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Seasonal prediction of Indian summer
monsoon extreme rainfall frequency
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Skillful forewarning of daily extreme rainfall activity (ERA) is imperative for adaptation against
disastrous threats of socio-economic loss from Indian monsoon extreme rainfall events (ERE). Yet,
unlike tropical cyclone (TC) activity forecasting, no attempt has been made for seasonal prediction of
Indian monsoon ERE frequency and ERA. Here, we establish that the seasonal prediction of ERE
frequency during Indian monsoon is associated with the global El Nifio-Southern Oscillation (G-ENSO)
in a manner similar to the Indian Summer Monsoon Rainfall ISMR). We develop a deep learning model
trained on the physical relationship between seasonal frequency of ERE and G-ENSO from an
ensemble of Atmosphere-Ocean General Circulation Models (AOGCMs) for skillful seasonal forecast
of ERE frequency at one-month lead. Integrating such seasonal forecasts of ERE frequency with ISMR
seasonal forecast systemiis likely to be critical in disaster preparedness and loss minimization against
increasing threat of ERE frequency damages in coming decades.

The moisture content in the atmosphere and large scale moisture con-
vergence over India is increasing' together with more rapid increase of the
heat content of the upper ocean and sea surface temperature (SST) over the
Indian Ocean (IO)’, largely associated with the increase in global mean
temperature from anthropogenic activity’. Increasingly more unstable
atmosphere with ample moisture supply from the warm IO assures that the
frequency and intensity of daily ERE over India is increasing rapidly in
recent decades*”. In a gridded daily rainfall dataset, an ERE at a grid box
could be defined as the events where daily rainfall exceeds 99.5 percentile of
the rainfall distribution at the grid point*’. The seasonal ERE frequency over
a region is determined by the aggregations of such events across all grid
boxes representing the region during a given Indian summer monsoon
season. Over Central India (CI), rain events exceeding ~10 cm/day repre-
sent such events’, while over Northeast India (NEI), where mean rainfall is
higher, events exceeding ~20 cm/day represent such events’. About 9 such
events used to occur over CI during June-September (JJAS) in 1901 that
increased to about 18 in 2010, consistent with significant increase of such
events®. Over the NEJ, such events have doubled from about 10 in 1920 to
about 20 events in 2010°. Flash floods, landslides and torrential rains
associated with the extreme events kill thousands and displace millions of
people and animals every year in India. The plains of CI, as well as the plains
over NEI, are flood prone areas and floods alone account for more than $3
billion in economic losses every year in India’. Additionally, hydrological
disasters from ERE also lead to food productivity loss in countries like
India". In the backdrop of the trend of the increase of rainfall extremes being
nonlinear with rapid increase in recent decades', the frequency of

hydrological disasters associated with these events are expected to increase
at a faster rate in the coming decades. Compounding with the hydrological
disasters, rapid increase in humid heat stress (Humidex) in recent decades''
is going to make outdoor activity increasingly difficult, leading to pro-
ductivity loss affecting the developing countries disproportionately. The
socio-economic loss from climate extremes would make it untenable to
maintain economic growth required for countries like India'>".

