predictions. To reduce the uncertainties due to the use of the deter-
ministic prediction method, ensemble prediction is an effective strategy.
Ensemble prediction is widely regarded as a useful tool for estimating
forecast uncertainties21–23.

Many numerical weather forecast centers worldwide have developed
various ensemble forecast methods to representmodel uncertainties related
to the atmosphere. However, these methods have been applied to land
surfacemodels in fewer studies24–26. The accurate evaluation of land surface
states and land surface physical parameters innumericalweather forecasts is
crucial for enhancing forecast skills27–29. For example, MacLeod et al.25 and
Orth et al.28 reported that randomly perturbing a small number of soil
parameters increased the ensemble spread of the boundary layer while also
enhancing the ensemble forecast skills.

However, the aforementioned studies have also indicated that
ensemble forecast members produced exclusively using random perturba-
tion (RP) methods are insufficient to adequately represent uncertainties in
land surface processes, indicating that a small ensemble spread remains a
key issue in existing ensemble forecasting systems. A suitable ensemble
forecasting system should facilitate amore accurate evaluation of prediction
uncertainties. Therefore, to overcome the limitations of random perturba-
tion methods, ensemble members were generated by the conditional non-
linear optimal perturbation related to parameters (CNOP-P) approach30 in
this study. In the CNOP-P approach, parameter perturbations causing the
highest forecast uncertainty are representedunder a given constraint. Zhang

et al.31 demonstrated that land surface model parameter errors of the
CNOP-P type could cause considerable uncertainties in subseasonal HW
onset predictions, suggesting that the CNOP-P approach may be appro-
priate for representing model parameter uncertainties. Wang et al.32

employed the CNOP-P approach to identify the most sensitive parameters
causing the highest variation in precipitation, and the ensemble forecast
experiments further confirmed the importance of the CNOP-P approach
for resolving the underdispersive problem in a convection-allowing
ensemble forecast system. This finding inspired us to apply the CNOP-P
approach in ensembleHWpredictions. Therefore, this study focused on the
following questions: (1) Can the use of the CNOP-P method enhance the
subseasonal ensemble prediction skills for HW onsets? (2) Compared with
those generated by the traditional random parameter perturbationmethod,
can the ensemble members generated by the CNOP-P approach better
represent the uncertainties in land surface parameters?

Results
Ensemble forecast skills of the CNOP-P and RP experiments
Ensemble forecast experiments (Table 4)were conducted for the six selected
HW events (Table 1), and the performance of the CNOP-P and RP
experiments was assessed and compared. The ensemble forecast skills for
Tm were investigated via a range of verification metrics. The deterministic
skills were evaluated via the ensemblemean forecast error and the ensemble
mean improvement. The Brier score (BS; Brier33), the continuously ranked
probability score (CRPS; Matheson and Winklers34), relative operating
characteristic (ROC) curves35, the area under theROCcurve (ROCA36,), and
the reliability diagram (RD) were employed to evaluate the probabilistic
skills. Additionally, the reliability of the ensembles generated by the CNOP-
P approach and RP approach was assessed via the ratio of the ensemble
spread to the ensemble mean forecast error. The details of all these ver-
ification metrics are described in “Methods” section.

Figure 1 shows the performance of the CNOP-P and RP ensemble
forecasts and the control forecast for the area-averaged Tm of the six HW
events over the MLYR. The ensemble mean of Tm of the CNOP-P
experiment was closer to the observation than that of the control forecast,
but the ensemblemean of Tm of the RP experiment almost approached the
reference state. In addition, the ensemblemembers generated by theCNOP-
P approach exhibited a greater spread, and the 95% confidence intervals of
the ensemble means encompassed the observed trends, suggesting that the
CNOP-P experiment successfully captured extremely high-temperature
processes. In contrast, for theRP ensemble forecasts, the ensemblemembers
with a limited spread were often concentrated around the control forecast,
and the observed Tm trend exceeded the 95% confidence interval, pre-
venting the forecasts from adequately capturing extremely high-
temperature processes. Specifically, the ensemble mean errors of the
CNOP-P and RP forecasts and the error of the control forecast for the six
HW events were 1.49 °C, 1.83 °C, and 1.92 °C, respectively. This suggests
that the ensemble members of the CNOP-P experiment positively influ-
enced the prediction of subseasonal HW onsets.

Moreover, the ensemble members generated in the CNOP-P and RP
experiments were investigated regarding the intensity and extent of the
selected HW events. Figure 2 shows the spatial distribution of the observed
Tm values exceeding 35 °C together with the forecast probabilities of the
CNOP-P and RP experiments for the six HW events when Tm exceeds this
threshold. The control forecast cannot accurately capture the spatial dis-
tribution and magnitude of the selected HW events. For the ensemble
members generated on the RP experiment, the increase in the forecast skill
for HW events is minimal, and it remains difficult to forecast HWonsets in
most areas. Furthermore, because of the limited ensemble spread of the RP
experiment, the probability predictions are mostly close to 1. Moreover, the
95% confidence interval of the RP method is narrower, with a minimal
difference between the upper and lower limits (Fig. S2), which effectively
indicates that decision-makers are not given additional probabilistic infor-
mation. In contrast to the RP experiment, the ensemble predictions of the
CNOP-P experiment for Tm exceed 35 °C at most grid points, which is

