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ENSO’s impact on linear and nonlinear
predictability of Antarctic sea ice
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While the influence of ENSO on Antarctic sea ice variability is well-known, its role in sea ice
predictability, both linear and nonlinear, remains unexplored. This study utilizes deep learning models
to quantify ENSO’s impact on Antarctic sea ice predictability. We find that ENSO events exert cross-
timescale influences on sea ice’s subseasonal linear and nonlinear predictability.Within a 3-week lead
time, ice persistence is the primary source of predictability. Beyond this period, ENSO becomes a key
source of Antarctic sea ice predictability, with El Niño enhancing ice linear predictability more than La
Niña. Specifically, El Niño improves ice linear predictability by 25.6%, 19.6%, and 30.4% in the A-B
Sea, Ross Sea, and Indian Ocean, respectively, at an 8-week lead time. La Niña mainly enhances ice
nonlinear predictability, particularly in the Ross Sea. We demonstrate that ENSO provides additional
sources for Antarctic sea ice predictability primarily through generatingmore extensive ice anomalies.
These insights deepen our understanding of sea ice predictability and are crucial for advancing
forecasting models.

Despite a gradual increase spanningover threedecades1, with the September
Antarctic sea ice extent (SIE) reaching a record high in 20142, there was a
shift to a dramatic decline in 2015/20163–5. By the summer of 2023, the
monthly SIEplummeted to ahistorical lowof 1.91million square kilometers
according to SIE index data from National Snow and Ice Data Center
(NSIDC)6. This dramatic shift, coupled with large year-to-year variability
observed since the mid-1990s6, underscores the heightened state of varia-
bility in the atmosphere-ocean-sea ice system in the Antarctic2,7. Accurate
sea ice predictions are essential, given the increasing polar activities related
to navigation, planning, and rescue operations. Consequently, improving
our understanding of Antarctic sea ice predictability is an urgent and timely
scientific challenge.

Potential sea ice predictability, a key concept in our study, refers to the
theoretical maximumpredictive skill of a sea ice forecast system under ideal
conditions8. This concept assumes a model that perfectly represents reality
and nearly perfect knowledge of the initial state of the atmosphere-sea ice-
ocean system. However, not all sea ice variability is predictable, and no
forecast models can capture all predictable variance. In our study, sea ice
predictability refers to the actual predictive skill of a sea ice forecast system
under real-world conditions. It is influenced by many factors, which can be
broadly categorized into internal variability, external forcings, and obser-
vational and modeling constraints. Additionally, sea ice predictability
encompasses linear and nonlinear aspects, which have not been explicitly
evaluated due to the limitations of traditional statistical and dynamic

models. Consequently, this area remains a subject of ambiguity. Linear
processes are characterized by straightforward cause-and-effect relation-
ships, where changes in one variable lead to proportional changes in sea ice,
such as ice growth in fall driven by surface heat loss. On the other hand,
nonlinear processes involve complex interactions and feedback loops, such
as ice growth triggered by heat loss, which initiates entrainment at the base
of the mixed layer, bringing heat stored in the thermocline into the mixed
layer and leading to ice melt.

El Niño-Southern Oscillation (ENSO), renowned as the most sub-
stantial interannual variability signal on Earth, exerts a pronounced remote
influence on the Antarctic climate system through atmospheric
teleconnection9,10, changing various components of surface climate,
including the atmosphere, ocean, sea ice, and glacial ice11–14. The tele-
connection between ENSO and Antarctic sea ice anomalies is well
documented12,15–17. During thewarmphase of ENSO, sea ice shows negative
anomalies in the Amundsen Sea and positive anomalies in theWeddell Sea,
and vice versa17. ENSO events can influenceAntarctic regional atmospheric
circulation through two main mechanisms: triggering a southeastward-
propagatingRossbywave train andaltering themeanmeridional circulation
of the Hadley Cell and Ferrel Cell17,18. These two processes work in phases,
significantly increasing sea ice variability in the West Antarctic. The inter-
annual ENSO variability, with its warm and cold phases, can be regarded as
different background mean climate states for sea ice variability at a sub-
seasonal timescale. Therefore, we can use ENSO events to assess the mean
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state’s impact on sea ice subseasonal predictability. This study aims to
answer the following scientific question: Can the influence of ENSO on
Antarctic sea ice variability provide additional sources of subseasonal sea ice
predictability?DoENSOevents affect sea ice predictability through linear or
nonlinear processes in the polar climate system?

A well-constructed model is the foundation for evaluating sea ice
predictability. Recent advances in Antarctic sea ice prediction have sig-
nificantly improved our understanding of sea ice predictability. For exam-
ple, Bushuk et al.19 evaluated seasonal prediction skills using three coupled
dynamical systems, FLOR, SPEAR_LO, and SPEAR_MED.Morioka et al.20

investigated the impact of sea-ice initialization on interannual climate
predictability over the Weddell Sea. Sea ice predictability is influenced by
local factors such as upper ocean heat content (OHC)19,21,22, upper ocean
vertical structure23, sea ice thickness (SIT)24,25, and decadal variability in
tropical Pacific sea surface temperature (SST)26,27, which has been docu-
mented. However, dynamicalmodels still face substantial limitations due to
insufficient observations and gaps in understanding key physical
mechanisms5,28,29. SIE forecasts within the Sea Ice PredictionNetwork South
(SIPN South) reveal a larger spread in dynamical models than observed
uncertainties and still need to be more accurate to guide field planning or
maritime route forecasting30,31. Similarly, the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) models still encounter difficulties in
capturing pre-2014 trends and displaying broad intermodel variability29,32,33.
Advanced statisticalmodels, such as linearMarkovmodels17,34, are designed
to capture co-variability in the atmosphere-ocean-sea ice system but face
limitations in representing nonlinear processes and spatiotemporal syn-
chronized evolution.

