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Classifying synoptic patterns driving
tornadic storms and associated spatial
trends in the United States
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Severe convective storms and tornadoes rank among nature’smost hazardous phenomena, inflicting
significant property damage and casualties. Near-surfaceweather conditions are closely governed by
large-scale synoptic patterns. It is crucial to delve into the involved multiscale associations to
understand tornado potential in response to climate change. Using clustering analysis, this study
unveils that leading synoptic patterns driving tornadic storms and associated spatial trends are
distinguishable across geographic regions in the U.S. Synoptic patterns with intense forcing featured
by intense upper-level eddy kinetic energy and a dense distribution of Z500 fields dominate the
increasing trend in tornado frequency in the southeast U.S., generating more tornadoes per event.
Conversely, the decreasing trend noted in certain regions of the central Great Plains is associatedwith
weak upper-level synoptic forcing. These findings offer an explanation of observational changes in
tornado occurrences, suggesting that the physical mechanisms driving those changes differ across
regions.

Severe convective storms and tornadoes rank among nature’s most hazar-
dous phenomena, inflicting significant property damage and casualties1–3.
Tornadoes account for nearly one-fifth of all natural hazard fatalities in the
United States and have caused 1775 fatalities and 25,959 casualties over the
24-yearperiod1995–20184.The annual economicdamages range from$183
million to $9.5 billion, and a single event can approach up to $3 billion5.
Understanding tornado potential is critical for mitigating these asso-
ciated risks.

How tornado potential will change in response to the present warming
climate remains elusive but has been an intriguing question of high societal
and research interest. Increased variability of tornado frequency has been
reported due to a greater concentration of tornadoes on fewer tornado
days6–9, including more tornadoes in the most extreme tornado
outbreaks10,11. Recent research has suggested spatial trends in tornado fre-
quency in theUnitedStates basedonhistorical tornado reports12–14.Notably,
negative tornado frequency trends have been observed in certain Great
Plains regions, while the Southeast United States shows positive trends (Fig.
1a; extended to 2022 following the method in ref. 13). Considering the
uncertainty in observational reports15, many studies have used environ-
mental proxies to approximate tornado favorability in reanalysis and/or
rawinsondes11,13,16–21, and global climate models22,23. Despite these findings,
relatively little is known of the physical mechanisms driving those trends,
probably owing to the low predictability of tornadic storms24,25, which are

sensitive to both large-scale synoptic patterns and finer-scale local
characteristics.

The regions east of the Rocky Mountains in the U.S. are known for
their high frequency of tornadoes (Fig. 1b). The prevailing conceptual
model for the generation of storm environments in those regions
emphasizes the key role of the elevated terrain of the Rocky
Mountains26–30 and upstream surface conditions31. Meanwhile, a typical
synoptic pattern during a tornado outbreak usually involves an upper-
level trough axis west of the location of tornadogenesis. The associated
rapid surface pressure falls intensify the low-level jet and associated
moisture advection, favoring storm potential32,33. Variabilities in
atmospheric circulation patterns associated with Arctic sea-ice extent34,
Madden-Julian oscillation (MJO) modes35, and El Niño/Southern
Oscillation (ENSO) phases36,37, along with other teleconnections38 have
been found to affect the storm’s environmental background, altering
tornado potential across different U.S. regions. Studies using regime
classification also show that the location, frequency, and predictability
of U.S. tornadoes are modulated by different weather pattern
categories37,39.

Based on these findings, our outstanding research question is: do dif-
ferent synoptic patterns contribute differently to the spatial trends of tor-
nado frequency across geographic regions in the U.S.? Given that tornadoes
are spread widely over regions east of the Rocky Mountains (Fig. 1b),
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Fig. 1 | Spatial trends and distributions of tornado reports in the U.S. a The distribution of Theil-Sen slopes of 1980–2022 annual gridded tornado reports. Hatched areas
denote the trends significantly differ from 0, assessed at p values ≤0.05 using Kendall’s τ statistic. b The number of tornado reports per 1° × 1° cells from 1980 to 2022.