Table 1 | Information and forecast periods of the sixHWevents

HWs Initialization time End time

HW1 24 June 1988 17 July 1988

HW2 3 July 2003 26 July 2003

HW3 20 July 2010 12 August 2010

HW4 15 July 2013 07 August 2013

HW5 02 July 2016 25 July 2016

HW6 12 July 2022 04 August 2022
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Fig. 1 | The temporal evolution of daily maximum temperature over the MLYR
for six HW events. a-f The CNOP-P experiment for a HW1, b HW2, c HW3,
d HW4, e HW5, and f HW6. The green line indicates the control forecast, the blue
line indicates the observation, the pink line denotes the ensemble mean of the

CNOP-P experiment, and the shadow denotes the ensemble members. The error
bars indicate the 95% confidence intervals determined via the bootstrap method.
g–l are similar to (a–f) but for the RP experiment.

https://doi.org/10.1038/s41612-024-00876-y Article

npj Climate and Atmospheric Science |            (2025) 8:15 3

www.nature.com/npjclimatsci


closer to the observations. The 95% confidence interval of the CNOP-P
method is wide (Fig. S2), suggesting that the CNOP-P method provides an
advantage in its ability to capture extremeweather events. The above results
demonstrate that the CNOP-P approach performs better in HW forecast-
ing, thereby providing users with more useful information and allowing

individuals todeterminewhether to implement particular preventative steps
to avoid losses.

To better evaluate the improvement achieved in the CNOP-P experi-
ment, the improvements in the ensemble means obtained in the CNOP-P
and RP forecasts relative to the control forecast during the HW period and

Fig. 2 | Spatial distributions and probabilistic analysis of six HW events. Spatial
distributions of Tm for a observations and b control forecast during the heat wave
periods and probability distributions of the HWs based on the ensembles generated

in the c RP and d CNOP-P experiments for HW1. e–h, i–l, m–p, q–t, and u–x are
similar to (a–d) but for HW2, HW3, HW4, HW5, andHW6, respectively. The black
dashed box denotes the MLYR.
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the entire forecast period are shown in Fig. 3a, b, respectively. In general, the
improvement achieved by the CNOP-P forecasts is much greater than that
achieved by the RP forecasts. In the CNOP-P forecasts, the improvement in
the ensemble means of the six HW events during the HW period (22%) is
much greater than that during the overall forecast period (11%). In the RP
forecasts, the improvement is not as significant, as reflected by the average
improvements of 5% and 4.5% for the sixHWevents during theHWperiod
and the overall forecast period, respectively.

According to previous research, the ensemble spread and the root
mean square error of a reliable ensemble forecasting system are approxi-
mately equivalent37. Therefore, the reliability of the ensemble members
produced via the CNOP-P andRPmethods is assessed using the ratio of the
ensemble spread to the ensemblemean forecast error (Fig. 3c, d). Compared
with that based on the RP-derived ensemble members, the difference
between the ensemble spread and the ensemble mean forecast error based
on the CNOP-P-derived ensemble members is notably small, with a value
closer to 1, indicating that the use of the CNOP-P approach considerably
mitigates the issue of insufficient dispersion and enhances the relationship
between the ensemble spread and the ensemble mean error. This further
suggests that the ensemble forecast system generated by the CNOP-P
method offers more reliable ensemble predictions than those generated by
the RP method.

Ensemble predictions can not only demonstrate deterministic forecast
skills via ensemble means but also provide additional probability informa-
tion for decision-makers. As a result, the probabilistic forecast skills of the
CNOP-P andRP systems for the selectedHWs are evaluated in terms of the
BS, CRPS, ROC curve, ROCA, and reliability curve. Both the BS and CRPS
indicate whether the forecast probability is consistent with the actual
observations. However, the BS is ameasure of the probabilistic forecast skill
for binary events, whereas the CRPS primarily captures the probabilistic
forecast performance of ensemble predictions via a comparison of the dif-
ferences between the cumulative probability distributions of the predictions
and observations. In this study, the probabilistic skill is evaluated via the
average of the six HW events. In the comparison of the ensemble members
produced via the CNOP-P approach with those produced via the RP
method, the former results in lower BS and CRPS values over the whole
forecast period (Fig. 4). In particular, over theHWperiod, the BS andCRPS
values for the CNOP-P forecasts are 0.22 (0.16–0.30) and 1.29 (1.15–1.53),
respectively, whereas the values for theRP forecasts are 0.34 (0.33–0.35) and

1.64 (1.61–1.67), respectively. Thisfinding demonstrates that the ensembles
generated via the CNOP-P approach are more reliable and that the corre-
sponding forecast system provides a better probabilistic skill than the RP-
based forecast system.

To better understand whether the forecast probability for the HW
events is comparable to the actual occurrence frequency, reliability curves of
the CNOP-P and RP forecasts under various high-temperature thresholds
are shown in Fig. 5. Under a threshold of 35 °C, the reliability curve of the
CNOP-P forecasts is closer to the diagonal line than that of the RP forecasts
when the actual probability is low (below 0.4) or high (above 0.8), but the
forecast probability is much lower than the actual probability for values
between 0.4 and 0.8. To better demonstrate the reliability of the CNOP-P
andRP forecasts, the distances between the two curves and the perfect curve
are calculated, yielding values of 0.19 and 0.21, respectively. Consequently,
compared with those generated via the random perturbation method, the
ensemble members generated via the CNOP-P approach are still more
reliable. A comparison of the reliability curves under temperature thresh-
olds of 35 °C and 37 °C reveals that the reliability curves of the CNOP-P
forecasts are closer to the diagonal line as the temperature threshold is
increased, indicating that CNOP-P-derived ensemble members exhibit a
higher probability of correctly forecasting extremely high temperatures.