Nevertheless, deep learning models, characterized by their multi-
layered neural network structures, can learn and depict intricate nonlinear
relationships within the data. It opens up an alternative approach to pre-
dicting Antarctic sea ice, proving to significantly surpass the predictive
capabilities of theMarkovmodel and current state-of-art dynamicalmodels,
such as ECMWF,NCEP, andGFDL-SPEAR, at the subseasonal timescale35.
Additionally, it can separately evaluate sea ice’s linear and nonlinear pre-
dictability, assisting us to explore sources of sea ice predictability in more
profound steps. Here, we employ a deep learning model: sea ice prediction
network (SIPNet, see “Methods”) to identify the effects of different ENSO
phases onAntarctic sea ice’s subseasonal linear andnonlinear predictability.

Answers to these scientific questions can improve understanding of the
Antarctic coupled climate system, and are vital for advancing our ability to
predict Antarctic sea ice, aiding societal response to climate change
challenges.

Results
SIPNet skill from linear and nonlinear processes
Complicated atmosphere-ocean-sea ice interactive processes drive Ant-
arctic sea ice concentration (SIC) variability. SIPNet allows us to examine
these processes from a data-driven point of view without explicitly
describing individual physical processes. We first examine where SIPNet
exhibits significant skillmeasured by anomaly correlation coefficient (ACC)
at the subseasonal timescale as a function of regions. The Antarctic is
subdivided into five subregions based on NSIDC classifications (Supple-
mentary Fig. 2). Based on the deviationdegree between theACChistograms
(see “Methods”) of the SIPNet and the anomaly persistence, the results were
categorized into two groups: ACCdistribution for 1–3- and 4–6-week leads.
At 1–3-week leads, SIPNet model skill and anomaly persistence showed
relatively similardistributionswithACCpeaks close to 0.85 (Fig. 1a). SIPNet
demonstrates overall higherACCs. The twopeaks in theACChistogramsof
the persistence forecast are likely due to high-frequency variability in the
marginal ice zone, low-frequency variability in the inner ice zone, and the
zonal asymmetry of Antarctic sea ice variability. On the other hand, at 4–6-
week leads, the anomaly persistence ACCs significantly shifted to lower
values with distribution modes at 0.4 or less. In contrast, SIPNet’s mode
remains 0.6–0.8 (Fig. 1b), suggesting that the model progressively captures
more predictable variance beyond sea ice persistence with extended
lead times.

Then, we focus on the SIC predictions at 4–6 week lead times and
further isolate the sources of SIPNet’s skill. A linear SIPNet was developed
by deactivating all nonlinear activation functions in SIPNet. Consequently,
the nonlinear SIPNet skill can be calculated by subtracting the linear SIPNet
skill from the total SIPNet skill. To compare the spatial distribution of linear
and nonlinear model skill, we averaged those skill over 4–6 weeks lead
predictions. The overall pattern of linear SIPNet skill resembles anomaly
persistence skill but with slightly elevated values in the Weddell Gyre and
east of the Ross Sea (Fig. 2b, d). The higher skill of linear SIPNet is con-
centrated in outer ice pack regions and Antarctic Dipole (ADP) regions,

Fig. 1 | Distributions of model skill of SIPNet and
anomaly persistence with increasing lead time.
a Regional ACC histogram from SIPNet and
anomaly persistence at 1–3-week leads. b Same as (a)
but for 4–6 week leads. The Kolmogorov–Smirnov
(KS) test p values for comparing the ACC distribu-
tions of the SIPNet model and the anomaly persis-
tence across all Antarctic regions and two lead time
groups are all 0, indicating that theACCdistributions
between the two models are statistically significantly
different in each region, respectively.
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which refer to the Amundsen Sea andWeddell Sea14. In contrast, the higher
nonlinear skill is predominantly observed in inner ice pack regions of the
Weddell and Ross Gyres, mainly during summer and autumn (not shown).
In general, nonlinear processes provide an additional 0.1–0.4 skill to the
SIPNet linear skill at 4–6 week lead forecasts. Furthermore, we computed
the ratio of nonlinear skill to total SIPNet skill for 1–8 week lead forecasts
individually (Fig. 2e). The results show that this proportion rises with an
increase of lead time across all Antarctic regions, suggesting that nonlinear
processes growthprogressivelywithin the atmosphere-ocean-sea ice system.
Beyond the 6-week lead, the nonlinear skill emerges as the predominant
contributor to SIPNet skill.

Additionally, we applied another approach to calculate the nonlinear
SIPNet skill by computing the ACC between observations and nonlinear
SIC predictions, which are obtained by subtracting linear SIPNet SIC pre-
dictions from total SIPNet SIC predictions. The results of this method are
largely consistent with the above conclusions, despite some regional dif-
ferences (Supplementary Fig. 3). For instance, higher nonlinear skill is
predominantly observed in the inner ice pack regions of the Weddell and
Ross Gyres. Moreover, the proportion of this nonlinear SIPNet skill
increases with longer lead times across all Antarctic regions from both

methods. This demonstrates that our method of deriving nonlinear SIPNet
skill by subtracting the linear SIPNet skill from the total SIPNet skill is
effective. In the following sections, we will primarily adopt this approach.

