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Increased longitudinal separation of
equatorial rainfall responses to Eastern
Pacific and Central Pacific El Nifio under

global warming
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El Nifio induced equatorial precipitation centers shift to different longitudinal positions during Eastern
Pacific (EP) and Central Pacific (CP) El Nifio events, resulting in distinct global climate responses.
However, it remains unexplored how EP and CP El Nifio forced precipitation changes may differ under
global warming. Here, we find that the longitudinal separation of precipitation centers in EP and CP El
Nifio events is projected to increase under global warming. Specifically, the precipitation anomalies
during EP ElI Nifo events will shift further eastward, while those during CP El Nifio will intensify in their
original positions. This change is attributed to the amplified equatorial thermocline feedback as the
mean thermocline shoals. A more meridionally confined El Nifio structure under global warming
generates extra boundary layer moisture convergence in situ. This intensifies the precipitation
anomalies in CP El Nifio but shifts the precipitation center eastward towards the maximum sea surface
temperature anomaly center in EP El Nifio. The projected increased longitudinal separation of
precipitation centers suggests that the differences in global climate impacts between EP and CP El

Nifio events will intensify under global warming.

The El Nifio-Southern Oscillation (ENSO), the strongest air-sea interaction
mode of the climate system'™, leads to year-to-year climate anomalies all
around the world. It affects many aspects of human activities and natural
systems, such as water resources, fishing, agriculture, finance, coastal ero-
sion, land and marine ecosystems™™"". These global climate impacts of
ENSO are forced mainly through anomalous tropical convective heating
and its excited atmospheric teleconnections®*''™'°,

ENSO-related teleconnections and global climate variations are com-
plicated by a diversity of ENSO spatial patterns'*'"~**. Two typical types of El
Nifio, eastern Pacific (EP) and central Pacific (CP) El Nifio, named after the
central positions of their sea surface temperature (SST) anomalies, drive
tropical precipitation and its associated convective heating anomalies with
remarkable longitudinal shifts. Correspondingly, the anomalous Walker

Circulation and the Pacific-North American (PNA) teleconnection pattern
associated with CP El Nifto are shifted westward relative to those associated
with EP El Nifio"*"""***** As a result, different climate impacts of two
types of El Nifio are also observed in Asia and Australian monsoon
domain'*”, North America®*”, South America'*"* and polar region™”".
ENSO is projected to undergo significant changes under global
warming according to state-of-the-art coupled climate system models™ .
Most climate models project an El Nifo-like warming pattern in the
background mean state of tropical Pacific, while observational records show
a La Nifia-like mean state change over the past century. Uncertainty in the
change in the background mean state introduces additional complexity and
uncertainty in ENSO projections*"***°. Compared with large uncertainties
in the variation of ENSO intensity influenced by internal variability and
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external forcing’>”*, ENSO-driven precipitation anomalies over the
equatorial Pacific are projected to shift eastward under global warming with
high inter-model consensus*. This is associated with El Nifio-like
warming of the mean-state SST™**, changes in ENSO-driven vertical
motion anomalies®™* ™, and meridional narrowing of ENSO SST
anomalies. The robust change in tropical convective heating anomalies
further causes the anomalous Walker Circulation and PNA teleconnection
pattern to shift eastward'>'******>. However, whether changes in the EP and
CP El Nifo-driven precipitation anomalies differ under global warming
remains unexplored. In this study, we show evidence that the eastward shift
of ENSO precipitation anomalies is present mainly in EP El Nifio and is not
visible in CP El Nifio, which leads to greater differences in their global
climate impacts under global warming.