Furthermore, it is important to consider not only the reliability of the
ensemble predictions but also their capacity to discriminate between events
and nonevents. The ROCcurve provides the hit rate and the false alarm rate
of the predictions for evaluating the discrimination capability of the
ensemble predictions. The area under the ROC curve is often employed as a
quantitative discrimination measure. Discrimination refers to the ability to
distinguish between events and nonevents. Along with calibration, this
aspect is one of the key attributes of probabilistic forecasts. ROCA values
greater than 0.5 suggest that the ensemble forecast system provides a
superior ability todistinguishbetween events andnonevents. Figure 6 shows
the ROC curves of the CNOP-P and RP forecasts for various high-
temperature thresholds. For the CNOP-P forecasts, the ROC curves under
the different high-temperature thresholds closer to the left vertex indicate
higher hit rates and lower false alarm rates. Additionally, the ROCA values
of the CNOP-P forecasts are 0.863 (0.855–0.868) and 0.841 (0.827–0.848)
under the 35 °C and 37 °C thresholds, respectively, whereas the ROCA
values of the RP forecasts are 0.767 (0.760–0.772) and 0.711 (0.698–0.719),
respectively. Thisfinding demonstrates that the ensembles generated via the

Fig. 3 | Improvements in ensemble mean forecasts and ensemble spread-error
ratios of six HWevents. Improvements in the ensemblemeans of the area-averaged
Tm of the CNOP-P and RP experiments during a the HW period and b the entire

forecast period. c, d are similar to (a, b) but for the ratio of the ensemble spread to the
ensemble mean forecast error. The error bars indicate the 95% confidence intervals
determined via the bootstrap method.
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CNOP-P approach yield more skillful predictions of the HW events than
those generated via the RP method.

Why does the CNOP-P method provide higher prediction skills?
What are the reasons that the ensemble prediction system based on the
CNOP-P method achieves a higher subseasonal HW onset prediction
skill than does the ensemble prediction system based on the RPmethod?
Previous studies have demonstrated that land surface conditions (soil
moisture and vegetation state) may play an important role in the onset
and development of HW events by regulating water and energy transfer
and distribution on the land surface and influencing high-pressure
structures in the mid-troposphere. Seneviratne38–40. To better under-
stand how the use of the CNOP-P approach enhances the subseasonal
HW onset prediction skill, we examined the spread of surface energy,
moisture, and atmospheric circulation in HW1 as an example (Fig. 7).
Compared with those generated via the RP method, the CNOP-P
method generates ensemble members with a larger spread for all the

variables in Fig. 7. This suggests that one of the primary reasons for the
better performance of the CNOP-P method may be its ability to assess
the uncertainties in surface energy, water vapor, and atmospheric pro-
cesses more accurately.

For surface energy processes, the difference in the spreadof the sensible
and latent heat fluxes between the two methods is particularly notable
(Fig. 8). As a result, the impacts of the CNOP-P-derived and RP-derived
ensemble members on the various components of the sensible and latent
heat fluxes were examined in terms of ensemble uncertainty. Compared
with those of soil evaporation, vegetation evaporation, and bare soil eva-
poration, theCNOP-P-derived ensemblemembers provide a greater spread
of transpiration. Previous research has demonstrated that uncertainty in
vegetation processes is one of the primary reasons for bias in HW
predictions41–43. The ensemblemembers generated via theCNOP-Pmethod
can capture this uncertainty, suggesting that the CNOP-P method can
characterize the uncertainty in vegetation processes more adequately, thus
better describing and reducing the uncertainty in energy and moisture that

Fig. 5 | Reliability curves generated by the CNOP-
P and RPmethods for different high-temperature
thresholds. a 35 °C high-temperature threshold,
b 37 °C high-temperature threshold. Each point is
computed across the MLYR and averaged over the
whole forecast period. The error bars denote the 95%
confidence intervals determined via the bootstrap
method.

Fig. 6 | ROC curves generated by the CNOP-P and
RP methods for different high-temperature
thresholds. a 35 °C high-temperature threshold,
b 37 °C high-temperature threshold. The ROC
curves are computed across theMLYR and averaged
over the whole forecast period. The shadow denotes
the 95% confidence interval determined via the
bootstrap method.

Fig. 4 | The temporal evolution of BS and CRPS
generated by the CNOP-P and RP methods. a BS
and b CRPS for Tm. These values are computed
across the MLYR and averaged over each period.
The error bars indicate the 95% confidence intervals
determined via the bootstrap method.
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dominate theHWprocess and providing greater ensemble forecast skills for
subseasonal HW onset predictions.

ExperimentwithCNOP-Pensemble forecasts fornon-HWevents
As described above, the CNOP-P-derived ensemble members provide a
better representation of the uncertainties in the model parameters, which
decreases the missing alarm rate and renders the HW predictions more
accurate. Therefore, do the CNOP-P ensemble predictions still yield low
false alarm rates for the non-HW events? Although the analysis of the ROC
curve has demonstrated that the CNOP-P ensemble predictions yielded a
lower false alarm rate than did the RP ensemble predictions, it was further
evaluated whether the CNOP-P ensemble predictions yielded false alarms
fornon-HWevents.Therefore, six non-HWevents (Table 2) are analyzed in
this section, and the CNOP-P and RP methods were employed to perform
ensemble forecast experiments. Fromtheperspectives of the ensemblemean
and ensemble members, we explored whether the CNOP-P ensemble
members would predict non-HW events as HW events.