Previous studies suggest that Antarctic sea ice is influenced by remote
climate signals, such as the Pacific Decadal Oscillation (PDO), Atlantic
Multidecadal Oscillation (AMO), Madden-Julian Oscillation (MJO), and
southern mid to high-latitude climate modes like the Southern Annular
Mode (SAM) and wave-3 pattern at different time scales12,36–40. Specifically,
the PDO and AMO represent decadal to multidecadal oscillations whose
impact on Antarctic sea ice does not exhibit significant differences across
different ENSO phases. The MJO, characterized as a tropical intraseasonal
oscillation with eastward movement41, exerts much less influence on Ant-
arctic sea ice than ENSO events, which significantly impact the sea ice
through the generation of a stationary Rossby wave. SAM, the principal
climate mode in the Southern Hemisphere, shows peak variability at the
subseasonal scale. Its impact on Antarctic sea ice varies with zonal sym-
metry: in a zonally symmetric state, it has weaker effects due to the lack of
strong meridional anomalies, while in a zonally asymmetric state, its
interactionwith ENSO leads to amore significant influence on sea ice in the
ADPregion42,43. The impact ofwave-3 is also enhancedbyENSOin theADP

Fig. 2 | Mean model skill, measured by ACC
between SIC observation and prediction anoma-
lies at 4–6 week leads and spatial patterns of the
first SVD mode between SIC and SST. a SIPNet
skill. b Linear SIPNet skill. cNonlinear SIPNet skill,
determined by subtracting the linear SIPNet skill (b)
from the total SIPNet skill (a). d Anomaly persis-
tence skill. e The proportion of nonlinear SIPNet
skill relative to the total SIPNet skill for each region
across lead times of 1–8 weeks. f Spatial patterns of
the first SVD mode between weekly SIC and SST,
where the mode accounts for 52% of total covar-
iance, with a correlation coefficient of 0.67 between
the SIC and SST modes time series of the
leading mode.
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region, despite being a circumpolar phenomenon42. Consequently, large sea
ice anomalies in the ADP region are mainly influenced by ENSO tele-
connections and the interaction between ENSO and the Antarctic cli-
mate modes.

To assess whether the interannual variability signal of ENSO exerts a
significant influence onAntarctic sea ice at the subseasonal scale, we further
analyzed the relationship between weekly Antarctic SIC and global SST
using singular value decomposition (SVD). The analysis reveals that thefirst
SVDmode accounts for 52%of the total covariance. The SST spatial pattern
of thismode strongly corresponds toENSO, and its temporal coefficients are
highly correlated (0.67) with the first SIC mode (Fig. 2f). The SST spatial
pattern of the second SVD mode does not exhibit distinctive climatic
characteristics (Supplementary Fig. 4a). The explained covariance of the
remaining modes is relatively low, all below 10% (Supplementary Fig. 4b).
This underscores the dominant influence of ENSO-induced surface climate
anomalies on Antarctic sea ice subseasonal variability. Hence, examining
how ENSO warm and cold phases impact the subseasonal predictability of
sea ice holds considerable scientific significance.

Quantifying ENSO’s impact on SIC predictability
We examined the ACC histograms across three distinct ENSO phases: El
Niño, La Niña, and neutral conditions, as delineated in the “Methods”
section. The results indicate that at 1–3 week lead times, the ACC

distributions of SIPNet slightly shift toward higher values compared with
persistence predictions across different ENSOphases in all regions (Fig. 3a),
indicating that sea ice predictability primarily relies on ice persistence, with
insignificant impact from ENSO. However, anomaly persistence sig-
nificantly reduces at 4–6 week leads (shifts to the left) while the SIPNet
continuously captures predictable variance, resulting in two well-separated
skill distribution modes between persistence and SIPNet predictions.
Although ENSO (an external factor) enhanced sea ice persistence, it could
not offset the decline in the component of SIC persistence related to ice
intrinsic variability. Moreover, SIPNet skill notably varies across different
ENSO phases (Fig. 3b). Both El Niño and La Niña enhance sea ice pre-
dictability in the Amundsen and Bellingshuasen Seas (A-B) and Ross Seas.
El Niño amplifies predictability in the Indian Ocean, whereas La Niña’s
impact is insignificant. In contrast, ENSOevents exhibit a diminishing effect
on sea ice predictability in theWest Pacific. TheWeddell Sea demonstrates
higher skill during ENSO events than in neutral conditions. However, this
enhancement is insignificant, indicating that the Weddell Sea may possess
other crucial sources of sea ice predictability under neutral conditions.

Figure 3c, d shows a quantitative analysis of the ENSO’s impact on
SIPNet skill across 1–8 weeks lead times. El Niño negatively affects sea ice
prediction skill in theWest Pacific, intensifying from−2% at a 1-week lead
to −20% at an 8-week lead (Fig. 3c). Conversely, El Niño enhances sea ice
predictability inotherAntarctic regions,with themostpositive impact in the

Fig. 3 | Regional model skill under different ENSO phases. aACC histograms from
SIPNet predictions and anomaly persistence underdifferent ENSOphases at 1–3-week
leads. b Same as (a) but for 4–6 week leads. c The impact of El Niño on SIPNet skill,
calculated as the difference between SIPNet skill under ElNiño and neutral conditions,
divided by the SIPNet skill under neutral conditions.d Sameas (c) but for LaNiña. The

KS test p values are all 0 for ACCdistribution comparisons between SIPNetmodel and
anomaly persistence across Antarctic regions, ENSO phases, and lead time groups,
indicating that the ACC distributions between the two models are statistically sig-
nificant different in each region, respectively.
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Indian Ocean and A-B Sea, respectively, 30.4% and 25.6% improvement at
8-week leads. Overall, El Niño enhances sea ice predictability in the Pan-
Antarctic. On the other hand, La Niña demonstrates a similar pattern of
influence on sea ice predictability, albeit weaker (Fig. 3d). It improves pre-
diction skill in the Ross Sea by 23.5% at an 8-week lead, but diminishes skill
in the West Pacific across all lead times. La Niña also improves sea ice
predictability for the Pan-Antarctic, especially at 6–8 weeks lead times.
However, the contributionof differentENSOevents to SIPNet skill, whether
mainly through affecting the linear or nonlinear sea ice predictability,
requires further investigation.