Results

Increased longitudinal separation in precipitation anomalies
The maximum of positive precipitation anomalies over the equatorial
Pacific, driven by EP El Nifo, is located to the east of that driven by CP El
Nifio by about 16 longitudinal degrees in the multi-model ensemble
mean of historical simulations from the sixth phase of the Coupled
Model Intercomparison Project (CMIP6) (Fig. la, d, Methods), con-
sistent with that in observations™. Under the shared socioeconomic
pathway 5-8.5 scenario (hereafter SSP585, used here to identify the
signal clearly), the distance in longitudinal positions is projected to
increase by about 15 degrees longitudes, widening to 27 degrees (Fig.
1b, e, Supplementary Fig. 1 and Supplementary Table 2). The increased
difference in the longitudinal positions of the precipitation maxima is
mainly due to the significant eastward shift of EP El Nifo-driven pre-
cipitation anomalies, as confirmed by a two-tailed Student’s t-test at the
5% significance level. While the CP El Nifio-driven precipitation max-
imum undergoes virtually no change, exhibiting only an insignificant
slight westward shift. The increased longitudinal separation in the
precipitation anomalies is reproduced by 13 of 15 models, with only two
models (CanESM5 and GFDL-CM4) showing an opposite, decreased
separation feature (Supplementary Fig. 1a). The increased separation in
the longitudinal positions is robust and not dependent on the definition
of the center of precipitation anomalies (Fig. 1g, h and Supplementary
Fig. 1). For example, the distance between the centroids of the pre-
cipitation anomalies (defined as the longitude-weighted integral of
positive precipitation anomalies) associated with CP and EP El Nifio is
projected to increase from 28 degrees to 41 degrees in the ensemble-
mean simulations (Supplementary Fig. 1b).

In contrast to the increased differences in the longitudinal positions of
the precipitation anomalies between EP and CP El Nifio events, the central
positions of SST anomalies are projected to remain almost unchanged (Fig.
la, b, d, e and Supplementary Fig. 2). For both types of El Nifo, positive
precipitation anomalies are located west of the main body of warm SST
anomalies in present-day and future conditions. This is due to the nonlinear
responses of tropical convection to underlying SST******* and the westward
shift of SST-gradient-driven boundary-layer convergence anomalies relative
to SST anomalies themselves™. In contrast, under global warming, the
changes in positive precipitation anomalies for EP and CP El Nifio are pro-
jected to appear over the equatorial eastern and central Pacific, close to where
the variations of El Nifio-related SST anomalies (ASST") occur (Fig. 1c, f).

Mechanisms for variations in precipitation anomalies

To understand the change in ENSO-driven precipitation anomalies, we
performed a moisture budget analysis (Methods). This reveals that the
change in precipitation anomalies is dominated by the Varlatlons in
anomalous convergence of mean-state moisture (A(—gV, - & ", Supple-
mentary Fig. 3a, d), while variations in evaporation and moisture advection
are negligible (figure not shown). Further, the variation of anomalous
convergence of mean-state moisture is pr1mar11y caused by the variation of
anomalous mass convergence (—gA(V,, - 1 )) for both EP and CP El Nifio
(Supplementary Fig. 3b, e). As a comparison, the contribution of the

increased mean moisture ((—AgV,, - 2y is mainly located in the equa-
torial western-central Pacific for both types of El Nifio, outside the main
body of the changes in precipitation anomalies (Supplementary Fig. 3¢, f).
Therefore, the focus is narrowed to physical processes responsible for var-
iations in El Nino-related boundary-layer convergence anomalies under
global warming.

The boundary-layer convergence anomalies are connected to El Nifio-
related SST anomalies through the Lindzen-Nigam mechanism®**. In the
tropics, SST anomalies constrain temperature anomalies in the cumulus
boundary layer through cumulus convection and turbulence, which cause
boundary-layer pressure gradients and frictional boundary-layer con-
vergence to vary with the underlying SST gradient, rather than the absolute
value of SST. It is shown that the zonal distribution of the change in pre-
cipitation anomalies (APr’) over the equatorial Pacific closely resembles
variation in the second-order meridional derivative of SST anomalies
(— %(ASST/ )) for both EP and CP El Nifio (Fig. 2a, b) in the ensemble
mean. The resemblance is more pronounced than with ASST” itself, parti-
cularly for the EP El Nifio (Fig. 1c and Fig. 2a), suggesting the significant
influence of the meridional structure of SST anomalies on the overlaying
precipitation anomalies through the Lindzen-Nigam mechanlsm

The crucial role of the longitudinal position of — a 2 (ASST’) in deter-
mining the longitudinal position of the change in prec1p1tat10n anomalies is
confirmed in individual models as well as in the ensemble mean (Fig. 2c, d).
For EP and CP El Nifio, AP’ over the equatorial eastern and central Pacific
simulated by individual models is significantly correlated with — ayz " (ASST')
in situ, with their correlation coefficient reaching 0.81 and 0.62 respectively
(Fig. 2¢, d). Most models fall into the first quadrant of the scatter plots for
both EP and CP El Nifio, that is, positiv ——(ASST) corresponds to
positive APr’, with only 2 exceptions for both types of El Nifio, respectively.
As a comparison, the correspondences between the APr’ and ASST” have
larger uncertainties within the model ensemble. For EP El Niflo, positive
APr" corresponds to underlying negative ASST’ in five models (second
quadrant, Supplementary Fig. 4a). For CP El Nifio, the correlation between
APr’ and ASST" is only 0.38, which does not reach the 5% significance level
based on a bootstrap test (Supplementary Fig. 4b)

