Published in partnership with CECCR at King Abdulaziz University https://doi.org/10.1038/s41612-025-01022-y # Driving factors and photochemical impacts of Cl₂ in coastal atmosphere of Southeast China Check for updates Gaojie Chen^{1,2,3}, Xiaolong Fan^{1,2}, Ziyi Lin^{1,2,3}, Xiaoting Ji^{1,2,3}, Ziying Chen^{1,2,3}, Lingling Xu^{1,2} & Jinsheng Chen^{1,2} ⊠ The elevated levels of molecular chlorine (Cl_2) have been observed both during the daytime or nighttime, yet the key drivers influencing Cl_2 formation remain unclear. In this study, we observed the distinct daytime and nighttime peaks of Cl_2 in coastal atmosphere of Southeast China. Field observations combined with machine learning revealed that daytime Cl_2 generation was driven by nitrate (especially ammonium nitrate) photolysis, and aerosol iron photochemistry, while the N_2O_5 uptake on aerosols containing chloride contributed to nighttime Cl_2 formation. Around noon, alkane oxidation rates by Cl radicals generated from Cl_2 photolysis surpassed those of OH radicals, leading to a 44% increment in RO_2 radical levels and a 42% enhancement in net O_3 production rates. This study offers new insights into the production and loss processes of Cl_2 in the tropospheric atmosphere, emphasizing its significance in coastal photochemical pollution. Chlorine radicals (Cl·) are highly reactive atmospheric oxidants that play a crucial role in the formation of ozone (O₃) and secondary organic aerosols (SOA)^{1,2}. Currently, molecular chlorine (Cl₂) and nitryl chloride (ClNO₂) are the primary precursors of Cl·^{3–5}. Previous studies identified ClNO₂ photolysis as the dominant source of Cl· in coastal and inland regions^{4,6–10}, particularly in the morning^{5,6}. However, recent observations indicated substantial Cl₂ formation in polluted atmospheres^{3,5,11}, establishing Cl₂ as a significant daytime source of Cl·, especially in the afternoon^{3,12}. Anthropogenic activities, such as wastewater treatment, coal combustion, the use of chlorine-containing disinfectants, and industrial processes, have been considered as potential sources of atmospheric $Cl_2^{9,13,14}$. Additionally, Cl_2 can be produced through heterogeneous reactions involving ClNO₂, hypochlorous acid (HOCl), chlorine nitrate (ClONO₂), O₃, hydroxyl (OH) radicals, and titanium dioxide (TiO₂) with chloride on aerosols ^{12,15-17}. Cl_2 is also likely co-produced with ClNO₂ from the uptake of dinitrogen pentoxide (N₂O₅) on acidic aerosols containing chloride during the nighttime ^{18,19}. Recently, Peng et al. suggested that the photodissociation of aerosol nitrate is the dominant source of daytime Cl_2 in Hong Kong³, while Chen et al. proposed a Cl_2 formation mechanism driven by aerosol iron photochemistry, accounting for over 90% of Cl_2 production in North China²⁰. Despite these advancements, the key drivers of Cl_2 generation and loss processes remain elusive, limiting our further understanding of its production mechanisms. In this study, intensive observations of Cl_2 and related factors were conducted in a coastal city of Southeast China during the autumn of 2022. Both daytime and nighttime peaks in Cl_2 levels were detected, suggesting strong local sources of Cl_2 . We used the machine learning method combined with the observational data (including meteorological parameters, aerosol compositions, and trace gases) to identify the most important factors affecting Cl_2 production and loss. Box model simulations further demonstrated the photochemical impacts of Cl_2 photolysis. Overall, this study revealed the key factors driving Cl_2 production in urban environments of coastal area, providing a scientific foundation for future research aimed at quantifying its sources and assessing its impact on the atmospheric environment. # Results and discussion Field measurement of Cl₂ Intensive measurements of Cl_2 and related parameters were carried out in a coastal city of Southeast China. As depicted in Fig. 1a, elevated Cl_2 levels were frequently observed, particularly in late autumn, accompanied by increased concentrations of ClNO_2 , N_2O_5 , and ionic components in $\text{PM}_{2.5}$. The maximum levels of Cl_2 at our study site reached up to 155 ppt, exceeding what had been reported in Nanjing 18, but were lower than those observed in Wangdu