The EREs are increasing not only over CIand NEI but also over the
semiarid northwest India (NWI)" together with everywhere in the
tropics'’. As a result, the socio-economic loss from hydrological dis-
asters is increasing rapidly in the tropics. To minimize the accelerating
socio-economic loss from increasing frequency and intensity of
extreme events, seasonal prediction of extreme rainfall frequency
(ERE) during summer monsoon season has become important but
lacking. While the importance of forewarning of seasonal Tropical
Cyclone Frequency (TCF) or accumulated cyclone energy (ACE)" has
been recognized and has led to development of skillful long-lead sea-
sonal forecasts of TC frequency'* ™, a similar recognition of the dis-
aster potential of the accumulated seasonal EREs in the country and
requirement of a seasonal prediction model has been lacking. Also, the
ERE frequency during the Indian monsoon season over the country is
about 36, the TC frequency in the North IO in a year is only about 5,
which may have increased to about 7 in recent decades. Thus, the socio-
economic loss due to ERE may be significantly higher than that asso-
ciated with TC. Yet, research on seasonal prediction of ERE frequency
over any of the monsoonal regions is lacking.
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To fill this major gap in seasonal forecasting of ERE in tropics, here, we
develop a seasonal prediction model for predicting ERE frequency and ERA
1-month in advance. However, the physical basis for predictability for
seasonal prediction of ERE frequency and ERA needs to be established. As
daily extreme events are instabilities on the background mean circulation
and thermodynamics, we envision that the predictability of inter-annual
variability of ERE frequency and ERA would also be governed by the slowly
varying drivers that modulate the mean Indian monsoon. In a recent
study*, we established that the simultaneous teleconnections from all three
tropical ocean basins or G-ENSO is essential for the predictability of ISMR at
any given season. We call it G-ENSO as against traditional ENSO defined
based on Pacific SST. Using a simple empirical model, we demonstrated that
the G-ENSO represented by the depth of 20° isotherm (D20) over 0° -360°E,
30°N-30°S is a better predictor of ISMR compared to traditionally used SST
and unravelled that ISMR is highly predictable at 18-month lead (Fig. 2c of
Sharma et al.**). We also show in Sharma et al.** that the apparently non-
intuitive result of high potential predictability of ISMR at 18-month lead
(Fig. 2c of Sharma et al.**) is due to a unique phase locking of the growth of
errors in the coupled ocean-atmosphere system with the monsoon annual
cycle making forecast errors to oscillate in such a way to have a minimum at
18-month lead with respect to ISMR (Fig. 5d of Sharma et al.**). The fea-
sibility of ISMR prediction at 18-month lead is also demonstrated using
linear and deep learning models. Here, we argue that the physical basis for
predictability and seasonal prediction of ERE frequency is the same as the
basis for predictability and seasonal prediction of ISMR. The predictability
of the seasonal mean Indian monsoon climate or ISMR comes from its
association with slowly varying predictable global climate modes like the
ENSO*** and Atlantic Multi-decadal Oscillation (AMO)*~. ERE during
summer monsoon arise from thunderstorms spawned in mesoscale con-
vective clusters’. Therefore, the predictability of seasonal mean ERE fre-
quency and ERA is going to come from their association with the ENSO and
AMO. In the present study, we demonstrate that the association of the
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Fig. 1| Variability and predictability of seasonal ERE frequency and ERA over CI
during summer monsoon season. (a) generated from 1°x1° resolution grid boxes
(b) generated from 2°x 2° resolution grid boxes. ERA and Frequency along with

trend are shown in Figure S3. ¢ Anomaly correlation coefficient (ACC) between D20

G-ENSO with seasonal ERE frequency and ERA are similar to those with
ISMR. However, we also recognize that the seasonal ERE frequency could
also be influenced by higher frequency variability associated with land-
surface processes and Indian Ocean variability unrelated to the ENSO, such
as the Indian Ocean Dipole Mode™. Therefore, interannual variability of
ERE frequency could be significantly be different from that of ISMR and
influence its predictability.

Recently, deep learning models have been found to be powerful tools to
push the limit of useful seasonal prediction of ENSO* and ISMR* beyond
that achieved by the state-of-the-art climate models. In the present study, we
develop such a deep learning based convolutional neural network (CNN)
model for seasonal prediction of ERE frequency and ERA over CI (74°E-
86°E, 15°N-26°N) that demonstrates significantly higher skill compared to
linear regression models.

Results

Potential Predictability of Seasonal ERE frequency and ERA

To demonstrate that the seasonal frequency of ERE and ERA during June-
September over CI (Fig. la, b) are driven by the same global recharge-
discharge oscillator (G-ENSO) represented by D20 over 0° -360°E, 30°S-
30°N that modulates ISMR, we extend the applicability of our predictor
discovery algorithm, developed in Sharma et al.** for unravelling the long-
lead predictability of ISMR, to estimate the potential predictability of the
seasonal frequency of ERE and ERA. We generate D20-based predictors
(Dp) up to 24-month leads by projecting appropriately lagged D20
anomalies on the statistically significant regions of the global correlation
map between D20 and seasonal ERE frequency/ERA anomalies (see
Methods). The patterns of lead-lag correlations between D20 and seasonal
ERE frequency/ERA anomalies up to 24-month leads (Figure S1, S2)
indicate that they are associated with different phases of evolution of the
G-ENSO. While at one lead, the Pacific D20 anomalies may dominate, at
other leads, the D20 anomalies over Indian Ocean and Atlantic Ocean also
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contribute significantly to the teleconnection influencing the interannual
variability of the ERE frequency and ERA. Since the Dp at any lead is based
on the projection on the global correlation map between D20 and seasonal
frequency of ERE/ERA anomalies, the Dp predictor incorporates infor-
mation from the G-ENSO. The correlation between Dp and seasonal ERE
frequency/ERA as a function of lead time is shown in Fig. 1c. Figure 1c
indicates that the correlation between Dp and seasonal ERE frequency/ERA
is lower at short leads (1-4 months lead) and increases at longer leads,
remaining almost consistent with a mean value of ~0.85 between 5-22
months lead. The correlation between Dp and seasonal ERE frequency/ERA
differs from the correlation between Dp and ISMR (Fig. 2c of Sharma
et al.*). This discrepancy arises because the correlation between the ISMR
anomaly and the seasonal ERE frequency anomaly over CI from 1901 to
2022 is 0.17. Consequently, the interannual variability of ERE differs sig-
nificantly from that of ISMR, likely due to high-frequency contributions
from local processes. This difference partly explains the variations in the
correlation of Dp with ISMR and seasonal ERE frequency.