In this section, ensemble forecast experiments consistent are con-
ducted for the above six non-HW events via the WRF model to determine
whether the CNOP-P ensemble members yield false alarm rates for

subseasonal HW onset predictions. Figure 9 shows the spatial distributions
of the differences between Tm and the high-temperature threshold of 35 °C
for the observations, the control forecast, and the ensemblemeans of the RP
and CNOP-P forecasts over the validation period for the six non-HW
events.

According to theobservations, although the area-averagedTmover the
MLYR of the six events is lower than 35 °C overall, Tmmay exceed 35 °C at
some grid points, particularly NHW1, NHW2, and NHW3. Regarding
the Tm predictions, the control forecast skill is low. The ensemble means of
the RP forecasts are similar to those of the control forecast. Regarding the
CNOP-P forecasts, the ensemble means of Tm indicates that the non-HW
events are not predicted as HW events. Furthermore, in NHW3, the use of
the CNOP-P ensemble members reduces the notable overestimation of Tm
at some grid points in the control forecast, suggesting that the ensembles
generated via the CNOP-P approach provide forecasts that are closer to the
observations than the control forecast is.

Furthermore, the predictions of Tm obtained with ensemble members
generated via the CNOP-P and RP methods (Fig. 10) were analyzed. The
predictions obtained with the ensemble members generated via the RP
method were consistently distributed around the control forecasts. In

Fig. 7 | The temporal evolution of ensemble spread for key variables. a the sensible
heat flux (SH, unit: W/m2), b latent heat flux (LH, unit: W/m2), c net shortwave
radiation flux (SW, unit: W/m2), d net longwave radiation flux (LW, unit: W/m2),
e soil heat flux (G, unit: W/m2), f vapor pressure deficit (VPD, unit: Pa), g soil

moisture (SMOIS, unit: m3/m3), h 500-hPa geopotential height (unit: gpm) and i sea
level pressure (unit: hPa) of the CNOP-P and RP forecasts. The ensemble spread is
computed across the MLYR and averaged over each period. The error bars denote
the 95% confidence intervals determined via the bootstrap method.
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contrast, the ensemble members generated via the CNOP-P approach
yielded predictions with a greater spread and provided a better repre-
sentation of the uncertainty in estimates. Nevertheless, for the six non-HW
events, none of the ensemblemembers generated via theCNOP-P approach
producedTmvalues greater than 35 °C, which indicates that the probability
of the CNOP-P ensemble members predicting a non-HW event as an HW
event during the target period is 0. In summary, the CNOP-P ensemble
forecast experiments for the selectednon-HWevents demonstrated that the
ensemble members generated via the CNOP-P approach exhibit low false
alarm rates, thus verifying the usefulness of this approach.

Discussion
In this study, the conditional nonlinear optimal perturbation related to
parameters (CNOP-P) approachwas employed to represent theuncertainties
in land surfacemodel parameters. To investigatewhetherCNOP-P ensemble
members with nonlinear perturbation characteristics could better represent
the uncertainties in model parameters than could those generated via the
traditional random parameter perturbation (RP) method, CNOP-P, and RP
ensemble forecast experiments were conducted for six HW events over the
middle and lower reaches of the Yangtze River (MLYR) via theWRFmodel.
The performance of the CNOP-P and RP forecasts was assessed via different
metrics, includinganevaluationof thedeterministic andprobabilistic forecast
skills, as well as the reliability of the ensemble members.

Anexaminationof the temporal evolutionandhorizontal distributionof
the daily maximum temperature (Tm) revealed that the CNOP-P approach
provides ensemble members that can capture extremely high-temperature
processes, whereas the ensembles obtained via the RP method primarily

yielded predictions that occur near the control forecast, thus making it dif-
ficult to capture high-temperature processes. Furthermore, the ensemble
mean predictions of Tm generated by the CNOP-P ensemble members
exhibited substantially smaller forecast errors than those of the predictions
generated by the RP ensemblemembers, which greatly enhanced the forecast
skill. Moreover, the predictions properly captured the range of HWs, which
led to a reduction in HW underreporting and provided more probabilistic
information for subseasonal HW onset predictions.

From the perspective of ensemble predictionuncertainties, we explored
why the CNOP-P method provided a higher ensemble prediction skill than
the RPmethod did. Compared with the RP ensemblemembers, the CNOP-
P ensemble members provided more varied forecasts of physical processes
related to HWs and could more accurately characterize the uncertainties in
predicting important physical processes such as surface energy, moisture,
and atmosphere. Moreover, the CNOP-P ensemble members could better
capture the uncertainties in the vegetation transpiration process, which
determines surface energy partitioning. This provided a better character-
ization of the uncertainty in subseasonal HW onset predictions.

Additionally, compared with the ensembles produced via the RP
method, those generated via the CNOP-P approach usually produced
predictionswith greater spreads and smaller ensemblemean forecast errors.
Therefore, there was a smaller difference between the ensemble mean
forecast error and the ensemble spread, indicating that the ensembles
producedvia theCNOP-Papproachweremore reliable forpredictingHWs.
The probabilistic forecasting performance of the CNOP-P ensemble
members forHWpredictionwasmuch greater than that of theRP ensemble
members, as indicated by the superior ROC curves, smaller BS values, and
lower CRPS values of the former ensemblemembers. As a consequence, the
CNOP-P ensemble members could more accurately represent the uncer-
tainties in land surface model parameters and outperformed the RP
ensemble members in terms of HW forecast skill.