and Hong Kong (Table S1) 3,11 Overall, Cl_2 concentrations exhibited a distinct monthly variation pattern, characterized by significantly lower levels in October compared to November. To ¹Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China. ²Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China. ³University of Chinese Academy of Sciences, Beijing, China. ☐ e-mail: jschen@iue.ac.cn Fig. 1 | Significant generation of Cl₂ in a coastal city of Southeast China. The time series of Cl₂ and related parameters from October 9th to December 5th, 2022 (a). The average diurnal profile of Cl₂ and other factors during the entire observation period (b). systematically investigate the influence of air mass transport on Cl_2 distribution at our study site, we conducted a comparative analysis of air mass trajectories from these two months, representing periods of lower and higher Cl_2 concentrations, respectively. Using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, we calculated 24-hour backward trajectories for air masses arriving at 500 meters above ground level²¹. The trajectory analysis demonstrated similar air mass characteristics between the two months (Fig. S1), with the study site primarily influenced by continental air masses from the northeastern coastal region, while the contribution from direct marine air masses was relatively minimal. Considering that our study site is situated in a typical urban environment, combined with the short photolytic lifetime of Cl₂, these findings strongly suggest that Cl_2 concentration distribution is primarily driven by local generation processes, with minimal influence from regional air mass transport. For the daily variation pattern, previous studies have reported Cl₂ peaks occurring either during the day or at night^{3,11,18}, but our study site showed peak concentrations during both periods (Fig. 1b), suggesting the presence of both photochemically-driven daytime sources and non-photochemical nighttime sources in the local environment. #### Key influencing factors To identify the key factors affecting the production and loss processes of Cl_2 , we comprehensively compared the effects of meteorology (e.g., temperature (T), relative humidity (RH), ultraviolet radiation (UV), wind speed (WS), wind direction (WD), and boundary layer height (BLH)), $\text{PM}_{2.5}$ and aerosol compositions (e.g., iron (Fe), Cl^- , NH_4^+ , SO_4^{2-} , and NO_3^-), and trace gases (e.g., N_2O_5 , O_3 , NO, NO₂, CO, and SO₂) on Cl_2 levels using an extreme gradient boosting (XGBoost) coupled with the Shapley additive explanations (SHAP) model (Fig. 2a). The results highlighted N_2O_5 , NO_3^- , UV, NH_4^+ , and Fe as the most significant factors affecting Cl_2 levels. Positive SHAP values, represented by red points, indicated that higher levels of these variables were associated with increased Cl_2 concentrations, and vice versa. As presented in Fig. 2b, larger values of N_2O_5 , NO_3^- , NH_4^+ , and Fe contributed to the elevation of Cl_2 levels, while UV exhibited a dual effect on Cl_2 concentrations. Figure 2c–h further illustrates the responses of Cl_2 concentrations to changes in the five key factors, offering insights into how these factors affect Cl_2 levels on average. Cl_2 concentrations significantly increased when N_2O_5 , NO_3^- , NH_4^+ , and Fe concentrations exceeded 36.1 ppt, 6.2 $\mu g \cdot m^{-3}$, 3.1 $\mu g \cdot m^{-3}$, and 0.24 $\mu g \cdot m^{-3}$, respectively. Interestingly, Cl_2 levels initially decreased and then increased as rising UV intensity. After sunrise, the intensifying sunlight accelerates Cl_2 photolysis; however, under stronger UV in the afternoon, Cl_2 sources related to photochemistry might strengthen to offset its photolytic loss. #### Potential production mechanisms As mentioned before, it is found that N_2O_5 , NO_3^- , UV, NH_4^+ , and Fe played very critical roles in the generation of Cl_2 . Here, we further explored potential Cl_2 production mechanisms associated with the five factors at our study site. During the observation period, a strong correlation between nighttime Cl_2 and $ClNO_2$ (r = 0.87) was observed (Fig. 3a), implying a common source for both species during the nighttime. It is acknowledged that nighttime ClNO₂ is generated through the heterogeneous uptake process of $N_2O_5^{7,10}$. Previous studies had suggested that Cl₂ is likely a byproduct of ClNO₂ formation through the uptake of N₂O₅ on acidic aerosols^{18,19,22}. Therefore, it is probably that the heterogeneous processes involving N₂O₅ contributed to the nighttime generation of Cl2 at our study site. The XGBoost-SHAP model indicated that N₂O₅ ranked first among all influencing factors. The positive SHAP value of N₂O₅ indicates that higher concentrations of N₂O₅ favor an increase in Cl₂ concentrations, which aligns with the mechanism that Cl₂ is primarily generated through the heterogeneous processes involving N₂O₅ during the nighttime. In contrast, the negative SHAP value of NO suggests that higher concentrations of NO inhibit the formation of NO₃, thereby hindering the increase in N2O5 concentrations and subsequently suppressing the generation of Cl2. The uptake of N_2O_5 contributed limited to daytime Cl_2 levels due to very low levels of N_2O_5 during the daytime (Fig. 1). Beyond N_2O_5 , the XGBoost-SHAP model identified NO_3^- and UV as critical factors affecting Cl_2 levels. Moreover, a strong correlation (r=0.58) was observed between a proxy for NO_3^- photolysis ($NO_3^-\times JNO_2\times S_a$) and daytime Cl_2 levels during our measurement period (Fig. 3b). Recent research demonstrated that the photolysis of particulate nitrate under acidic conditions (pH < 3.0) is a source of daytime Cl_2 , supported by both field observations and laboratory experiments³. We employed a thermodynamic equilibrium model (ISO-RROPIA II) to calculate the aerosol pH at our study site. The average aerosol pH is 2.3 ± 0.5 throughout the observation period, with the lowest values occurring during the daytime (Fig. S2). The results indicate sufficiently acidic conditions conducive to the generation of daytime Cl_2 at our study site. Therefore, it is inferred that the photolysis of particulate nitrate accounted for daytime Cl_2 formation at our study site. Notably, previous experiment used sodium chloride (NaCl) and sodium nitrate (NaNO₃) as sources of particulate chloride and nitrate, with pH adjusted by sulfuric acid (H₂SO₄)¹². However, in our study, the significance of NH₄⁺ was highlighted by the XGBoost-SHAP model. Two possible explanations were explored for this. On the one hand, our analysis of chemical correlations revealed a strong positive relationship between NO_3^- and NH_4^+ (r = 0.94), while NO_3^- showed minimal correlation with Na⁺ (Fig. S3). This correlation pattern indicates that NO₃⁻ formation is predominantly governed by the reaction between NH₃ and HNO₃, rather than through the acid displacement of HNO₃ on sea salt aerosols. The air mass trajectory analysis further corroborates this conclusion. Consequently, atmospheric NO₃⁻ at our study site exists primarily in the form of ammonium nitrate (NH₄NO₃) rather than NaNO₃. On the other hand, the difference in acidity between NH₄⁺ and Na⁺ is primarily evident in their behavior in water. Sodium salts, such as NaNO₃, are generally neutral since Na[†] does not react with water to change the pH. In contrast, when ammonium salts, like NH₄NO₃, dissolve, NH₄⁺ reacts with water to produce ammonia and hydrogen ions, leading to an acidic solution. Consequently, ammonium salts typically decrease the value of the pH, while sodium salts do not. These results indicated that the photolysis of NH₄NO₃ mainly contribute to daytime Cl2 generation, compared to that of NaNO3. As shown in Fig. 3c, the elevated concentrations of NH₄⁺ promoted the generation of daytime Cl₂ by enhancing nitrate photolysis. In addition to the photolysis of particulate nitrate, aerosol iron photochemistry has been proposed as a major source of daytime Cl_2 , accounting for over 90% of Cl_2 generation in North China²⁰. In our study, Fe was identified as an important factor for Cl_2 formation based on the XGBoost-SHAP model. Furthermore, a proxy for aerosol iron photochemistry (Fe×JNO₂×S_a) correlated well (r = 0.61) with daytime Cl_2 levels during our observation period (Fig. 3d). The results declared that aerosol iron photochemistry also contributed to daytime Cl_2 production at our study site. Notably, the elevated Cl⁻ levels were associated with higher concentrations of Cl₂ (Fig. 2h). But once Cl⁻ levels exceeded 0.66 µg·m⁻³, Cl₂ concentrations tended to