ENSO-related linear and nonlinear SIC predictability
We quantitatively analyzed the effect of ENSO events through linear and
nonlinear SIPNet skill across all lead times. The results indicate substantial
differences in the impact of different ENSO phases on both linear and
nonlinear SIPNet skill (Fig. 4). El Niño significantly enhances linear ice
predictability in the A-B Seas, Ross Sea, and the IndianOcean, contributing
77.3%, 75.5%, and 58.8% improvement, respectively, at an 8-week lead time
(Fig. 4a). In theWeddell Sea, ElNiñomainly contributes to the nonlinear ice
predictability. Conversely, El Niño predominantly decreases the linear ice
predictability in the West Pacific, with a reduction of 38.1% at an 8-week
lead time. Overall, El Niño contributes to both linear and nonlinear ice
predictability across all lead times in thePan-Antarctic region,with a greater
impact on linear ice predictability. Another approach, which calculates the
ACC from nonlinear SIC predictions obtained by subtracting linear SIPNet
SIC predictions from total SIPNet SIC predictions, also confirms that La
Niña primarily enhances nonlinear ice predictability, contributing up to
approximately 20% to Pan-Antarctic SIC predictability within an 8-week
lead time (not shown).

On the other hand, La Niña contributes significantly more to the
nonlinear ice predictability in nearly all regions, especially at lead times of
3–8weeks (Fig. 4b). For instance, in the IndianOcean andRoss Sea, LaNiña
contributes 30% and 29.6% of improvements to the nonlinear skill,
respectively, at a 7-week lead time.Although LaNiña significantly enhances
the nonlinear model skill in the West Pacific, it also notably decreases the
linear model skill, resulting in an overall reduction in the total SPINet skill.

Additionally, both El Niño and La Niña increase the nonlinear model skill
and decrease the linear model skill in the Weddell Sea. Overall, El Niño
primarily enhances the linear ice predictability for the Pan-Antarctic, while
La Niña enhances the nonlinear ice predictability. In addition, the repre-
sentation of Antarctic sea ice linear predictability derived from the linear
Markov model closely aligns with the results of the linear SIPNet (Supple-
mentary Fig. 5), indicating a consistent influence of ENSO events on linear
predictability across different regions, despite some regional differences.
This demonstrates the feasibility of capturing and forecasting the linear
processes in sea ice by deactivating the nonlinear activation functions of AI
models.

To further examine whether the phenomenon of El Niño contributing
more to linear ice processes and La Niña contributing more to nonlinear
processes is also reflected in observations, we conducted a linear and non-
linear analysis of observed sea ice variability. The ACC of SIC anomaly
persistence presented in Fig. 3b not only serves as a baseline for model skill
assessment but also effectively reflects the linear process in sea ice because
the ACC reflects the linear correlation between the initial and target sea ice
anomaly series. The square of the ACC is equivalent to the proportion of
total variance of two ice anomaly series explained by this linear process. In
Fig. 3b, the red and blue dashed curves of the histogram show significant
rightward shift compared to the black dashed curves in the A-B Sea, Ross
Sea, and IndianOcean. The shift of red curves is greater than the blue curves,
indicating that El Niño events induce more linear responses of sea ice than
La Niña in observations. SIPNet skill properly reflects these characteristics
in observations.

However, accurately quantifying the nonlinear processes of sea ice
variability remains challenging, as there is no definitive boundary between
nonlinear signals and noise. Nevertheless, we can provide a simple assess-
ment. Based on the characteristics of the sea ice data, we employed poly-
nomial fitting for the initial and target time in observed SIC fields.We fitted
polynomialmodels of orders 1 to 10 to the sea ice time series at each grid cell
and calculated the explained variance. We used the adjusted R², which
corrects for the number of independent variables and sample size, and helps
prevent overfitting by penalizing excessive model complexity. We selected
the maximum adjusted R2 at each grid point as the final explained variance.

Fig. 4 | Contribution of different ENSO events to linear and nonlinear
SIPNet skill. a Contribution of El Niño on linear SIPNet skill, calculated as the
difference between linear SIPNet skill under El Niño and neutral conditions, divided

by the linear SIPNet skill under neutral conditions. The impact of El Niño on
nonlinear SIPNet skill is calculated using a similar methodology. b Same as (a) but
for La Niña.
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The difference between the adjusted R2 and the variance from linear fitting
(Supplementary Fig. 6a) reflects the variance attributed to nonlinear pro-
cesses (Supplementary Fig. 6b), effectively highlighting the spatial dis-
tribution of these processes and their relative importance under different
ENSO events. We further represented the nonlinear explained variance for
each region as histograms, with three curves indicating the distribution of
nonlinear explained variance across the threeENSOphases (Supplementary
Fig. 6c). The notable rightward shift of the blue dashed curves indicates that
LaNiña primarily contributes to the nonlinear processes in observed sea ice
in all regions, which is captured by the SIPNet (Fig. 4).

SIPNet skill and SIC variability across ENSO phases
The results above confirm that ENSO events have a significant cross-
timescale impact on the subseasonal predictability of Antarctic sea ice. But
how do ENSO events influence Antarctic sea ice subseasonal predictability?
We first examined relationships between the model skill (measured by the
averageACCover 4–6week leads) and sea ice variability across all Antarctic
regions. The results show that model skill and sea ice variability are some-
what linearly related in most regions, suggesting that greater sea ice varia-
bility leads to higher predictability, and vice versa, at the subseasonal
timescale (SupplementaryFig. 7). The correlations reach0.57 and0.60 in the
A-B and Ross Seas, respectively, while the correlation in the Pan-Antarctic
remains at 0.44.