To further explore whether the CNOP-P ensemble members could
yield false alarms for non-HW events, similar CNOP-P ensemble forecast
experiments were conducted for six non-HW events. The ensemble mean
predictions of Tmgenerated by theCNOP-P ensemblemembersweremore
similar to the observations than the control forecasts were. Furthermore, an
analysis of the CNOP-P ensemble members revealed that no one member
produced Tm values above the high-temperature threshold during the
target period. Therefore, the CNOP-P ensemble members did not predict
non-HW events as HW events, indicating low false alarm rates for HW

Fig. 8 | The temporal evolution of ensemble spread for different energy fluxes.
a vegetated soil evaporation (EVG,unit:W/m2),bbare soil evaporation (EVB,unit:W/m2),
c canopy water evaporation (EVC, unit: W/m2), d plant transpiration (TR, unit: W/m2),
e vegetated ground sensible heat flux (SHG, unit: W/m2), f bare ground sensible heat flux

(SHB, unit:W/m2) and g canopy sensible heatflux (SHC, unit:W/m2) of theCNOP-P and
RP forecasts. The ensemble spread is computed across theMLYR and averaged over each
period. The error bars denote the 95% confidence intervals determined via the bootstrap
method.

Table 2 | Information and forecast periods of the six non-HW
events

Non-HW events Year Target period

NHW1 2011 07.03–07.05

NHW2 2012 07.27–07.29

NHW3 2017 08.23–08.25

NHW4 2011 08.05–08.07

NHW5 2012 06.23–06.25

NHW6 2017 07.01–07.03

https://doi.org/10.1038/s41612-024-00876-y Article

npj Climate and Atmospheric Science |            (2025) 8:15 8

www.nature.com/npjclimatsci


events. The obtained findings further support the reliability and effective-
ness of the CNOP-P ensemble forecasting approach in subseasonal HW
onset predictions.

As demonstratedby ourfindings, fully accounting for the uncertainties
in land surface parameters could greatly enhance the forecast skill and
reliability of subseasonal HW onset predictions. The results reported by
MacLeod et al.25, Orth et al.28, and Gehne et al.29 also support this phe-
nomenon. However, these studies, along with ours, show that random
parameter perturbation approaches often produce ensemblemembers with
a modest spread. To explore whether increasing the ensemble size of ran-
dom perturbations could improve forecast uncertainty, we doubled the
sample size of random perturbations from the original to observe any

significant increase in spread. Specifically, for six HW events, the average
spread over the entire forecast period and theHWperiodwith the increased
randomperturbation ensembles (46 ensemblemembers) was 0.58 and 0.44,
respectively, which is slightly lower than that of the original ensemble (23
ensemble members). This suggests that despite the increase in random
perturbation samples, their unstructured nature limits their effectiveness in
capturing uncertainties, particularly the nonlinear processes that are crucial
in HW predictions. This further highlights the importance of structured
perturbation samples, such as CNOP-Ps, which are particularly valuable for
accurately representing the complex and nonlinear interactions present in
land surface parameters, contributing to the improved prediction of HW
events.

Fig. 9 | The differences between daily maximum temperature and 35 °C high-
temperature threshold. a observations, b control forecast, and ensemble means
based on the ensembles generated via the c RP and d CNOP-P methods for NHW1

during the heat wave period. The black dashed box denotes the MLYR.
e–h, i–l,m–p, q–t, and u–x are similar to a–d but for NHW2, NHW3, NHW4,
NHW5 and NHW6, respectively.
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Fig. 10 | The temporal evolution of daily maximum temperature over the MLYR
for six non-HW events. a-f The CNOP-P experiment for a NHW1, b NHW2,
c NHW3, d NHW4, e NHW5 and f NHW6. The green line denotes the control
forecast, the blue line denotes the observation, the pink line denotes the ensemble

mean of the CNOP-P forecasts, and the shadow denotes the ensemblemembers. The
error bars indicate the 95% confidence intervals determined via the bootstrap
method. g–l are similar to (a–f) but for the RP experiment.
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The potential of the CNOP-P method in improving ensemble pre-
diction skills for subseasonal HW onsets has been demonstrated in this
study.Weknowthat for extremeHWevents, the impactofmissing alarms is
muchgreater than that of false alarms. The ensemblemembers generated by
the CNOP-Pmethod can effectively capture HWevents due to large spread
and high reliability, which greatly reduces the risk of missing alarms and is
particularly important in practical applications. However, the process of
calculating nonlinear perturbations requires substantial computational
resources. Typically, calculating a CNOP-P ensemble member requires at
least 200 iterations. Despite this process being time-consuming, its advan-
tages are significant, especially in the forecasting of extreme HW events.
Therefore, future research should focus on developing more effective
optimization methods as well as improving the integration of numerical
models while taking into account both computational costs and efficiency.
This will help to enhance the practicality of the ensemble forecasts related to
the CNOP method, allowing it to maximize its forecast performance with
higher timeliness. It is worth mentioning that recent studies have high-
lighted the potential of artificial intelligence (AI) models in exploring pre-
dictability research for various weather and climate events via the CNOP
method44,45. With the help of higher efficiency and self-contained optimi-
zation modules of AI models, the solving of CNOP in AI models can be
implemented conveniently. In addition, the obtained results in AI models
can also be verified in numericalmodels, which also indicatesAImodels can
learn physical mechanisms to some extent, enhancing the reliability and
interpretability of findings. This also inspires us to perform predictability
studies for HW events in a skillful AI model for targeted observation and
ensemble forecasts in the future.