With the Dp predictors from the predictor discovery algorithm,
we evaluate the potential skill of seasonal ERE frequency and ERA at
lead times of up to 24 months by training alinear regression model with
Dp as predictors and seasonal ERE frequency/ERA as predictands. The
potential skill or potential anomaly correlation coefficient (ACC) is
defined as the maximum correlation between observed and predicted
seasonal ERE frequency/ERA generated from ‘perfect’ initial condi-
tions. The seasonal ERE frequency/ERA is taken from 1960 to 2022.
Given the availability of the D20 dataset from 1958 to 2022, we apply a
cross-validation approach to ensure a sufficiently large training sam-
ple. In this method, a 5-year window is left out for hindcasting while the
linear regression model is trained on the remaining years of Dp and
seasonal ERE frequency/ERA. The process is repeated iteratively, with
the 5-year hindcast window shifting sequentially from 1960-1964 to
1965-1969, and so on. In the final iteration, only three years of hind-
casts are available due to the dataset’s time span. Following this,
forecasts of seasonal ERE frequency and ERA are made between 1960
and 2022, and validated with observations (Fig. 1d). Figure 1d indicates
that the potential skill of seasonal ERE frequency/ERA is higher at
longer leads (5-22 months lead) than at shorter lead times (1-4 months
lead) with potential ACC close to the correlation between Dp and
seasonal ERE frequency/ERA (Fig. 1c) across all lead times. As
explained in Sharma et al.”*, the monsoon season is between June-
September and at short leads of 1-3 months lead, the predictions
initiated from March to May have to go through the ‘spring predict-
ability barrier’ and the coupled system has larger event-to-event
variability and smaller ‘signal-to-noise’ ratio in the system. This means
that there is also more ‘noise’ or more ‘diversity’ in the G-ENSO-
monsoon relationship for these leads. As shown in Sharma et. al.”, the
growth of errors in the coupled system is ‘fast’ for initial conditions 1-3
months ahead of the monsoon season, giving rise to the ‘spring-pre-
dictability barrier’. Hence, the lower potential skill for 1-3 months lead
is understandable. However, at longer leads, predictability is governed
by ‘slow’ growing errors and leads to higher potential predictability’*”.
Although the hindcast period is independent of the training period, the
predictor Dp is derived from correlation maps constructed using the
full dataset (predictor discovery algorithm), making it dependent on
the complete data record. As a result, these hindcasts are generated
with ‘perfect’ initial conditions and potential skill estimates suffer from
some degree of built-in artificial skill or overfitting”**.

In the absence of a forecast model for the seasonal ERE frequency
and ERA, we currently focus on the development of such a model at
one-month lead time. Since the potential skill of seasonal ERE fre-
quency and ERA at one-month lead time exceeds 0.75, achieving the
potential skill even at one-month lead would mark a significant
advancement in the seasonal prediction of extreme event frequencies
associated with ISMR. To realize the potential skill at one-month lead,
we employ both linear and non-linear forecast techniques. In the

following, the forecast techniques and their results are evaluated in
more detail.