The difference in the zonal distribution of — a = ( ASST") between EP El
Nifio and CP El Nifio causes their different variations in longitudinal
positions of the precipitation centers under global warming. As seen from
Fig. Ic, an opposite sign of ASST” is evident around the date line, where just
the location of EP El Niflo precipitation center in the historical runs. Thus,
the second-order meridional derivative of SST anomalies must also have
such a zonal contrast (Fig. 2a). This leads to a significant eastward shift of the
center of the boundary layer convergence and thus the precipitation center.
In contrast, for CP El Nifio, the zonal variations of SST anomalies and the
second-order meridional derivative of SST anomalies around the pre-
cipitation center (160°E) are much weaker and without a sign change (Figs.
1c and 2b). Consequently, insignificant zonal shifts occur in the anomalous
boundary layer convergence and precipitation centers during CP El Nifio
under global warmin

The positive — a 2 (ASST’) is caused by the change in the meridional
structure of El Nifio SST anomalies under global warming. The zonally
averaged EP and CP El Nifio-related SST anomalies over the equatorial
eastern and central Pacific respectively show a hill-like structure with its
peak on the equator in the historical runs (Fig. 3a). In the
SSP585 simulations, the hill-like structure becomes much steeper for both
EP and CP El Nifo, corresponding to positive — a 2 (ASST') (Fig. 3b).

To further investigate what causes the equatorlal enhancement of El
Nifio-related SST anomalies under global warming, we diagnose the mixed
layer heat budget over the equatorial central and eastern Pacific for the
developing phase of CP El Nifo and EP El Nifio events from May to August,
respectively (Methods). From the longitudinal averaging perspective, the
change in anomalous SST tendencies in the SSP585 experiments at the
equator is larger than those on either side for both CP and EP El Nifio
(Supplementary Fig. 5¢, f and Supplementary Fig. 6a), and this is responsible
for the steepening of the equatorial SST anomalies during El Nifio mature
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winter (Fig. 3a, b). Comparing all terms on the right-hand side of the mixed
layer temperature equation, the equatorial reinforcement of El Nifio-related
SST anomalies is dominated by variation in the vertical advection of
anomalous oceanic temperature by mean vertical motion (A(—w0,T")),
which shows a hill-like structure confined to a very narrow band along the
equator (Supplementary Fig. 6).

90E 120E  150E 180 150W 120w 90W

The —wd, T’ term is associated with thermocline feedback, responsible
for the growth of El Nino-related SST anomalies. In present-day events, the
climatological equatorial upwelling current transports anomalous warm
water, generated by the deepening of the thermocline, to the surface. Then
the climatological poleward horizontal currents transport the anomalous
warm water poleward, which is represented by the —vd, T’ term and
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Fig. 1 | Simulated changes in SST and precipitation anomalies during the EP and
CP El Nifio mature winter under global warming. a Multi-model ensemble mean
of precipitation anomalies (upper panel, units: mm day ') and zonal distribution of
meridionally averaged precipitation and SST anomalies (lower panel, units: °C) over
4°S-4°N (lower panel, thick dark green and red lines, respectively) during EP El Nifio
for the historical runs. The light shading indicates the spread corresponding to the
25th to 75th percentiles. The thick light green lines denote the area where pre-
cipitation anomalies are greater than 1.0 mm day . The green and red triangle
denotes the longitude of the maximum positive precipitation and SST anomalies

over the equatorial Pacific (4°S-4°N), respectively. Black bars along the longitudinal
axis are the ranges of one standard deviation among models. b As in (a), but for the
SSP585 runs. ¢ Differences between (a) and (b). The thick light green line in