Additionally, previous studies have shown that ENSO significantly
impacts Antarctic sea ice variability11–14. Naturally, we raise the question:
Does ENSO influence sea ice predictability by generating more high sea ice
variability? We calculated the weekly variability of Antarctic sea ice at each
grid point under different ENSO phases and compiled sea ice histograms in

each region (Supplementary Fig. 8). The results indicate that the ENSO-
Antarctic teleconnection has increased sea ice variability in the A-B Sea,
Ross Sea, and Indian Ocean, while having little impact on theWeddell Sea.
In contrast, it has reduced sea ice variability in theWest Pacific, which aligns
with ENSO’s influence on sea ice predictability (Fig. 3b). To further validate
the relationship between ENSO and sea ice predictability, we analyzed the
correlation between ENSO-induced sea ice variability and ENSO-induced
prediction skill (ACC) within 1° longitude bins around the Antarctic (Fig.
5a). The linear correlation coefficients were 0.76 for El Niño and 0.62 for La
Niña, both exceeding the 99% significance level. The primary distribution of
points in different colors shows no significant relative shift, indicating that
this relationship holds consistently across lead times. It is worth noting that
the green andblue dots slightly deviate from the linear relationship at higher
sea ice variability, partially indicating a nonlinear component in this rela-
tionship. It confirms that ENSO positively influences sea ice predictability
by generating larger ice anomalies. Compared to LaNiña, ElNiño enhances
sea ice predictability more significantly by increasing sea ice variability
through linear processes (Fig. 5a, b).

Figure 5a only reflects the overall situation across the entire Antarctic
and cannot capture the specific relationship between ENSO-induced sea ice
variability and ENSO-induced prediction skill in individual regions. We
calculated the average of both in each region and then presented their
relationship. The results show a correlation coefficient of 0.7 between them,
exceeding the 99% confidence level (Fig. 5b). La Niña/El Niño provides
additional sources for sea ice predictability in the Ross Sea, A-B Sea, and the
Indian Ocean by generating larger and more persisting sea ice anomalies,
while limiting the predictability in the Western Pacific by reducing sea ice
variability and persistence (Figs. 3b and 5).

Fig. 5 | Relationship between SIPNet skill and SIC
variability under different ENSO phases.
a Scatterplots of the impact of ENSO events on
SIPNet skill as a function of the impact of ENSO
events on SIC weekly variability within 1° longitude
bins. The impact of El Niño (La Niña) on SIPNet
skill is computed as the difference between ACC
over 4–6-week leads under El Niño (La Niña) and
neutral conditions, divided by the latter. The red,
green, and blue dots represent the prediction skill
corresponding to lead times of 4, 5, and 6 weeks,
respectively. Similarly, The impact of El Niño (La
Niña) on SIC weekly variability is computed as the
difference between SIC weekly standard deviation
under El Niño (La Niña) and neutral conditions,
divided by the latter. b is similar to a but shows the
regional averages. The solid line represents the linear
fit of the data. “r” denotes the correlation coefficient,
and “P” denotes the p value. “Weddell-El Niño”
denotes the impact of El Niño events on sea ice
variability and predictability in the Weddell Sea.
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After confirming the relationship between ENSO, sea ice variability,
and predictability, we attempt to clarify the physical processes through
which ENSO influences sea ice predictability. Using Rossby waves as an
example, we conducted composites of weekly SST, surface air temperature
(SAT), sea level pressure (SLP), observed SIC, and predicted SIC anomalies
duringdifferentENSOphases. Supplementary Fig. 9 illustrates the influence
process of La Niña on Antarctic sea ice predictability. La Niña events reach
maturity during the austral summer and SST anomalies alter tropical
convection, triggering a southeastward-propagating Rossby wave train and
creating a cold-phase Pacific South American (PSA) pattern in autumn. In
response to the PSA pattern, a regional circulation tends to transport warm
air from lower latitudes to the Weddell/Bellingshausen Seas, while cold
Antarctic air is advected to the open ocean via the Ross/Amundsen Seas.
This anomalous circulation induces ADP anomalies in the SIC field during
winter and spring, with positive anomalies in the Ross/Amundsen Seas and
negative anomalies in theWeddell/Bellingshausen Seas. The influence of El
Niño on Antarctic sea ice is similar to that of La Niña, but with opposite
phase anomalies (Supplementary Fig. 10). This result is consistent with
earlier studies17.

Consequently, theRoss Sea,A-B, andWeddell Seas, including the areas
surrounding the Antarctic Peninsula, are significantly influenced by ENSO
teleconnections. During ENSO events, sea ice anomalies in these regions
increase, leading to more predictable variance that models can easily cap-
ture, enhancing sea ice predictability (Fig. 3). TheWeddell Sea, governed by
the Weddell Gyre constrained by its western boundary, the Antarctic
Peninsula, and theAntarcticCircumpolarCurrent (ACC), supports a stable,
large-scale clockwise sea ice advection. This creates a consistent sea ice
variability signal that models can effectively capture, thereby enhancing
predictability even in the absence of ENSO forcing. The Ross Gyre, with a
limited western boundary and greater distance from the ACC, lacks suffi-
cient stability in sea ice advection to significantly improve ice predictability
without ENSO influence. In the Indian Ocean, high sea ice predictability
during El Niño events can be attributed to a low-pressure anomaly
extending from the South Atlantic into the Indian Ocean during June to
August of ENSO mature years (Supplementary Figs. 9 and 10), accom-
panied by onshore winds that cause widespread warming and negative sea
ice anomalies, providing models with more variability signals. In contrast,
theWest Pacific experiencesweaker atmospheric circulationduringElNiño
(Supplementary Figs. 10 and 11), leading to less pronounced sea ice
anomalies andmaking it challenging formodels to predict sea ice variability.
However, from March to August in neutral years, enhanced circulation
anomalies in theWest Pacific significantly improve sea ice anomaly signals
and predictability.