Fig. 2 | Predominant synoptic patterns driving tornadoes across regions. a–dThe
tornado-relative distribution of composite eddy kinetic energy (EKE) at 200 hPa
(color fills; m2 s−2), normalized Z500 multiplied by 103 (grey contours; unitless),
significant tornado parameter (red contours; unitless) within each cluster, respec-
tively. The red dots denote the tornado report start location, and the x- and y-axes
denote the tornado-relative longitude and latitude. The black percentage values on
the title indicate the percentage of the number of tornado-occurring 3-hourly

synoptic weather maps included in each cluster, and the grey subtitle shows the
relative percentage for each season (SP: Spring; SU: Summer; F: Fall; W: Winter)
within each cluster. e–h The spatial distribution of tornado reports associated with
each synoptic cluster. The percentage values indicate the percentage of the number
of tornado reports within each cluster. i, j Monthly variation of counts of tornado-
occurring 3-hourly synoptic weather maps and tornado reports for each cluster,
respectively.
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including cold season tornadoes40 and those beyond traditional “tornado
alley”41, a related question also includes how leading synoptic patterns
driving tornadic storms may vary by regions and/or seasons.

This study employshierarchical clustering analysis to classify the leading
synoptic patterns driving tornadic storms across different geographic regions
east of the Rocky Mountains in the U.S., based on historical tornado reports
and reanalysis datasets. The classification is based on tornado-relative
synoptic backgrounds and hence is not dependent on pre-determined geo-
graphic or temporal constraints. How these different synoptic patterns
establish storm-favorable environments and, more importantly, how they
contribute to the spatial trends of tornado reportswill be ofmain interest.We
found that the leading synoptic patterns across regions are distinguishable,
and the increasing trend in tornado frequency in the southeastern U.S. is
mainly driven by synoptic patterns with intense forcing, while the decreasing
trends in portions of the Great Plains are associated with weaker synoptic
forcing. These findings suggest that the physical mechanisms driving the
spatial trends of tornado occurrences differ across regions in the U.S.

Results
Leading synoptic patterns driving tornadoes across geographic
regions
Previous attempts to detect storm-favorable synoptic patterns have mainly
focused on tornado outbreaks32,33,42, but they are only a small portion of the
tornado reports. We employ a hierarchical cluster analysis of all tornado
reports east of the Rocky Mountains in the U.S., excluding those from
Florida, to track the highly generalized tornado-occurring synoptic patterns.
We first create a dataset of meteorological fields relative to the report start
position and apply 500 hPa height (Z500) fields to the clustering algorithm
to characterize synoptic features. The number of final clusters is defined
based on an abrupt increase in a measure of dissimilarity (SeeMethods and
Supplementary Fig. S1), and field variables within each final cluster are then
averaged to provide composite synoptic patterns and storm environments.

Figure 2 shows the composite synoptic fields of the final four clusters.
InCluster 1, the intense upper-level jet streakdescribedby thehighvalues of
eddy kinetic energy (EKE) associated with a dense distribution of Z500

Fig. 3 | Storm environmental conditions associated with each synoptic pattern.
Composite distributions of environmental parameters within each cluster (each
column), respectively: a–dmixed-layer-basedCAPE (MLCAPE; J kg−1); e–h 0–6 km
bulk wind difference (BWD06; color fills; m s−1) and eddy kinetic energy at 200 hPa
(EKE; black contours; in 60-m2 s−2 intervals); i–l 0-1 km storm-relative helicity

(SRH01; color fills; m2 s−2), sea-level pressure (black contours; in 2-hPa intervals)
and wind vector at 850 hPa. m–p Relative humidity at 2 m AGL (color fills) and
mixed-layer-based lifting condensation level (MLLCL; black contours; in 100-m
intervals). The red dots denote the tornado report start location, and the x- and y axes
denote the tornado-relative longitude and latitude.
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contours (Fig. 2a) dominate the tornado events in the southeast U.S.
(Fig. 2e). These synoptic conditions prevail in the cold season (November-
March; shown in the black curve in Fig. 2i, j). Cluster 2 describes a deeper
trough to the west of the tornadogenesis position (Fig. 2b) but with weaker
EKE aloft thanCluster 1.Cluster 2 is mostly comprised of tornadoes in the
central U.S. in late Spring and early Summer (the red curve in Fig. 2i and j).
Meanwhile, Cluster 3 reveals weaker EKE and a shallower trough feature
(Fig. 2c), with its associated tornadoes (roughly 1/3 of our subset) lacking a
clear geographic hotspot (Fig. 2g) and occurring broadly in thewarm season
(theblue curve inFig. 2j).Cluster4 is associatedwithminor synoptic forcing
aloft (Fig. 2d),which is commonly seen inSummer (the greencurve inFig. 2i
and j), associated with tornadoes closer to the lee side of the Rocky
Mountains (Fig. 2h).