c denotes the area where the change in precipitation anomalies is greater than

0.3 mm day . d—f As in (a—c), but for CP El Nifo. Two-tailed Student’s ¢-test is
conducted for the change in precipitation anomalies between SSP585 and historical
runs. Values reaching 95% confidence level are dotted in white. g, h Histograms
(bars) and fitted distribution of the probability distribution of the position of the
maximum positive precipitation anomalies during EP and CP El Nifo, respectively.
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Fig. 2 | Simulated changes in El Nifio-driven precipitation anomalies under
global warming and relationships with changes in the meridional distributions
of underlying SST anomalies. a Zonal distribution of multi-model ensemble mean
of changes in precipitation anomalies (units: mm day ', green line) and convergence
of the meridional gradient of SST anomalies (— aa—zz (ASST’), units: 107" °C m~?, red
line) meridionally averaged over 4°S-4°N for EP El Nifio. The light red shading
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indicates the spread of — %(ASST/ ) corresponding to the 25" to 75™ percentiles.
b As in (a), but for CP El Nifo. ¢ Scatter diagram for — % (ASST') (abscissa axis) vs.
changes in precipitation anomalies (ordinate axis) averaged over 4°S-4°N, 175°W-

135°W for EP El Nifo. The correlation coefficient is shown in the upper right corner.
d As in (c), but averaged over 4°S-4°N, 165°E-155°W for CP El Niio.

determines the meridional width of El Nifio™”. Considering that time
tendencies of equatorial and off-equatorial SST anomalies are dominated by
the —wd,T" and —v0, T" terms, respectively, their ratios should determine
the relative growth rate of the equatorial and off-equatorial El Nifio SST
anomalies. Under global warming, the —d, T’ term is intensified by 160%
and 65% for EP El Nifio (averaged over 2°S-2°N, 150°W-90°W) and CP El
Nifio (averaged over 2°S-2°N, 180°E-120°W), respectively (Fig. 3¢, d). In
contrast, the variations in the —vay T’ term are much weaker. The double
peaks of —¥9, T" on the south and north of the equator are intensified by
81% and 17% for EP El Nifio and 33% and 40% for CP El Nifio, respectively
(Supplementary Fig. 7) (the value marked with * in the upper right corner
indicates reaching a 5% significance level determined by a two-tailed Stu-
dent’s t-test). The more intensified —wd,T" term than the —vd,T" term
causes the meridional steepening of both types of El Nio.

The change in the thermocline feedback under global warming is
dominated by its component associated with the variation in the vertical
gradient of temperature anomalies for both EP and CP El Nifio. The

variation of the El Nifio-related subsurface temperature anomalies is asso-
ciated with the variation in the climatological thermocline in the equatorial
central-eastern Pacific. The depth of the climatological thermocline in the
multi-mode] ensemble mean is reduced by 15% (from 74m to 63 m),
averaged over 2°S-2°N, 150°W-90°W (Fig. 3e). Meanwhile, the vertical
temperature gradient at the depth of the climatological thermocline is
strengthened by 17%" (from -0.172 °C m™ to -0.201 °C m™') (Methods). The
variations in the climatological thermocline amplify subsurface temperature
responses to the surface wind stress anomalies, thus creating stronger
thermocline feedback. It is worth noting that the variations in the clima-
tological thermocline are robust for all 14 models with ocean subsurface data
available.

Implications for global climate impacts of El Nifo

Above we have demonstrated the increased difference in the longitudinal
positions of equatorial precipitation anomalies between CP El Nifio and EP
El Nifio under global warming. This further leads to greater differences in
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Fig. 3 | Meridional distributions

of EP and CP El Nifio SST anomalies during the

El Nifio mature winter and associated thermocline feedback during the El Nifio
developing phase simulated by the historical and SSP585 runs. a, b Meridional
distributions of zonally averaged EP (CP) El Nifio SST anomalies (units: °C) over
150°W-90°W (180°E-120°W) during boreal winter for the historical and SSP585

runs, respectively. The thick blue
mean of the historical and SSP585

and red lines denote the multi-model ensemble
runs, respectively. The light blue and red shading

denotes member spread corresponding to the 25th to 75th percentiles from the
historical and SSP585 runs, respectively. ¢, d As in (a, b), but for vertical advection of
anomalous temperature by mean vertical motion (—wd, T’, units: °C month™")
during the El Nifio developing phase from May to August. e Climatological ther-
mocline depth (units: m) averaged over 2°S-2°N for the historical (blue line) and
SSP585 (red line) runs, respectively.
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Fig. 4 | Land surface temperature (units: °C) and precipitation anomalies (units:
mm day ') during the EP and CP El Nifio mature winter simulated by the
historical and SSP585 runs, respectively. a Multi-model ensemble mean of surface
temperature anomalies (units: °C) during EP El Nifo for the historical runs.