Discussion
Our analysis exclusively focused on theNino3.4 index to assess the impact of
different ENSO phases on Antarctic sea ice predictability. However, ENSO
events exhibit considerable diversity in terms of amplitude, temporal evo-
lution, and spatial SST anomaly patterns (Supplementary Fig. 12). These
variations influence the teleconnections toAntarctic climate variability16,44–46,
having different effects on sea ice predictability. Compared with EP El Niño,
CPElNiño tends to produce awestward-shiftingRossbywave train over the
entire South Pacific, leading to a shifted ASL and associated ADP
anomalies12,16,47. Specifically, the Niño3 index (SST anomaly over 5°S–5°N,
150°W–90°W)primarily reflects easternPacific (EP)ENSO,while theNiño4
index (5°S–5°N, 160°E–150°W) focuses on central Pacific (CP) ENSO. The
Niño3.4 index (5°S–5°N, 170°W–120°W) represents a combination of both.
However, distinguishing between EP and CP ENSO events using the Niño3
and Niño4 indices is challenging due to their high correlation48.

To better differentiate EP and CP El Niño events, we introduced the
NEP and NCP indices in this study, derived from the following Eq. (1)48:

NEP ¼ N3 � αN4

NCP ¼ N4 � αN3

�
; α ¼ 0:4; N3N4 > 0

0; otherwise

�
ð1Þ

where N3 and N4 denote the Niño3 and Niño4 indices. Given the limited
diversity in La Niña events, our primary focus was on El Niño diversity. An
EP El Niño event is identified when the NEP index exceeds one standard
deviation for at least four consecutive months from September toMarch of
the following year, while a CP El Niño event is identified by the NCP index
meeting this criterion. As a result, four of the eleven El Niño events are
classified as EP and five as CP El Niño (Supplementary Fig. 12). For
example, the 1982/1983 El Niño is classified as EP, while the 2009/2010
event is classified as CP. Although EP and CP El Niño events introduce
anomalous sea ice at different locations, their impacts on the subseasonal
predictability of Antarctic sea ice are consistent (Fig. 6). Both contribute
positively to sea ice predictability in the A-B Sea, Ross Sea, and Indian
Ocean, while reducing predictability in the West Pacific. Although EP and
CP contribute to sea ice predictability in the Weddell Sea to some extent,
their impact is smaller compared to other regions. Notably, the slight
difference between Figs. 3b and 6 may stem from the reduced sample size
after classifying ElNiño events, which halved the data, and from the ENSO-
Antarctic teleconnections occurring in different regions under EP and CP
conditions, affecting ACC statistics. However, these factors do not change
the conclusion regarding El Niño’s impact on sea ice predictability.

Previous studies have shown that the IOD and high-latitude climate
modes, such as SAM and the wave-3 pattern, also influence Antarctic sea
ice42,49.While ENSO shares some variance with thesemodes on interannual
timescales, it is challenging to fully disentangle their specific contributions to
sea ice predictability. However, the formation mechanisms of IOD, SAM,
and wave-3 are largely independent of ENSO, and their shared variance is
less than9% (Supplementary Fig. 13).Our results indicate that ENSOevents
influence sea ice predictability primarily through direct teleconnections or
interactions with other remote or regional climate modes.

In addition, SIPNet enhances our ability to assess Antarctic sea ice
predictability, benefiting from several advantages. It employs an end-to-end
modeling approach, where prediction results are obtained directly from
input to output, with prediction errors backpropagated through every
network layer to optimize parameters. This holisticmethodology eliminates
the need for compartmentalization into multiple modules, avoiding error
accumulation associated with stepwise modeling. Additionally, SIPNet
exclusively relies on SIC data for both training and forecasting. Arising from
integrated interactions between the atmosphere and ocean, sea ice varia-
bility demonstrates strong spatiotemporal interdependencies and a high
signal-to-noise ratio. With over ten million parameters, a residual con-
nection, and an encoder-decoder structure, SIPNet enables a deeper
exploration of complex relationships within sea ice sequences35, trans-
forming larger anomaly information into higher skill.

This study examined the subseasonal predictability of Antarctic sea ice
changes under the background of different ENSO phases. Using the SIPNet
model and a linear SIPNet model, we quantitatively analyzed whether dif-
ferent ENSO events primarily influence sea ice’s linear or nonlinear pre-
dictability. By examining the evolution of SST, SLP, SAT, observed SIC, and
predicted SIC fields under different ENSO events, and analyzing the rela-
tionship between sea ice predictability and variability, we discussed the
physical processes andmechanisms by which ENSO events affect Antarctic
sea ice predictability.

The main findings are as follows: First, the Antarctic sea ice predict-
ability at short lead times (1–3 weeks) is primarily provided by the persis-
tence of sea ice anomalies itself, with insignificant influence from ENSO
events. As the lead time increases, the contribution of intrinsic sea ice
variability to persistence decreases rapidly, while ENSO’s impact on per-
sistence and predictability increases. Nonlinear predictability also becomes
significant and dominates beyond a 6-week lead time. Second, ENSO events
significantly impact Antarctic sea ice predictability beyond a 3-week lead,
withElNiño events having a greater overall impact on ice predictability than
La Niña. Specifically, El Niño events mainly affect linear predictability,
significantly enhancingoverall sea ice predictability in theA-BSea, Ross Sea,
and Indian Ocean by 25.6%, 19.6%, and 30.4%, respectively, at an 8-week
lead time. La Niña events primarily enhance nonlinear predictability,
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improving the overall ice predictability in the Ross Sea. However, both
events reduce linear predictability, markedly decreasing overall predict-
ability in the West Pacific. Third, ENSO’s teleconnections to the Antarctic
climate generate larger and more persistent ice anomalies, providing addi-
tional predictable variance, which is effectively captured and represented by
SIPNet.Additionally, the underlying reasonswhyLaNiña events contribute
more to nonlinear ice variability and predictability, while El Niño events
predominantly enhance linear variability and predictability, remain unclear
and will be explored in future research.