Given that we perform the hierarchical clustering based on the
tornado-relativeZ500fields, the spatial information is removed.However, it
turns out that the distinct distribution of the associated tornado reports is
caused by spatial differences in leading synoptic patterns. As seen in Sup-
plementary Fig. S2, synoptic patterns inCluster 1 prevail in the easternU.S.,
Cluster 2 dominates the central U.S., and Cluster 4 is closer to the clima-
tological mean.

Synoptic processes governing tornado-favorable storm
environments
It is well documented that tornadoes occur in environments characteristic
of high values of thermal instability, adequate surface tomid-level vertical
wind shear, abundant near-surface moisture supply, and strong storm-
relative helicity in the lowest 1 km of the boundary layer43–45. These storm
environments are commonly described by mixed-layer-based convective
available potential energy (MLCAPE), 0–6 km bulk wind difference
(BWD06), and 0–1 km storm-relative helicity (SRH01) (seeMethods). It’s
known that the stretching of potential vorticity associated with the
upstream side of a trough enhances the surface pressure falls, intensifying
the low-level jet46. In addition, the development of low-level jets is also

coupled with upper-level jet streaks as the return branches of transverse
circulations, which are forced bymass andmomentumadjustments47. The
development of convective systems can also amplify the large-scale flow
pattern, promoting storm-favorable conditions48. These multiscale jet
feedbacks are particularly important for strongly forced synoptic
regimes48. Therefore, the low-level meteorological features are highly
coupledwith upper-level atmospheric characteristics. As seen in Fig. 3, the
more intense synoptic forcing, decreasing from Cluster 1 to Cluster 4, is
associated with higher upper-level EKE (comparing Fig. 3e–h) and lower
low-level pressure (comparing Fig. 3i–l), which intensifies the low-level jet
and associatedmoisture transport, resulting in a lower mixed-layer-based
lifting condensation level (MLLCL; comparing Fig. 3m–p). Together,
these create conditions favorable for tornadogenesis. The characteristics
of the upper-level EKE also control the strength and distribution of both
BWD06 (Fig. 3e–h) and SRH01 (Fig. 3i–l), generating a vertically tilted
structure with low-level SRH01 placed to the southeast of the upper-level
EKE (comparing the position of EKE maxima in Fig. 3e–h with SRH01
maxima inFig. 3i–l).Cluster 1 shows a lower-CAPE (Fig. 3a) higher-shear
(Fig. 3e) stormenvironment thanothers, characterizing cold season storm
conditions49 (shown as the black curve Fig. 2i). The Clusters 2 and 3
illustrate higher-CAPE (Fig. 3b and c) but lower-shear (Fig. 3f, g) con-
ditions than Cluster 1, but the shear values still fall within the bound of
typical high-shear storm environments (≥18m−143,49). In association with
minor upper-level synoptic forcing,Cluster 4 exhibits low-shear (Fig. 3h)
and low-SRH (Fig. 3l) conditions but toward the upper-end of “low”
parameter space, corresponding to typical summer stormpatterns (shown
as the green curve Fig. 2i), which could lead to more isolated convective
storms. The reader shall also note that near-storm environments still show
large variabilities on a case-by-case basis. For example, a tornadic storm
may be affected bymesoscale characteristics and develop outside the ideal
location governed by synoptic forcing. The kernel density distribution of
storm environments that quantifies the variations in cases is shown in
Supplementary Fig. S3.

Fig. 4 | Trends in the frequency of synoptic patterns and associated tornado
reports. Interannual changes of a the annual counts of tornado-occurring 3-hourly
synoptic weather maps (solid lines) and b the number of tornadoes per 3-hour
window (solid lines; calculated by dividing the annual number of tornadoes by the
annual number of tornado-occurring weather maps) for each cluster, respectively.

The dashed lines indicate the linear regression predictor for each series. The trend
values denote the slope of the linear regression using the Theil-Sen estimator. The
p values are achieved using Kendall’s τ statistics, and a value ≤0.05 indicates a
statistically significant trend that differs from 0 (no change).
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Synoptic patterns contributing to spatial trends in tornado
frequency
Based on the different leading synoptic patterns recognized, this section
seeks to explore how each pattern may contribute to the spatial trends in
tornado frequency indifferentways.As shown inFig. 4,Cluster 1 is the only
one that shows significant increasing trends in both the annual number of
tornado-occurring 3-hourly synoptic weather maps and annual mean tor-
nado frequency within 3-hour windows (calculated by dividing the annual
number of tornadoes by the number of tornado-occurring weather maps).
Although not statistically significant, Cluster 3 and 4 show a decreasing
trend in tornado-occurring 3-hour weather maps (Fig. 4a), and those are
primarily associated with weaker synoptic forcing as shown in Figs. 2 and 3.
Clusters 1–3 show a significant increase in tornado frequency per 3 hours,
and a larger trend value is associated with the cluster with more intense
synoptic forcing (Fig. 4b). Those indicate that synoptic patternswith intense
forcing (Cluster 1) become more frequent in the past 43 years of the
warming scenario, and each synoptic event has triggered more tornadoes
associated with it.