Shadings are shown only when 80% of models agree on the sign of the multi-model
ensemble mean. b As in (a), but for the SSP585 runs. ¢, d As in (a, b), but for CP El

Nifo. e-h As in (a-d), but for precipitation anomalies.
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global climate response to the two types of El Nifo. The root-mean-square
difference (RMSD) for both land surface temperature and precipitation
anomalies in boreal winter between EP and CP El Nifo increases by around
20% (Methods). The temperature and precipitation anomalies associated
with the EP El Nifo have significant changes in spatial distributions under
global warming, especially in the Northern Hemisphere™. In contrast, those
associated with the CP El Nifio have virtually no changes in their spatial
patterns, though the magnitudes increase in some regions (Fig. 4).

The increased differences in global precipitation and temperature
anomalies between CP and EP El Nifio are associated with their distinctive
variations in equatorial heating-induced atmospheric teleconnections. For
the tropical zonal atmospheric overturning cell, the zonal phase shifts of the
anomalous Walker Circulation between CP and EP El Nifio increase by
about 30% and 47% for the centers of the ascending and descending
branches, respectively, mainly due to the variations in EP El Nifio
(Fig. 5a, b).

For the tropical-extratropical atmospheric bridge, the PNA tele-
connection associated with EP El Nifo simulated by the SSP585 runs shows
an obvious eastward shift for all three nodes along the great circle propa-
gation path relative to those simulated by the historical runs™ (Fig. 5¢). In
contrast, the PNA teleconnection associated with CP EI Nifio mainly shows
strengthening in situ (Fig. 5d). As a result, the teleconnection pattern shows
a more pronounced zonal shift between CP and EP El Nifio under global
warming.

Furthermore, the difference in the decay rates between EP and CP El
Nifio is amplified. The eastward shift of anomalous Walker Circulation
associated with the EP El Nifo intensifies the western North Pacific
anomalous anticyclone (WNPAC)*. The equatorial easterly anomalies to
the southern flank of the WNPAC are intensified (Supplementary Fig. 8a),
which tends to drive stronger upwelling equatorial oceanic Kelvin waves and
thus accelerates the decay rate of EP El Nifio after boreal winter’"”* (Sup-
plementary Fig. 8c). In contrast, the decay rate of CP El Nifo changes less
under global warming because the longitudinal position of the anomalous
Walker Circulation nearly remains unchanged (Fig. 5b and Supplementary
Fig. 8b, d).

Equatorial precipitation anomalies in CP and EP El Nifio are projected
to undergo different changes under global warming. The eastward shift of
ENSO-driven precipitation anomalies noted in previous studies™* > is
only evident in EP El Nifo. In contrast, the equatorial precipitation
anomalies in CP EI Nifio primarily show in situ enhancement, which causes
increased longitudinal separation of precipitation centers between EP and
CP El Nino. The different variations are attributed to the intensification of
the Lindzen-Nigam mechanism in both CP and EP El Nifo, which enhances
the equatorial precipitation anomalies close to their respective anomalous
SST centers (Fig. 6). Compared with the large uncertainty of the variations in
ENSO amplitude™**""*%, the steepening of the meridional gradient of SST
anomalies is simulated by 13 of the 15 CMIP6 models for both types of El
Nino, due to high consensus in the shallowing and strengthening of the
climatological equatorial thermocline (Fig. 2c, d and Fig. 3e), suggesting that
the amplification of differences in global climate impacts between EP and
CP El Nino would be a robust variation under global warming.

Discussion
The eastward shift of the equatorial precipitation anomalies projected by
CMIP models is one of the most pronounced variations of El Nifio under
global warming™*"*~*, which would cause variations in the climate impacts
of EI Nifio'>"**"***, In this study, we demonstrated that the eastward shift of
equatorial precipitation anomalies would only occur in EP El Nifio but not
in CP El Nifo (Fig. 1). Considering the inherent westward shift of the
precipitation anomalies in CP El Nifio relative to those in EP El Nifio, their
distinct responses to global warming would cause the further increase in
their separation in longitude (Fig. 1 and Supplementary Fig. 1).