Forecasts and verification

Linear regression model forecasts. If a linear regression model could
provide useful forecasts, there is no need for going to a more complicated
deep learning model. To demonstrate the feasibility of realizing the
potential skill on a set of completely independent hindcasts at one-month
lead using linear regression model, the monthly D20 anomalies and the
seasonal ERE frequency/ERA datasets are separated into two parts to
form training and testing sets so that the testing dataset is neither used in
the predictor discovery nor in the training of the linear regression model.
The Dp for the training period is generated based on projection of the
May D20 anomaly between 1960 and 2002 on the correlation map
between May D20 and seasonal ERE frequency/ERA anomalies for the
period 1960-2002. To keep the testing period completely independent
from predictor discovery as well as model training, the Dp for testing
period (2003-2022) are generated based on projection of May D20
anomaly between 2003 and 2022 on the correlation map between May
D20 and seasonal ERE frequency anomalies for the period 1960-2002.
Hence, the Dp predictors for both the training and testing periods are
computed based on projections using correlation maps derived solely
from the training period. The actual skill is defined as the correlation
between observations and completely independent hindcasts generated
by the model and shown in Fig. 2a, b. The skill of seasonal ERE frequency/
ERA prediction between 2003 and 2022 using Dp at one-month lead
(r=—0.08) comes to be far short of the potential skill of seasonal ERE
frequency (Fig. 1d). While a long-lead forecast is not the objective of this
study, we generate a set of completely independent hindcasts over the
same 20-year period (2003-2022) at 6-month lead (Fig. 2a, b). The skill of
r=0.22 and r = 0.40 of seasonal ERE frequency and ERA, respectively, at
6-month lead represents an improvement of the linear regression model’s
forecast over 1-month lead. However, the skill still remains significantly
below the potential skill estimate at 1-month lead.

The significant difference between the actual skill and potential skill is
consistent with the large difference between the ‘perfect’ initial conditions
and ‘real’ initial conditions (Fig. 2c—e). The Dp predictors are based on the
projection of D20 anomaly on the correlation map between D20 and sea-
sonal ERE frequency/ERA anomalies. Such correlation maps, shown in Fig.
2¢, d, highlights the presence of small-scale correlation patterns embedded
in the large-scale smooth pattern. The difference between the correlation
maps for the period 1960-2002 and 1960-2003 (Fig. 2e) indicates that while
the large-scale correlation pattern may not change significantly in one year,
the small-scale correlation pattern changes significantly. Hence, the
cumulative effect of the small-scale non-linear changes in the correlation
maps between D20 and seasonal ERE frequency anomalies when the testing
period is excluded in the predictor discovery (‘real’ initial conditions) and
when the testing period is included in the predictor discovery (‘perfect’
initial conditions) leads to a significant change in the projection. This, in
turn, results in a large difference between perfect and real initial conditions,
making it challenging to develop a skillful forecast model for seasonal ERE
frequency using linear techniques. Hence, a non-linear predictor discovery
algorithm is warranted to further improve the actual skill.

Deep learning CNN model forecasts

We test the feasibility of improving the skill of forecasting seasonal ERE
frequency and ERA at 1-month lead using non-linear predictor discovery
technique. Hence, we developed a Convolutional Neural Network (CNN,
Fig. 3), a class of deep learning model, guided by the physical association
between G-ENSO and seasonal frequency of ERE/ERA. For the develop-
ment of the physics-guided deep learning model (see Methods), we obtained
D20, seasonal ERE frequency, and ERA anomalies from the historical
outputs of Coupled Model Intercomparison Project Phase 6 (CMIP6)
(Figure S4, S5). Due to the large number of training parameters, a suffi-
ciently large training dataset is required to prevent overfitting. Overfitting
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Fig. 2 | Linear regression model’s forecast. a Independent hindcast of Nor-
malized seasonal ERE frequency anomaly and (b) Normalized ERA anomaly
forecast over CI between 2003 and 2022 generated by the linear regression
model at 1-month lead (red) and 6-month lead (blue). The observed normalized
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Fig. 3 | Schematic diagram of the CNN architecture used for the seasonal forecast of ERE frequency and ERA over CI during June-September.

occurs when a deep learning model learns patterns from the training data
too well, including noise and random fluctuations, resulting in poor per-
formance on unseen test data. This happens when the model becomes too
complex relative to the amount and quality of training data or when it lacks
appropriate regularization. Due to the limitation in the observational
oceanic temperature data, a total of 35 ensemble members from 14 CMIP6
models between the period 1850 to 2014 are used for the training process of
the deep learning model (Table S1). The biases of the CMIP6 models™

unwittingly provide a wide spectrum of possible predictor-predictand
relationships that occur in observations for effectively training the models.
This concept has been successfully used in extending lead of useful pre-
diction of ENSO*** and Indian Ocean Dipole mode*' as well as in extending
the skill of useful prediction of East Asian monsoon*’. The forecast skill of
the model is evaluated with observational D20 (seasonal ERE frequency/
ERA) anomalies between 1958 and 1988 as the validation dataset and D20
(ERE frequency/ERA) between 1992 and 2022 as the testing dataset. The
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Fig. 4 | CNN model’s forecast. Ensemble mean forecast (red) and min-max spread
(grey) of (a) Normalized seasonal ERE frequency anomaly and (b) Normalized ERA
anomaly forecast over CI between 1992 and 2022 generated by the CNN model.