Additionally, due to the current limitations in the interpretability of
deep learning models, we acknowledged the need for further under-
standing of how deep learning transforms high sea ice variability into
high skill. We anticipate that ongoing developments in deep learning
technology will provide valuable insights into this intriguing research
direction. The findings in this study reveal the intricate link between
ENSO and Antarctic sea ice subseasonal predictability, offering assis-
tance to scientists, policymakers, environmental groups, and diverse
communities in addressing societal needs and climate change challenges
in polar regions.

Methods
SIPNet model
SIPNet is a deep-learningmodel driven exclusively by SIC data, designed to
predict Antarctic sea ice at the subseasonal time scale35 (Supplementary Fig.
1a). The SIPNet model features a multi-scale nested encoder-decoder
structure, including input, encoder, decoder, and output modules35.

Themodel encoder comprises convolutional neural networks (CNNs),
best at identifying images such as SIC, and 2 × 2 kernel max-pooling layers
(green arrows in Supplementary Fig. 1a). These max-pooling layers reduce
the size of the feature maps, emphasizing larger-scale spatial information of
sea ice while diminishing fine-scale details. The combination of CNN and
max-pooling captures spatiotemporal dependencies within the historical
SIC sequence. In ourmodel, CNN is embedded in a residual CNN (ResNet)
block that involves two stacked CNN layers interconnected by a shortcut
linking the first CNN layer’s input to the second layer’s output50,51 (Sup-
plementary Fig. 1a). This residual connection facilitates inter-layer con-
nections, prevents signal attenuation, effectively preserves gradient
information, and addresses the problem of gradient vanishing as the neural
network deepens52. The encoder consists of four stages, with each stage

containing increasingly lower spatial resolution maps, aiming to capture
predictable features with different spatial scales.

Conversely, the decoder employs upsampling and convolutional layers
to magnify spatial dimensions while reducing feature maps. The feature
maps generated by the decoder feed into the output module. The output
module includes a single CNN layer with eight 1 × 1 convolutional kernels,
applying a sigmoid activation layer topredict SIC in eachgrid cell. The loss is
computed by comparing the predicted and observed SIC. The model
achieves a high-performance state by iteratively minimizing losses, and it
employs zero padding to maintain consistent spatial dimensions between
the input and the output SICs. In addition, based on extensive sensitivity
experiments conducted earlier, the SIPNet model is configured with a
learning rate of 0.0001, filter sizes of 3 × 3, and a batch size of 8. We also
cropped the outer edges of original satellite SIC frames to meet the spatial
requirements of the deep learning model, which requires dimensions divi-
sible by 23 due to three pooling operations. The outcropping does not affect
SIC areas. Here, SIPNet predicts the following 8 weeks using SIC data from
theprior 8weeks at each training iteration.Thenumberof layers in theCNN
is indicated in Supplementary Fig. 1, where, for example, 304 × 320 × 32
corresponds to the sea ice data’s spatial dimensions (304 × 320) and the
number of layers (32).

We used bootstrap SICs from the National Snow and Ice Data Center
(NSIDC)53, for model training and skill assessment. The dataset, derived
from passive microwave radiometers, features a spatial resolution of 25 km.
Our dataset spans from1979 to 2022. Each samplewas created by pairing an
8-weekSIC segment as inputwith the subsequent 8-weekSICas target truth,
using a 1-week step to generate samples across the time series. The samples
were then randomly shuffled,with 5/6 allocated to the training set and 1/6 to
the validation set, ensuring both sets comprehensively cover the study
period. This study explores how ENSO affects Antarctic sea ice predict-
ability, rather than focusing solely on model skill. To encompass a broader
range of ENSO events, we hindcasted SIC from 1980 to 2022with 1–8week
leads after the model is fully constructed. For instance, sea ice data from
weeks 1–8 were employed as inputs to predicted SIC for weeks 9–16, with
the 9th week representing a 1-week lead and the 16th week representing an
8-week lead. This process was repeated for weeks 2–9 to forecast weeks
10–17, iteratively generating all predictions. Based on the years of ENSO
events, we extract the corresponding observed and predicted SICs and
calculate the model’s prediction skill under different ENSO phases to

Fig. 6 | Regional model skill under El Niño and neutral conditions. a ACC histograms from SIPNet predictions under EP El Niño events (red) and neutral conditions
(black) at 4–6 week leads. b Same as (a) except for CP El Niño.
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analyze ENSO’s impact on sea ice predictability, ensuring that the SIPNet
model configuration remains consistent across all ENSO phases.

Linear SIPNet model
The linear SIPNetmodel is achieved by deactivating all nonlinear activation
functions within the SIPNet model (Supplementary Fig. 1b), while other
parameter settings remain consistent with the SIPNet model. The linear
SIPNet learns the linear processes from the entire training set and makes
predictions for the target sea ice based on the initial time series, enabling the
examination of Antarctic sea ice’s linear predictability. The nonlinear and
linear processes involved in sea ice evolution are built into SIPNet. Non-
linear SIPNet skill is evaluatedusing twoapproaches. Theprimary approach
calculates it as the difference between total SIPNet skill and linear SIPNet
skill, reflecting the contribution of nonlinear processes. If SIPNet outper-
forms linear SIPNet, it is because it incorporates nonlinear processes in
addition to linear ones. The second approach is derived from nonlinear SIC
predictions, which are obtained by subtracting linear SIPNet SIC predic-
tions from total SIPNet SIC predictions. This study primarily employs the
first method, with the second serving as supplementary validation.