Positive equatorial precipitation anomalies are located to the west of
warm SST anomalies of El Nifo due to the nonlinear responses of deep
convections to underlying SST, that is, deep convection can only be
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Fig. 5 | Anomalous Walker Circulation and Pacific-North American tele-
connection pattern associated with EP and CP El Niiio events simulated by the
historical and SSP585 runs, respectively. a Multi-model ensemble means 200 hPa
velocity potential anomalies (units: 10° m*s™) during EP El Nifio mature winter from
the historical (contours) and SSP585 (shading) runs, respectively. b As in (a), but for
CP El Nifo. ¢, d As in (a, b), but for 200 hPa geopotential height anomalies
(units: m). Black dots and green crosses denote the centers of the contours and
shading, respectively. Two-tailed Student’s ¢-test is conducted for the difference
between SSP585 and historical runs. Values reaching 95% confidence level are dotted
in white.
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Fig. 6 | Schematic diagram illustrating the increased difference in the long-
itudinal positions of equatorial precipitation anomalies between EP and CP El
Nifo under global warming. a, b EP El Nifio in historical and SSP585 runs, ¢, d As
in (a, b), but for CP El Nifio. The green cloud-like shading represents El Nifio-
induced precipitation anomalies, while the red shading indicates SST anomalies. A
deepening of the colors signifies an intensification of these anomalies. The thick
black line represents the thermocline. Three arrows illustrate the shallowing of the
thermocline, the intensification of El Nifio-induced boundary convergence
anomalies, and the eastward shift of EP El Nifio-induced precipitation anomalies.

generated above threshold sea temperature of about 27 °C and thus is hard
to be generated in far eastern Pacific even when El Nifio occurs™*'. However,
the variations of the El Nino-related equatorial precipitation anomalies
under global warming closely match the locations of the variation of El Nifio
SST anomalies. Moisture budget analysis indicates that the variations in the
equatorial precipitation anomalies are dominated by extra boundary-layer
moisture convergence anomalies rather than variations in deep convections
under a warming background.

The extra boundary-layer moisture convergence is driven by the mer-
idional steeping of underlying SST anomalies for both types of El Nifio
through the Lindzen-Nigam mechanism. The meridional width of El Nifo is
determined by both the amount of anomalous warm water carried by mean
upwelling along the equator (—wd,T’ associated with the thermocline
feedback) and the efficiency of the anomalous warm water transported off the
equator by the mean tropical-subtropical overturning cell (—v9, T")**"". We
find that under global warming, the first process is remarkably intensified
because of the shallowing of the mean thermocline depth, while the second
process during El Nifo developing phases changes moderately. The mer-
idional steeping of El Nifio shows higher inter-model consensus than the
variations in El Nifio SST anomalies themselves (Fig. 2c, d and Supplemen-
tary Fig. 4). Though the development of El Nifio is dominated by thermocline
feedback, the variations of its amplitude under global warming are still
controversial because of the complicated amplifying and damping feedbacks
involved™****7*%*% Moreover, the uncertainty in the variations in pre-
cipitation anomalies may also be partly due to internal variability, as indicated
by ensemble members of a single model (Supplementary Fig. 9).

The increase in longitudinal separation of the equatorial precipitation
anomalies between the two types of El Nifio would amplify the differences in
their global climate impacts under global warming, as shown in CMIP6
model projections (Fig.4). It suggests that it is more necessary to distinguish
the CP and EP El Nifo in seasonal climate predictions for the warming
world***, Additionally, it is worth noting that how the variations occur for
specific regional climates deserves further investigation because of model
biases in simulating El Nifio climate impacts"'.

Methods

Models and experiments

Model results from fifteen CMIP6 models are used in this study (Supple-
mentary Table 1). We use only one experiment (the r1ilp1f1 run) from each

model to ensure that they can be treated equally in the analysis™***. His-
torical simulations for 1931-2000 and projection simulations for 2021-2090
based on the shared socioeconomic pathway 5-8.5 scenario (SSP585) are
analyzed. The horizontal resolutions of all atmospheric and oceanic vari-
ables are interpolated to 1°x1°. In our initial analysis, nineteen models were
used. However, certain models (EC-Earth3, INM-CM4-8, INM-CM5-0 and
IPSL-CM6A-LR) were excluded from the analysis due to discrepancies in
their El Nifio-related precipitation anomalies compared to observations
(Supplementary Fig. 10).