The detailed spatial distribution of trends in tornado frequency is seen
in Fig. 5. Cluster 1 dominates the primary increasing trend in tornadoes in
the southeast U.S, with no decreasing patterns observed in Fig. 5a. While
Cluster 2 and 4 both govern tornadogenesis in the central U.S., their con-
tributions to the tornadoes’ spatial trends are distinct from each other.
Cluster 2 still mainly contributes to the increasing trend in the central U.S.
(Fig. 5b), although the slope is much smaller than Cluster 1. Conversely,
Cluster 4 dominates the decreasing trend in the central U.S., especially in
Texas and easternColorado (Fig. 5d).Cluster 3highlights uncertainties that

cannot be attributed to the other patterns (Fig. 5c). In combination with the
analysis of leading synoptic patterns (Fig. 2), these analyses also indicate that
the spatial trends in tornado frequency response to synoptic forcing are
different. Notably, the increasing trend in tornado frequency is mainly
driven by intense synoptic forcing. These tornado-associated intense
synoptic patterns are also themselves intensified, as seen in the robust
increases in upper-level annual median EKE (Fig. 6a; diverging color fills),
which is in turn highly associated with the enhanced water vapor transport
to the southeast (Fig. 6a; green contours). This suggests that the multiscale
interaction between jets, moisture supply, and storm behaviors plays a key
role in the increased tornado risk in the southeastern U.S., warranting
further investigation. Meanwhile, the decreasing trend is associated with
weaker synoptic forcing and with no robust association with upper-level jet
characteristics (Fig. 6d).

Uncertainties and robustness
Due to inherent statistical uncertainties50 and significant variability in storm
environments compared to generalized leading synoptic patterns, different
clustering methods and sample inputs may influence how certain tornado-
associated weather maps are categorized within each cluster. Despite cate-
gorization biases, such as differences in percentage values [cf. Fig. 2 with
Supplementary Fig. S4 usingK-Mean and Supplementary Fig. S5 using Self-
OrganizationMaps (SOM)], the overall characteristics of the resulting four
synoptic patterns do not substantially differ when different clustering
methods are used. Another limitation of our analysis is a dependence on the
report-based dataset, which has recognized issues and biases15,51, especially
regarding EF0 and EF1 tornado reports. However, previous studies using

Fig. 5 | The spatial distribution of Theil-Sen slopes of gridded annual tornado reports for each cluster, respectively. Areas with trends significantly different from 0
(no change) are hatched, assessed at p values ≤0.05 using Kendall’s τ statistic.
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environmental proxies13 also support the observed spatial trends in tornado
reports. Tests confirm that randomly sampling EF0/EF1 reports (Supple-
mentary Figs. S6, S9, and S12) or excluding EF0 reports (Supplementary
Figs. S7, S10, and S13) do not alter our key findings. Moreover, additional
processing of the synoptic dataset, such as detrending theZ500field37,52,may
cause the aforementioned sampling variability, but the resulting four
synoptic patterns remain consistent as normalization is always performed
prior to clustering. We use MERRA-2 in our main manuscript, but the
results using the European Centre for MediumRange Weather Forecasts
Reanalysis version 5 (ERA5) dataset with its original resolution (no inter-
polation is performed) again are not appreciably different (shown in Sup-
plementary Figs. S8, S11, and S14), confirming that our main conclusions
remain robust.