decline, likely due to additional limiting factors influencing Cl₂ production, implying Cl⁻ has not been a limiting factor at that time. Although Cl⁻ typically plays a significant role in the generation of Cl₂, in this study, due to the study site located in a coastal area with abundant Cl⁻, the machine learning results also suggest that Cl⁻ is not the most critical factor influencing Cl2 concentrations, with its importance even lower than that of SO₄²⁻. However, this does not imply that Cl⁻ is not important for Cl₂ formation. Consistent with the previous observation at a coastal site of Hong Kong³, their study also found that Cl⁻ is not a key limiting factor for daytime Cl₂ generation, with factors such as NO₃⁻ and aerosol acidity being the primary controlling variables. The importance of $SO_4^{\ 2-}$ likely lies in its relationship with aerosol acidity. As demonstrated in laboratory studies where acidity was regulated by H₂SO₄ to validate the process of nitrate photolysis generating Cl₂, an aerosol pH level below 3.3 is a critical condition for Cl₂ formation via nitrate photolysis³, highlighting the significance of aerosol acidity for Cl2 generation. Studies have shown that the high concentrations of Cl₂ observed during the daytime are closely related to aerosol acidity, while the absence of high daytime Cl2 concentrations in many regions is primarily due to unfavorable aerosol acidity conditions for Cl2 formation 3,23 . Therefore, the importance of SO_2 lies in its regulatory effect on aerosol acidity. Several studies have indicated that reducing SO₂ emissions can effectively modulate aerosol acidity, thereby mitigating the adverse impacts of reactive chlorine species on the atmospheric environment^{3,24,25}. Meanwhile, the influence of PM_{2.5} on Cl₂ is mainly determined by its chemical composition. This study found that aerosol components such as Fe, Cl⁻, NH₄⁺, SO₄²⁻, and NO₃⁻ all contribute significantly to Cl₂ generation. The high ranking of these components in terms of factor importance may indirectly reduce the overall importance of PM_{2.5}, resulting in PM_{2.5} having a slightly lower factor importance compared to SO₂. Fig. 2 | Key drivers of Cl_2 formation and loss processes. The contribution of each factor to the Cl_2 predictions (a). The distribution of SHAP values for all factors, ranking them by their influence on the predicted Cl_2 levels (b). The isolated impact of specific factors on Cl_2 levels, including N_2O_5 (c), NO_3^- (d), UV (e), NH_4^+ (f), Fe (g), and Cl^- (h). The yellow and black curves represent the average changes in simulated Cl_2 levels as the factors vary, while the blue curves illustrate all possible outcomes. # Photochemical impacts In this study, the photochemical impacts of Cl_2 were evaluated using a box model. In contrast to the dominant role of ClNO_2 photolysis (up to 71%) in the early morning, Cl_2 photolysis emerged as the primary source of Cl_1 in the afternoon (up to 94%) (Fig. 4a). The Cl_2 generated from Cl_2 photolysis predominantly oxidized alkanes (~60.0%) and oxygenated volatile organic compounds (OVOCs, ~22.2%) (Fig. s4a). Meanwhile, propane, n-butane, and HCHO were the major VOC species oxidized by Cl· (Table S3). Compared to other atmospheric oxidants, such as OH·, NO₃·, and O₃, Cl· contributed to as much as 14.5% of total VOC oxidation (Fig. S4b). **Fig. 3** | Cl₂ production mechanisms. The relationship between Cl_2 and $ClNO_2$ during the nighttime (a). The correlation between daytime Cl_2 concentrations (8 a.m.–4 p.m.) and a proxy of nitrate (NO_3^-) photolysis $(NO_3^- \times JNO_2 \times S_a)$, and the color of the dots denotes the concentrations of NO_3^- (b) and NH_4^+ (c), respectively. The correlation between daytime Cl_2 concentrations (8 a.m.