While this study focused on the potential effects of the uncertainties in
land surface parameters on subseasonal HW onset predictions, it is crucial
to note that initial land surface errors are also important16,39,46,47. Therefore,
the ensemble forecast system should consider both the initial land surface
errors and land surfacemodel parameter perturbations to represent greater
uncertainties. Furthermore, with the increasing complexity of many model
components, the increase inmodel resolution, and the increasing number of
parameters in the future, it is necessary to consider the function of each
parameter in-depth and to determine the most sensitive parameters via the
CNOP-P approach to reduce the computational cost before performing
ensemble forecast experiments.

Methods
CNOP-P approach
The CNOP-P method is briefly described below. Assuming that there is a
state vector U, it can be predicted via Eq. (1):

∂U
∂t þ FðU ;PÞ ¼ 0

U jt¼0 ¼ U0;

(
ð1Þ

whereU0 is the initial state, andF is a nonlinear operator. Assuming that the
initial and boundary conditions are perfect,M denotes the nonlinear pro-
pagation operator from the initial time to time t. Then, the state variable U
with the parameter vector P at time t can be expressed asUðtÞ¼MtðU0 ;PÞ.
When there is a parameter error p in the model parameters, we can obtain
UðtÞ þ uðtÞ¼MtðU0;PþpÞ, where uðtÞ denotes the prediction error
caused by the parameter error at time t.

To address the parameter errors that impact the forecast results at time
t the most, the following nonlinear constrained optimization problem was
defined:

JðpδÞ ¼ max
p2Ω

kuðtÞk¼max
p2Ω

kMtðU0;PþpÞ �MtðU0;PÞkb ð2Þ

where J is an objective function that aims to measure the maximum
deviation from the reference state with the parameter constraint condition
Ω. Moreover, || ||b is a measure of the magnitude of the prediction errors
caused by parameter perturbations, pδ denotes the CNOP-P, which

represents the parameter perturbations that cause themaximumprediction
errors are represented under certain constraints.

WRFmodel, HW events, and non-HW events
The WRF model version 4.2.1 was employed in this study. The model
simulation area covers the domain of China (15.8°N–45.5°N,
64.6°E–131.4°E), and it exhibits a horizontal grid spacing of 30 km, a grid
cell number of 100 × 180, and a total of 34 vertical levels from the surface to
50 hPa. The parameterization schemes adopted in this study include the
Thompson microphysics scheme48, the Rapid Radiative Transfer Model
(RRTM) longwave radiation scheme49, the Dudhia shortwave50, the Yonsei
University (YSU) boundary layer scheme51, the Kain‒Frisch cumulus
parameterization scheme52, and the Noah‒multiparameterization (Noah-
MP) land surface parameterization scheme53.

For the initial and lateral boundary conditions, the fifth-generation
European Centre for Medium-Range Weather Forecasts (ECMWF)
atmospheric reanalysis (ERA5) data with a horizontal resolution of 0.5° and
a temporal resolution of 6 h were used. Notably, this study focused on the
performance of the CNOP-P experiments and primarily aimed to investi-
gate the influence of model parameter uncertainty on subseasonal HW
onset predictions. Therefore, more precise initial and boundary conditions
could highlight the importance of model parameters in subseasonal HW
onset predictions. Via the use of observation data54,55, which were inter-
polated from the original observation data of 2416 surface meteorological
stations in China, six HW events from 1979 to 2022 over the MLYR
(28–32°N, 110–122°E) were selected for the ensemble forecast experiments.
The selection criteria for HW events have been provided by Zhang et al.31

Table 1 provides brief information on the six HW events over the MLYR
and the initialization and end times of the corresponding forecast periods.

Considering the interannual temperature variability, we focused on
non-HW periods between June and August over the past decade
(2010–2021). Referring to the definition of an HW event, an event was
classified as a non-HW event if the following criteria were satisfied con-
currently: (1) the area-averaged Tm does not exceed 35 °C for three con-
secutive days during the target period as well as the week before or after the
target period; (2) the area-averaged Tm remains between the 5th and 95th
percentile values of the climate state (1979–2016) throughout the target
period and theweek prior and following the target period. These criteriawere
designed to ensure a generally stable temperature trend, with no HW events
occurring before or after the target period. In addition, considering that
anticyclonic circulation is conducive toHWonset,we selected threenon-HW
events with anticyclonic anomalies during theHWperiod, thereby aiming to
investigatewhether theCNOP-Pensemblememberswould yield false alarms
for non-HW events under background conditions favoring HW onset. For
comparison, three non-HW events with no anticyclonic anomalies were
selected during different periods of the same year. Table 2 provides detailed
information on the six non-HW events selected.

Experimental design
To implement the CNOP-P approach, in which the uncertainties in the
model parameters are represented, the degree of deviation of the daily
maximum temperature (Tm) from the control forecast was adopted as the
objective function, and 24 key physical parameters (Table 3) affecting sur-
face energy and moisture changes were perturbed. Under the given para-
meter constraint conditions, one CNOP-P type of land surface parameter
perturbation could be obtained. Considering the high uncertainty in the
parameter perturbation amplitude, multiple CNOP-P-type land surface
parameter perturbations were generated as ensemblemembers via different
perturbation constraints. Therefore, the constraint optimization problem in
Eq. (2) can be rewritten as follows:

JiðpδÞ ¼ max
p2Ωi

kuðtÞk ¼ max
p2Ωi

j 1
3
ð
Z day 2

day 0
TmðP þ pÞdt �

Z day 2

day 0
TmðPÞdtÞj

ð3Þ
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where uðtÞ is the prediction error of the area-averaged daily maximum
temperature over theMLYR during theHWperiod. The L1 norm, which is
expressed in terms of absolute values, was employed to measure the
magnitude of the prediction errors. Moreover, Tm denotes the area-
averaged Tm, i denotes the number of ensemble members, and Ω is the
amplitude of parameter perturbation. The target period, which ranges from
days 0 to 2, was defined as occurringwithin three days following the onset of
each HW event. Twenty-four land surface parameters were represented by
the parameter vector P.