Discussion
Understanding themechanismsdriving tornadic storms and their changes in
a warming climate is essential for mitigating future risks. This study reveals
that the leading synoptic patterns driving tornadic storms and associated
spatial trends are distinguishable across geographic regions in the U.S. The
intense upper-level jet streak described by high values of EKE associated with
the dense distribution of Z500 contours dominates the tornado events in the
southeast U.S. in the cold season (November-March). Late Spring and early
Summer tornado events in the central and southern Great Plains are domi-
natedbydeep troughsystems to thewestof the tornadogenesisposition,while
more summer events associated with weak synoptic forcing are positioned
closer to the lee side of Rocky Mountains. These distinct synoptic patterns
also govern the trends of tornado frequency over the past 43 years in different
regions of the U.S. Specifically, the increasing trend in tornado frequency in

the southeast U.S. is mainly driven by synoptic patterns with intense forcing,
and the intense synoptic patterns are also become more frequent, driving
more tornadoes per synoptic event. The decreasing trend in certain regions of
the Great Plain is associated with weaker synoptic forcing.

Our findings partially explain the observational changes in tornado
occurrence in the U.S. over the past decades of the warming scenario,
referring to fewer tornado days but more tornadoes per tornado day, along
with spatial trends indicating more tornadoes in the southeast regions.
However, diagnosing the mechanisms contributing to these synoptic-scale
trends may be more difficult. On the one hand, the synoptic patterns with
intense forcing inCluster 1 and 2 also show a robust increase in upper-level
EKE (Fig. 6). This trend is expected to be correlated with a change in upper-
level jet characteristics and global circulation. For example, fast upper-level
jet stream winds have been proposed to accelerate more than the average
under climate change following the “moist-get-moister” response that
affects the thermal wind53. A poleward shift of the mid-latitude jet stream
could contribute to more frequent atmospheric rivers in the eastern U.S.54

Alternatively, the decreasing trends are more likely to be affected by local
features. For instance, a change in boundary layer characteristics may
dominate the decreasing trend in certain regions of the central U.S. as the
upper-level synoptic forcings are weak. Those may involve a larger value of
CIN23,55 and reduced soil moisture56,57 that inhibit the buildup of thermal
energetics58,59. The surfaceprocesses associatedwithvarious land cover types
across regions may become more important in modulating storm
behavior31,60–62 in this scenario. This study emphasizes the need for colla-
borative projects that incorporate expertise from both climate and mesos-
cale scientists to conductmultiscale investigations to explore the underlying
physics in more depth.

Fig. 6 | The distribution of Theil-Sen slopes of annualmedian eddy kinetic energy
(EKE; diverging color fills; m2 s−2 per year) for each cluster, respectively. Areas
with trends significantly different from 0 (no change) are hatched, assessed at

p values ≤0.05 using Kendall’s τ statistic. Green contours denote trends in annual
median integrated vapor transport (IVT; kg m−1 s−1 per year; magnified by 102), with
only areas with significant trends displayed for clarity.
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Methods
Datasets
The tornado data were retrieved from the Storm Prediction Center (SPC)’s
online database (https://www.spc.noaa.gov/wcm/#data) for the period of
1980–2022.As tornadoes aremost frequent east of theRockyMountains,we
focused on tornado activities east of the 115° longitudinal boundary. We
intentionally omitted reports in Florida before applying clustering analysis
because the storm environments in Florida may primarily feature tropical
atmospheric conditions, which differ fromother typical synoptic conditions
in the U.S. Therefore, the tornado reports in Florida were not shown in
results except for Fig. 1. To yield the spatial distribution (Fig. 1b), tornado
reports were first binned on a 1° × 1° grid and then smoothed in space using
a 1-σGaussian kernel. Themeteorological environments were based on the
National Aeronautics and Space Administration’s (NASA) Modern-Era
Retrospective analysis for Research and Applications Version 2
(MERRA-263,64) 3-hourly surface and pressure-level reanalysis data with a
horizontal resolution of 0.625° × 0.5°. The 3-hourly reanalysis data closest to
the actual time of the tornado reports were chosen to represent the tornado-
occurring synoptic conditions, and those were then truncated into a
30° × 30° spatial region surrounding the report start location (20° to the
north or west and 10° to the south or east) to generate tornado-relative
weather maps. Therefore, each weather map was associated with one or
more tornado reports. We simply used the longitude and latitude mean as
the genesis point if multiple reports were detected in the same 3-hour
window. All told, 46240 tornado reports were used associated with 15313
tornado-relative weather maps.