–4 p.m.) and a proxy of aerosol iron photochemistry (Fe \times $JNO_2 \times S_a$), the color of the dots denotes the concentrations of Fe (**d**). Fig. 4 | The photochemical impacts of Cl_2 on November 19th, 2022. Cl- production pathways (a). Comparison of alkane oxidation rates by OH- or Cl-(b). Increased percentages of OH-, HO₂-, and RO₂-with Cl_2 (c). Increased percentages of net O₃ production rates with Cl_2 (d). Remarkably, around noon, alkane oxidation rates by Cl· exceeded those by OH· (Fig. S5b), mainly related to VOC, Cl·, and OH· concentrations, and their reaction rates with VOC species (Figure S5). Although the concentrations of Cl· are lower than that of OH·, the reaction rates of Cl· with alkanes are higher, particularly for ethane, propane, and n-butane (Table S4). Cl· released from Cl₂ photolysis oxidized VOCs, facilitating the formation of RO_x (OH·, HO₂·, and RO₂·) radicals and O₃. In scenarios including Cl₂, the average concentrations of OH·, HO₂·, and RO₂· increased by 5.2%, 13.4%, and 25.9% (Fig. 4c), respectively, compared to those without Cl₂. Maximum increases in HO₂· and RO₂· levels reached 25.0% and 44.0%, greatly enhancing photochemical O₃ production through the reactions of HO₂· and RO₂· with NO. Consequently, the average net O₃ production rates increased by 42.0% in the presence of Cl₂ (Fig. 4d). Previous studies have shown that Cl_2 concentrations typically exhibit either a single daytime peak or a nighttime peak $^{3.5,11,18}$. However, in our study, Cl_2 concentrations displayed a dual-peak pattern during both daytime and nighttime, indicating dual sources of Cl_2 at our study site. Regarding the daytime formation mechanisms, observations from coastal areas in Hong Kong have demonstrated that the photolysis of nitrate significantly contributed to high daytime Cl_2 concentrations³. In contrast, observations in the inland city of Nanjing revealed a significant missing source of daytime Cl_2 , which is hypothesized to be related to aerosol iron photochemistry¹², though direct observational evidence is lacking. For nighttime formation mechanisms, observations of Cl_2 in inland cities such as Nanjing and Beijing have indicated that the heterogeneous processes involving N_2O_5 are the primary source of nighttime $Cl_2^{5,18}$. Therefore, this study conducted systematic observations of Cl_2 in the coastal urban atmosphere of Southeast China, combined with machine learning analysis, not only revealed that both nitrate (particularly ammonium nitrate) photolysis and aerosol iron chemistry contribute to daytime Cl_2 formation but also confirmed that the heterogeneous processes of N_2O_5 dominate nighttime Cl_2 generation. Additionally, we uncovered the significant role of NH_4^+ in Cl_2 formation, an aspect that had not been clarified in previous studies. The Cl radicals released from the photolysis of high daytime Cl_2 concentrations significantly oxidized alkanes, even surpassing the alkane oxidation by OH radicals around noon. This process boosts the production of RO_x radicals and O_3 , thereby altering atmospheric oxidation in urban environments of coastal area. #### Methods #### Field measurements Intensive measurements were carried out at an urban site in Xiamen, a major coastal city in Southeast China, from October 9th to December 5th, 2022. The study site is situated in an urban area, characterized by proximity to river bays, shopping malls, residential zones, and major transportation routes, without the significant industrial activities in the vicinity. Further details about the site are available in our previous studies^{26,27}. Cl₂, ClNO₂, and N₂O₅ were measured using an iodide-adduct Chemical Ionization-Atmospheric Pressure Interface-Long Time of Flight mass spectrometer (I-ToF-CIMS, Aerodyne Research and Tofwerk AG). The concentrations of these species were calibrated following established protocols^{4,13,21}. Specifically, the Cl₂ permeation tube (98 ng/min, VICI Metronics, Inc.) was used to generate standard Cl₂ gases. N₂O₅ was produced by reacting O₃ with excess NO₂, and ClNO₂ was synthesized through the reactions of Cl2 with sodium nitrite (NaNO2) and sodium chloride (NaCl). Additionally, the study synchronously monitored trace gases (CO, O₃, SO₂, NO₃, and volatile organic compounds (VOCs)), aerosol iron (Fe), ionic compositions in PM2.5, aerosol surface area (Sa). Meteorological parameters were also observed, including photolysis frequencies (e.g., INO₂), temperature (T), relative humidity (RH), ultraviolet radiation (UV), wind speed (WS), wind direction (WD), and boundary layer height (BLH)). The details on the measurement techniques and calibrations are summarized in Text S1, Text S2, and Table S1. # Machine learning model In this study, an extreme gradient boosting (XGBoost) model was employed to predict Cl_2 levels, with the Shapley additive explanations (SHAP) model used for ranking the significance of factors influencing Cl_2 levels. The integrated XGBoost-SHAP model was utilized to identify key drivers of Cl_2 formation and loss processes. Variables included meteorological conditions (e.g., T, RH, UV, WS, WD, and BLH), PM_{2.5} and aerosol compositions (e.g., Fe, Cl⁻, NH₄⁺, SO₄²⁻, and NO₃⁻), and trace gases (e.g., N₂O₅, O₃, NO, NO₂, CO, and SO₂). Additionally, the partial dependence plot (PDP) provided a visual representation of each factor's marginal influence on the model's predictions by systematically varying the target feature while holding other features constant. The XGBoost model exhibited strong predictive performance, with the simulated Cl_2 concentrations closely aligning with the observed concentrations ($\text{r}^2 = 0.87$, a mean absolute error of 4.2 ppt). Additional details regarding the XGBoost-SHAP model can be found in Text S3. # The box model In our study, we utilized an observation-based model (OBM) to evaluate the photochemical effects of Cl₂. Based on prior research^{14,28}, we employed the Master Chemical Mechanism (MCM, Version 3.3.1) and integrated the established chlorine chemistry mechanisms. Cl₂ photolysis rates (*J*Cl₂) were determined using the Tropospheric Ultraviolet and Visible Radiation (TUV) model under clear-sky conditions, adjusted based on observed *J*NO₂ values. A detailed configuration of the box model can be found in our previous studies²⁹. The box model was constrained with hourly inputs of Cl₂, NO, NO₂, VOCs, O₃, SO₂, CO, along with meteorological factors. It then outputs VOC oxidation rates, RO_x (OH., HO₂·, and RO₂·) radical levels, and O₃ production and loss rates (Text S4), comparing scenarios with and without Cl₂. #### ISORROPIA II model The aerosol pH was calculated using Eq. 1, based on the thermodynamic equilibrium model, ISORROPIA II: $$pH = -\log_{10} \frac{1000 * H^{+}}{ALWC} \tag{1}$$ Here, H' represents the hydronium ion concentration per volume of air (µg·m $^{-3}$), and ALWC is the aerosol liquid water content (µg·m $^{-3}$). Inorganic particle compositions in $PM_{2.5}$ and related gases were obtained using the Monitor for AeRosols and Gases in Ambient Air (MARGA). The model was constrained by the NH_4^+ -NO $_3^-$ -Cl $^-$ -SO $_4^2^-$ -Na $^+$ -K $^+$ -NH $_3$ -HNO $_3$ -HCl system, along with T and RH. The model setup followed protocols from previous studies 11 . Specifically, the model was run in "forward" mode, with total concentrations (gas + particle) of selected species used as inputs. Particles were considered "metastable", meaning salts did not precipitate under supersaturated conditions. # **Data availability** No datasets were generated or analysed during the current study. # **Code availability** The codes in this study are available from the corresponding author on reasonable request. Received: 23 October 2024; Accepted: 25 March 2025; Published online: 02 April 2025 #### References - Li, Q. et al. Potential effect of halogens on atmospheric oxidation and air quality in China. J. Geophys. Res. Atmos. 125, e2019JD032058 (2020). - Li, Q. et al. Halogens enhance haze pollution in China. Environ. Sci. Technol. 55, 13625–13637 (2021). - Peng, X. et al. Photodissociation of particulate nitrate as a source of daytime tropospheric Cl₂. Nat. Commun. 13, 1–10, (2022). - 4. Wang, T. et al. Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. *J. Geophys. Res. Atmos.* **121**, 2476–2489 (2016). - Ma, W. et al. Reactive chlorine species advancing the atmospheric oxidation capacities of inland urban environments. *Environ. Sci. Technol.* 57, 14638–14647 (2023). - Phillips, G. J. et al. Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. *Geophys. Res. Lett.* 39, L10811 (2012). - Thornton, J. A. et al. A large atomic chlorine source inferred from midcontinental reactive nitrogen chemistry. Nature. 464, 271–274 (2010). - Riedel, T. P. et al. Nitryl chloride and molecular chlorine in the coastal marine boundary layer. Environ. Sci. Technol. 46, 10463–10470 (2012). - Riedel, T. P. et al. Chlorine activation within urban or power plant plumes: vertically resolved CINO₂ and Cl₂ measurements from a tall tower in a polluted continental setting. *J. Geophys. Res. Atmos.* 118, 8702–8715 (2013). - Osthoff, H. D. et al. High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nat. Geosci. 