Linear Markov model
TheMarkov model here operates within the empirical orthogonal function
(EOF) space, with its spatial structure determined by EOF eigenvectors,
which are computed from weekly SIC anomalies from 1979 to 2022. The
model’s temporal dynamics follow a Markov process, where the transition
functions are defined by the corresponding principal components. Speci-
fically, the SIC anomalies, denoted as V, are decomposed into eigenvectors
(E) and principal components (P) using the following relationship:

V ¼ EPT ð2Þ

where the columns of E are orthogonal and the columns of P are ortho-
normal. T represents the matrix transpose. We truncated Eq. (2) to retain
only the leading modes, based on the model’s sensitivity to skill and error.
The transition matrix (A) is calculated via a single-step correlation matrix,
given by:

Piþ1 ¼ APi þ ei ð3Þ

where i represents the calendar week and ei is the model fit error. Multi-
plying both sides of this equation by PT

i yields:

Piþ1P
T
i ¼ APiP

T
i þ eiP

T
i ð4Þ

For optimal model fit, ei andP
T
i should be uncorrelated, leading to the

transition matrix:

A ¼ ðPiþ1P
T
i ÞðPiP

T
i Þ

�1 ð5Þ
This approach is applied to 52 subsets of P to compute the transition

matrices corresponding to each calendar week.
To optimize the mode configuration for the Markov model, we con-

ducted experiments to assess prediction skill and sensitivity by varying the
number of retained leading modes. The results indicated that retaining
seven leading SIC modes produced the best overall performance.

Anomaly persistence model
Anomaly persistence forecast serves as the benchmark for assessing sea ice
prediction skill. By assuming that historical anomaly will persist within
defined time frames, anomaly persistence forecast uses the observed sea ice
anomaly at the initial time as the ice anomaly in the target time. Auto-
correlation coefficients between the initial and target states measure their
skill. Although the autocorrelation between initial and target SIC anomalies
is likely influenced by the existence of both linear and nonlinear processes, it
mainly reflects the contribution of linear processes to sea ice predictability
due to its nature of linear calculation.Weekly sea ice anomalies from1979 to
2022 are generated by subtracting climatologies of the same period from the
weekly SIC time series.

SVD analysis
The interrelationship between Antarctic weekly SIC and global SST is
explored using the singular value decomposition (SVD) analysis. This
method facilitates the detection of coupled variability within the two
variables. Singular vectors represent the spatial patterns of each variable,
while the temporal variability is captured by projecting these spatial
patterns onto the original time series. The primary SVDmode is designed
to maximize covariance between the two variables. Consequently, the
method reveals modes exhibiting both spatial and temporal patterns that
dominate the variability in SIC and SST, which are strongly correlated
with one another.

The definition of ENSO events
The Niño 3.4 index54 from the National Oceanic and Atmospheric
Administration (NOAA) Physical Sciences Laboratory is employed for
defining ENSO events from 1980 to 2022. ENSO events are identified using
Niño 3.4 above 0.5, with amaximum above 1 fromNovember to January of
the following year. LaNiña events are characterized byNiño3.4 below−0.6,
with a minimum below −1. Values between −0.55 and 0.55 indicate a
neutral condition. There were 11 El Niño events, 10 La Niña events, and 11
neutral conditions throughout the study period.

Model skill
Anomaly time series are generated by subtracting climatologies specific to
each corresponding week from the weekly mean data. Model skill is mea-
sured by the anomaly correlation coefficient (ACC) between observations
and predictions, as defined in Eq. (6):

ACC ¼
Pn

i¼1 pi � �p
� �

gi � �g
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 pi � �p

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 gi � �g

� �2q ð6Þ

where p denotes the predicted SIC anomalies, pi denotes the SIC prediction
anomaly at time i, g denotes the observation anomalies.ndenotes the length
of the time series. ACC calculations are confined to regions covered by
sea ice.

In addition, previous research indicated that the strongest impact of
ENSO on Antarctic sea ice occurs 6 months after ENSO matured in the
tropic13,17. Thus, our analysis primarily focuses on sea ice predictability from
March to August following ENSO events. The term “target week” denotes
the predicted week, while “lead week” represents the number of weeks
preceding the target week when the forecast was initiated.

ACC histogram
Antarctic SIC observations were correlated with predictions at 1- to 6- week
leads on a grid-by-grid basis, resulting in six sets of ACCmaps representing
SIPNet skill at 1- to 6- week lead times. These ACC values were then
grouped by region and compiled into histograms to show their relative
occurrence frequency across ACC values, which allow us to consolidate
ACC changes as a function of its values. The histogram of ACC more
effectively illustrates the shifts in ACC values among different regions, lead
times, and models.

Kolmogorov–Smirnov test
To assess the statistical significance of the differences between ACC dis-
tributions across various Antarctic regions, we employed the
Kolmogorov–Smirnov (KS) test. TheKS test is a non-parametricmethod to
determine if two samples are drawn from the same distribution. We mea-
sured the significance of the observed differences by calculating the KS
statistic and itspvalue.Apvalue below0.05 signifies a statistically significant
divergence in distributions.

Data availability
The result data for this paper canbe accessedon thefigsharewebsite (https://
doi.org/10.6084/m9.figshare.24572866). Daily SICs from NSIDC are
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available at https://doi.org/10.5067/7Q8HCCWS4I0R.TheNiño3.4,Niño3,
and Niño4 indices are provided at https://psl.noaa.gov/gcos_wgsp/
Timeseries/. SST, SLP, SAT, and V at 850 hPa are from the latest Eur-
opean Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis
version 5 (ERA5), available at https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels?tab=download. The IOD index data is avail-
able at https://psl.noaa.gov/data/timeseries/month/data/dmi.had.long.data.
The SAM index data is available at http://www.nerc-bas.ac.uk/icd/gjma/
sam.html.
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