Clustering of synoptic patterns
We then performed the classification of synoptic patterns based on the
500 hPa height (Z500) from tornado-relative weather maps. Each tornado-
relative Z500 fieldwas first normalized by L2 normalization; in this way, the
key differences featured by the clustering method mainly came from the
pattern distribution instead of the matrix norm. The hierarchical clustering
algorithm used in this study is an agglomerative approach (bottom-up),
which merges pairs of similar clusters through consecutive steps until a
single cluster is obtained at the end. The initial cluster dissimilarity was
specified by the Euclidean distance, and the dissimilarity after merging was
recursively computed via Ward’s minimum variance method65. The num-
ber of output clusters that represent distinct synoptic patterns was then
determined by an abrupt increase in Ward’s distance (Supplementary Fig.
S1), resulting in four final clusters in our studies. Field variables within each
final cluster were then averaged to provide composite synoptic patterns or
storm environments. The main advantage of hierarchical clustering over
other methods, such as SOM66,67 or K-means clustering68, is that it does not
require the users to prespecify the size of output clusters.

Environmental parameters
The Significant tornado parameter (STP) is a composite of several envir-
onmental parameters44,45,69. The formulation was based on mixed-layer-
based parcels:

STP ¼ MLCAPE
1500 J kg�1 × 2000�MLLCL

1000m × 200þMLCIN
150 J kg�1

× SRH01
150m2 s�2 × BWD06

20m s�1

ð1Þ

using mixed-layer-based convective available potential energy (MLCAPE),
mixed-layer-based lifting condensation level (MLLCL), 0–1 km storm-
relative helicity (SRH01), 0–6 km bulk wind difference (BWD06).
MLCAPE, MLCIN, and SRH01 were calculated based on retrieved
soundings from MERRA-2 with their original definitions. For example,
MLCAPE was derived from the vertical integration of buoyancy based on a
mixed-layer lifted parcel from the level of free convection (LFC) to the
equilibrium level after virtual temperature correction. MLCIN was
calculated from the integration of negative buoyancy below the LFC, and
0–1 km SRH was obtained through the integration of storm-relative

streamwise vorticity within that height range. We used the XCAPE Python
package70, which had been used in many previous studies18,23,31,71,72, to
perform those calculations with their default settings, including the
specification of the lowest 500 m as the mixed layer. The mixed-layer lifted
parcel has been suggested to be more representative of the actual parcel
contributing to the convective cloudwhencomputing these thermodynamic
parameters73. Following the approach of refs. 44,45 in STP calculation, the
MLLCL term was set to 1.0 for MLLCL <1000m and set to 0.0 for MLLCL
>2000m; theMLCIN termwas set to 1.0 forMLCIN >−50 J kg−1, and set to
0.0 for MLCIN <−200 J kg−1; the BWD06 term was set to 1.5 for
BWD06 > 30m s−1, and set to 0.0 when BWD06 < 12.5 m s−1.

The integrated water vapor transport (IVT) was calculated based on
the equation74,75:

IVT ¼ � 1
g

Z 200

1000
qðpÞjVhðpÞjdp ð2Þ

where q denotes specific humidity (kg kg−1) in pressure levels, Vh = [u, v]
denotes the horizontal wind vector (m s−1), and p denotes pressure levels.

Trends
We performed the Theil-Sen estimator76,77 to detect the interannual linear
trends of tornado reports. This method chooses the median of the slopes of
all lines through pairs of input points and, hence, is insensitive to outliers
and efficient in computation. Therefore, omitting any year of data, such as
the super tornadooutbreak inApril 2011,hasminimal impact on the results.
Kendall’s τ statistic78 and a p value of 0.05 was used to examine the sig-
nificance of the Theil-Sen slope. Both Theil-Sen Slope and p values were
calculated at each grid point on the annual sum of reports.

Data Availability
The tornado reports were retrieved from the SPC's online database (https://
www.spc.noaa.gov/wcm/#data) for the period of 1980–2022. The surface
and pressure-level MERRA-2 reanalysis data during the same period were
downloaded fromhttps://disc.gsfc.nasa.gov/datasets/M2I1NXASM_5.12.4/
summary and https://disc.gsfc.nasa.gov/datasets/M2I3NPASM_5.12.4/
summary. ERA5 reanalysis data are available at https://cds.climate.
copernicus.eu/datasets/reanalysis-era5-pressure-levels.

Code availability
Scipy package was used to perform hierarchical clustering analysis https://
docs.scipy.org/doc//scipy-1.2.3/reference/cluster.hierarchy.html and Theil-
Sen estimator https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.theilslopes.html. The storm environmental parameters were com-
puted based on XCAPE Python package https://doi.org/10.5281/zenodo.
5270332. Sklearn package was used to perform K-Mean https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html and Self-
organization Map https://sklearn-som.readthedocs.io/en/latest/ clustering
analysis in Supplementary materials. All scripts are available upon request.
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