El Nino-related variability

First, we derived monthly anomalies by removing the climatological annual
cycle and then applied a quadratic detrending. Second, an Empirical
Orthogonal Function (EOF) analysis is applied to December(0)-January-
February(1)-mean SST anomalies in the equatorial Pacific (15°S-15°N,
140°E-80°W) for the observations (from the HadISST1 dataset’) and
individual model simulations to calculate EP and CP El Nino indices. For
the observations, EP and CP Fl Nifio indices are defined as linear combi-
nations of the principal component (PC) time series of the first two EOF
modes ((PC1-PC2)/+/2 and (PC1 + PC2)/+/2)***?. For each model simu-
lation, an EOF mode with a higher pattern correlation with EOF2 in the
observations is selected first from EOF2 and EOF3. Then the same linear
combination is conducted to the PC of this mode and PC1. Third, El Nifio-
related variability is obtained by regressing the detrended monthly
anomalies onto EP and CP El Nifo indices for the historical and SSP585
runs, respectively. Specifically, the application of high-pass filtering to the
detrended fields does not significantly affect the main results.

Moisture budget analysis
Neglecting the time tendency term, the linearized anomalous moisture
equation can be written as”

P () + (T + (T (a0, )
- é@sqi - éw;qs +NL
1)

where the prime indicates the detrended monthly anomalies, the bar indi-
cates the climatological mean state, the angle brackets indicate a mass
integral from the surface to 100 hPa, Pis precipitation, E is evaporation, U is
horizontal wind, g is specific humidity, w is vertical p velocity, the subscript s
denotes variability on the surface, g is the acceleration of gravity, p is the
density of water, and NL denotes the sum of all nonlinear and
transient terms.

Neglecting the w,-related terms, differences in the moisture equation
between SSP585 and the historical runs can be written as

AP = AE + A<—??hq’> +A(=T'V,2) + A(~qV, - ) o
+A<—21Vh T > +NL

Changes in the moisture convergence terms can be decomposed into
two linear components, for example, the change in the vertically integrated
convergence of climatological moisture by anomalous mass convergence
(A(—gV,, - _u>/)) can be decomposed as

AM=qVy - ) = (=AgV, - &)+ (=gA(V, - ) )

The two terms on the right-hand side are associated with the change in
mean moisture ((—AgV, - 74')) and anomalous mass convergence
(—gqA(vy, - _u)/))), respectively. Each term in Eq. (2) is calculated by using
monthly dataset.
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Mixed layer heat budget analysis
The mixed layer temperature equation is written as

0, = —ud,T—ud, T — o, T — v’ayT =99, T" —vo,T'

/N T — ’ , ’ Q (4)
w9, T —wd, T —wo,T' + =4 +R
PS

where T is the oceanic temperature, u, v, and w are three-dimensional
oceanic currents, Q,,,, is the oceanic net surface heat flux, p is the density
of water (1.025x10°kg m™), ¢, is the specific heat of water (3850 ] kg ' K™),
H denotes a constant mixed layer depth of 50m™, and R denotes the
residual term. Each term is calculated using monthly data and then
performed vertical averaging from the surface to the mixed layer depth
(50 m). Changes in the mixed layer heat budget between SSP585 and
historical runs are diagnosed. Changes in all advection terms are
decomposed into two linear components, as was done for the moisture
budget equation.

Thermocline depth and strength

The thermocline depth in the equatorial Pacific is defined as the depth of the
extremes of the vertical gradient of monthly oceanic temperature (9, T) in
the upper 200 m. Then 9, T at this depth is defined as the thermocline
strength®. The thermocline depth and strength are respectively diagnosed
for each model, except for the GFDL-ESM4 model, which does not offer
oceanic variables on the CMIP6 ESGF node.

The root-mean-square difference between EP and CP El Nifo
The difference in land surface temperature (precipitation) anomalies asso-
ciated with the two types of El Nifo is measured by their root-mean-square

difference (RMSD)
RMSD = IZ w;(xEP — x,-cp)2 (5)
iel

where xF and xFF are land surface temperature or precipitation anomalies
associated with CP and EP El Niflo, respectively; i € L represents model
grids on land; w, is area weight that varies with latitude.

Statistical significance test

Student’s t-test was used to assess the significance of differences in ensemble
means between the historical and SSP585 simulations. The bootstrap test
was applied to examine the statistical significance of the correlation
coefficients.

Data availability

The CMIP6 model outputs are available from https://esgf-node.llnl.gov/
projects/cmip6/. The monthly SST dataset from HadISST v1.1 used in this
study is available from https://www.metoffice.gov.uk/hadobs/hadisst/. The
GPCP dataset is available at https://psl.noaa.gov/data/gridded/data.
gpcp.html.
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