Since the different parameters exhibited widely varying default values,
normalizationwas performed to assess the effect of parameter perturbation.
The normalization approach56,57 can be expressed as follows:

f
y ¼ x�Defvalue

Max value�Defvalue ; when x ≥Defvalue

y ¼ x�Defvalue
Defvalue�Min value ; when x<Defvalue

ð4Þ

where Defvalue, Maxvalue, and Minvalue denote the default, maximum,
andminimumvalues, respectively, of theparameters, and x and ydenote the
values before and after normalization, respectively. Hence, after normal-
ization, the value of the perturbed parameter ranges from −1 to 1.

Given that a small perturbation amplitude leads to modest forecast
uncertainties and that an excessive perturbation amplitude easily causes
model instability, employs a perturbation amplitude ranging from 5%–10%
was employed to produce 11 sets of ensemblemembers, and the value ofΩi
is f10%; 9:5%; 9%; ::::::6%; 5:5%; 5%g. Furthermore, to ensure that the
ensemble members were dispersed on both sides of the reference state, two
optimization processes were adopted to obtain two types of CNOP-P
ensemble members with positive and negative biases.

If a typeof positive parameter errorwith thehighest degree of deviation
from the reference state is needed (TmðP þ pδÞ≥TmðPÞ), the first

optimization process is as follows:

J1iðpδÞ ¼ max
p2Ωi

f1
3
ð
Z day 2

day 0
TmðP þ pÞdt �

Z day 2

day 0
TmðPÞdtÞg ð5Þ

where pδ denotes the type of parameter error that could cause a maximum
positive error from the reference state.

If a type of negative parameter error with the highest degree of
deviation from the reference state is needed (TmðP þ pδÞ≤TmðPÞ), the
second optimization process is as follows:

J2iðpδÞ ¼ max
p2Ωi

f1
3
ð
Z day 2

day 0
TmðPÞdt �

Z day 2

day 0
TmðP þ pÞdtÞg ð6Þ

where pδ denotes the type of negative parameter error with the highest
degree of deviation from the reference state.

Therefore, 23 ensemble members were generated by the CNOP-P
approach, including 22 perturbed members and one control forecast
member. To examine the usefulness of the CNOP-P approach in repre-
senting the uncertainties in model parameters, the ensemble predictions
generated by the CNOP-P approachwere comparedwith those obtained by
the traditional random parameter perturbation method. In this study, two
sets of ensemble prediction experiments (theCNOP-PandRPexperiments)
and a control experiment based on the WRF model were conducted
(Table 4).

In the RP experiment, the 24 land surface parameters listed in Table 3
were disturbed via the random parameter perturbation method. The per-
turbation amplitude ranged from 5% to 10% of the default value of each
parameter, which is consistent with the CNOP-P experiment to ensure
experimental comparability and consistency. Specifically, a total of 11 sets of
perturbation amplitudes were defined within the parameter perturbation

Table 3 | Selected parameters of the Noah-MP land surface model

Number Parameter Description Default value Units Min. Max.