1, 324–328 (2008). - Liu, X. et al. High levels of daytime molecular chlorine and nitryl chloride at a rural site on the North China Plain. *Environ. Sci. Technol.* 51, 9588–9595 (2017). - Chen, Q. et al. Large daytime molecular chlorine missing source at a suburban site in East China. J. Geophys. Res. Atmos. 127, e2021JD035796 (2022). - Mattila, J. M. et al. Multiphase chemistry controls inorganic chlorinated and nitrogenated compounds in indoor air during bleach cleaning. *Environ. Sci. Technol.* 54, 1730–1739 (2020). - Peng, X. et al. An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. *Natl. Sci. Rev.* 8, nwaa304 (2021). - Oum, K. W., Lakin, M., DeHaan, D. O., Brauers, T. & Finlayson-Pitts, B. J. J. S. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. *Science*. 279, 74–76 (1998). - Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A. & von Glasow, R. Tropospheric halogen chemistry: sources, cycling, and impacts. *Chem. Rev.* 115, 4035–4062 (2015). - Li, Y. et al. Photoinduced production of chlorine molecules from titanium dioxide surfaces containing chloride. *Environ. Sci. Technol. Lett.* 7, 70–75 (2020). - Xia, M. et al. Significant production of CINO₂ and possible source of Cl₂ from N₂O₅ uptake at a suburban site in eastern China. *Atmos. Chem. Phys.* 20, 6147–6158 (2020). - Yan, C. et al. Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns. *Nat. Geosci.* 16, 975–981 (2023). - Chen, Q. et al. Impact of molecular chlorine production from aerosol iron photochemistry on atmospheric oxidative capacity in North China. *Environ. Sci. Technol.* 58, 12585–12597 (2024). - Wang, H. et al. Formation and impacts of nitryl chloride in Pearl River Delta. Atmos. Chem. Phys. 22, 14837–14858 (2022). - Roberts, J. M., Osthoff, H. D., Brown, S. S. & Ravishankara, A. R. N₂O₅ oxidizes chloride to Cl₂ in acidic atmospheric aerosol. *Scicence*. 321, 1059 (2008). - Chen, G. et al. Increasing contribution of chlorine chemistry to wintertime ozone formation promoted by enhanced nitrogen chemistry. *Environ. Sci. Technol.* 58, 22714–22721 (2024). - Xia, M. et al. Pollution-derived Br₂ boosts oxidation power of the coastal atmosphere. *Environ. Sci. Technol.* 56, 12055–12065 (2022). - 25. Dai, J. et al. Significant impact of a daytime halogen oxidant on coastal air quality. *Environ. Sci. Technol.* **59**, 2169–2180 (2025). - Hu, B. et al. Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons. Atmos. Chem. Phys. 22, 371–393 (2022). - Liu, T. et al. Seasonal characteristics of atmospheric peroxyacetyl nitrate (PAN) in a coastal city of Southeast China: explanatory factors and photochemical effects. *Atmos. Chem. Phys.* 22, 4339–4353 (2022). - Xue, L. K. et al. Development of a chlorine chemistry module for the master chemical mechanism. *Geosci. Model Dev.* 8, 3151–3162 (2015). - Liu, T. et al. Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an observation-based model. *Atmos. Chem. Phys.* 22, 2173–2190 (2022). # **Acknowledgements** This work was funded by the National Natural Science Foundation of China (U22A20578), the guiding project of seizing the commanding heights of "self-purifying city" (NO. IUE-CERAE-202402), the Science and Technology Department of Fujian Province (2022L3025), the National Key Research and Development Program (2022YFC3700304), STS Plan Supporting Project of the Chinese Academy of Sciences in Fujian Province (2023T3013), and Xiamen Atmospheric Environment Observation and Research Station of Fujian Province. # **Author contributions** G.C. and J.C. designed the research together. G.C. analyzed data and wrote the manuscript. J.C. provided support for the research and revised the manuscript. X.F. help to perform the observation. X.F., Z.L., X.J., Z.C., and L.X. contributed to the discussion of research. # **Competing interests** The authors declare no competing interests. #### **Additional information** **Supplementary information** The online version contains supplementary material available at https://doi.org/10.1038/s41612-025-01022-y. **Correspondence** and requests for materials should be addressed to Jinsheng Chen. **Reprints and permissions information** is available at http://www.nature.com/reprints **Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc-nd/4.0/. © The Author(s) 2025