P1 RHOL-vis Leaf reflectance (visible wavelengths) 0.10 - 0.09 0.11

P2 RHOL-nir Leaf reflectance (near-infrared wavelengths) 0.45 - 0.405 0.495

P3 RHOS-vis Stem reflectance (visible wavelengths) 0.16 - 0.144 0.176

P4 RHOS-nir Stem reflectance (near-infrared wavelengths) 0.39 - 0.351 0.429

P5 TAUL-vis Leaf transmittance (visible wavelengths) 0.05 - 0.045 0.055

P6 TAUL-nir Leaf transmittance (near-infrared wavelengths) 0.25 - 0.225 0.275

P7 TAUS-vis Stem transmittance (visible wavelengths) 0.001 - 0.0009 0.0011

P8 TAUS-nir Stem transmittance (near-infrared wavelengths) 0.001 - 0.0009 0.0011

P9 XL Leaf/stem orientation index 0.250 - 0.225 0.275

P10 Z0MVT Momentum roughness length 0.80 m 0.72 0.88

P11 HVT Top of the canopy 16.0 m 14.4 17.6

P12 HVB Bottom of the canopy 10.0 m 9 11

P13 VCMX25 Maximum rate of carboxylation 55.0 μmolm�2s�1 49.5 60.5

P14 BP Minimum leaf conductance 2000 μmolm�2s�1 1800 2200

P15 MP Slope of the conductance–photosynthesis relationship 9. - 8.1 9.9

P16 QE25 Quantum efficiency 0.06 μmolm�2s�1 0.054 0.066

P17 FOLNMX Foliage nitrogen concentration before limitation 1.5 % 1.35 1.65

P18 BEXP Pore size distribution index 8.17 - 7.353 8.987

P19 SMCWLT Wilting point soil moisture 0.103 m3m�3 0.0927 0.1133

P20 SMCMAX Saturated value of soil moisture 0.465 m3m�3 0.4185 0.5115

P21 SMCREF Reference soil moisture 0.382 m3m�3 0.3438 0.4202

P22 PSISAT Saturated soil matric potential 0.263 mm�1 0.2367 0.2893

P23 DKSAT Saturated soil hydraulic conductivity 2.45E-6 ms�1 2.21E-06 2.7E-06

P24 DWSAT Saturated soil hydraulic diffusivity 1.13E-5 m2s�1 1.02E-05 1.24E-05
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range of 5% to 10%, and a series of positive and negative perturbation pairs
were generated from each perturbation amplitude set. A set of 23 ensemble
members was generated for the random parameter perturbation experi-
ment, including 22 perturbation samples (both positive and negative per-
turbations) and one control forecast. Notably, this approach is not the
standard way to generate random perturbations (i.e., multiple samples
should be obtained from the 5%–10% range), but this method was adopted
to maintain consistency and comparability with the CNOP-P experiment.
In addition, an experiment was conducted via the traditional random per-
turbation method (Fig. S1), and the results were similar to those of the RP
experiment.

In this study, the CNOP-P experiment was conducted via the differ-
ential evolution (DE) algorithm58. This study aimed to enhance the forecast
skill for HWs at the subseasonal timescale. Thus, model integration was
initiated three weeks beforeHWonset and lasted until three days thereafter.
Day 0marks the beginning of theHWevent, and themean values fromdays
-21 to -15, days -14 to -8, days -7 to -1, and days 0 to 2 are denoted as W3,
W2, W1, and HW, respectively.

Statistical evaluation methods for the prediction skills
The ensemble mean refers to the average of the forecast values of different
ensemble members. The ensemble mean forecast error can be measured as
the difference between the ensemble mean and the observations. The
ensemble mean forecast error can be calculated as follows:

Forecast errors ¼ �X � O ¼ 1
N

Xi

i¼1

Xi � O ð7Þ

where �X denotes the ensemble mean forecast, O denotes the observations,
and N denotes the number of ensemble members.

The ensemble spread indicates the degree of forecast uncertainty and is
a measure of the variation in the ensemble members with respect to the
ensemble mean. The ensemble spread can be calculated as follows:

Spread ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jFi � �Fj2
vuut ð8Þ

where Fi and �F are the forecast values of the i-th ensemble member and the
ensemble mean, respectively. A reliable ensemble forecast system exhibits
approximately equal ensemble spread and ensemble mean forecast error
values59.

The Brier score (BS) represents the mean square error of the prob-
abilistic forecast33, which is mainly used to assess the probabilistic fore-
casting skill of the ensemble forecast for dichotomous events and can be
expressed as follows:

BS ¼ 1
N

XN
i¼1

ðPi � OiÞ2 ð9Þ

whereN denotes the number of forecast trials, Pi is the probability that the
event occurs in the i-th forecast, and Oi is the probability that the event
actually occurs in the i-th forecast. In this study, the BS is employed to assess
the probabilistic forecast ability for HWs. An HW event occurs when the

daily maximum temperature increases beyond 35°C. In this case, Oi ¼ 1,
while otherwise, Oi ¼ 0. A lower BS value suggests a closer forecast prob-
ability to the real probability, indicating a better probabilistic forecast skill
for the predicted events.

The difference between the observed and predicted cumulative prob-
ability distributions can be statistically compared via the continuous ranked
probability score (CRPS; Matheson and Winklers, 1976), which is defined
as:

CRPSðP; xaÞ ¼
Z 1

�1
½PðxÞ � PaðxÞ�

2

dx ð10Þ

where PðxÞ and PaðxÞ denote the cumulative distributions of the forecast
and observation data, respectively. Moreover, PaðxÞ ¼ Hðx � xaÞ, and
HðxÞ is the well-knownHeaviside function, also referred to as the switching
function, which can be expressed as follows:

HðxÞ ¼ 0 ; x < 0

1 ; x ≥ 0

�
ð11Þ

AlowerCRPSvalue suggests that the forecast probability is closer to the
observed probability.

The relative operating characteristic (ROC) curve can be used to
describe theprobabilistic forecast skill of an ensemble forecast by computing
the hit rate and the false alarm rate35, which can be employed to evaluate the
ability of forecasts to discriminate between events and nonevents. The
horizontal coordinate of the ROC curve represents the false alarm rate,
whereas the vertical coordinate represents the hit rate. Therefore, ROC
curves occurring toward the top left corner of the graph, or a larger area
under the curve (ROCA), suggest greater forecast skills.

The reliability diagram (RD) curve can be used to evaluate the prob-
abilistic forecast skill by determining if the forecast probability corresponds
to the observed probability. The horizontal axis of the RD curve denotes the
forecast probability, and the vertical axis denotes the observed probability.
As the RD curve approaches the diagonal line, the forecast and observed
probabilities become more similar, indicating a better probabilistic forecast
ability. An RD curve occurring above the diagonal indicates that the
forecast probability is lower than the observed frequency. Conversely, the
forecast probability is greater than the observed probability.

Bootstrap method
To quantify the uncertainty in the ensemble predictions, we adopted the
bootstrap method. Each ensemble member was resampled randomly to
achieve10,000 realizations. In this randomresamplingprocess, anymember
was allowed to be selected again. The 95% confidence interval of the 10,000
realizations was calculated to quantify the uncertainty range.

Data availability
All the data used in this study are openly available. The ERA5 reanalysis
dataset is available at https://doi.org/10.24381/cds.bd0915c6. The CN05.1
gridded temperature observation data is from https://ccrc.iap.ac.cn/
resource.

Code availability
All source codes can be obtained upon request to the corresponding author.
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