Normalization is done by dividing the time series with their standard deviation. The
observed normalized seasonal ERE frequency and ERA anomalies generated from

False Positive Rate

2°x 2° grid boxes are presented by the black curve. ¢ ROC curve of the above normal
(black), normal (red), and below normal (blue) ERE frequency events forecasted by
the CNN model. (d) Same as (c) but for ERA forecast. The forecasts from all ten
models are used for the generation of the ROC curve. The area under the curve
(AUQ) in all the three cases are indicated. The dashed line indicates zero ROC skill.

daily rainfall data available from most CMIP6 models is at a resolution
poorer than 1° x 1°. As the CMIP6 ensemble members have varying reso-
lutions, all the D20 (rainfall) datasets are interpolated to 2.5° x 1.25° (2° x 2°)
along the longitudinal and latitudinal directions, respectively. As long
training data from CMIP6 models is not available at 1° x 1° resolution, we
also show in Fig. 1b, seasonal ERE frequency and ERA calculated from the
daily rainfall data regridded to 2° x 2° resolution. While the seasonal ERE
frequency and ERA decrease at lower resolution, the interannual variability
remains unchanged as the correlation between seasonal ERE frequency for
1°x 1° and 2° x 2° resolution is more than 0.97 while that between ERA of 1°
x1°and 2°x 2°is 0.85 (Fig. 1a, b). The time series of both ERE frequency and
ERA from observations (Fig. 1a, b) as well as simulated by CMIP6 models
(Figure S4 and S5) have nonlinear trends and could be estimated by second
or higher order polynomial fits.

During our training of the CNN model, we recognized that training the
ERE on the May D20 anomaly map over the tropical basin (0°E-360°E, 30°S-
30°N) at just one-month lag, namely D20 (D20_;,,,) is not sufficient to train it
to provide useful forecasts of ERE at 1-month lead. We hypothesize that this
is due to the existence of higher frequency interannual variability in the ERE
time series. To overcome this problem, we decided to constrain the ERE to
train retaining the evolutionary history of G-ENSO-ERE relationship for a
period of 8 months. Considering 0 represents the year of prediction while -1
represents one year prior to the year of prediction, to forecast seasonal ERE
frequency at one-month lead, tropical D20 anomalies from October(-1) to
May(0) over 0°E-360°E, 30°S-30°N are used in the training. It is like finding
conditional probability of ERE (t = +1) given D20y, .... D20 g,,,. We find
that this leads to significant improvement in the CNN model’s ability in
forecasting anomalies of seasonal ERE frequency at 1-month lead. The
predicted anomalies are normalized by dividing with standard deviation of

the predicted period before comparing the results with the observational
data. A detailed description of the CNN’s architecture and its components is
provided in the Method section and in Text S1-S6.

An ensemble mean forecast of ten-members indicates that the CNN
outperforms the linear model in making independent forecast at 1-month
lead. The CNN predicts the normalized seasonal ERE frequency anomalies
for the independent testing period 1992-2022 with a correlation (r) of 0.69
and root mean squared error (RMSE) of 0.77 (Fig. 4a) by learning the
intricate non-linear relationship of seasonal ERE frequency with the tropical
ocean dynamics as depicted by the D20 field from October(-1) to May(0)
simulated by the CMIP6 models. Due to the significant similarities in the
variation of seasonal ERE frequency and ERA, the CNN with the same
model parameters trained on the relationship between ERA and D20
anomalies from October(-1) to May(0) could also predict the normalized
ERA anomalies for the same testing period (1992-2022) with correlation
skill of 0.61 and RMSE of 0.86 (Fig. 4b). The success of the CNN is also
evident from its ability to provide meaningful seasonal ERE frequency and
ERA forecast for the majority of the cases between 1992 and 2022 without
employing observational dataset for training the CNN. Notably, all the
seasonal ERE frequency and ERA events with normalized amplitude greater
than 1 (1994, 2005, 2006, 2007, 2019) are successfully predicted by the CNN.
The model is also successful in forecasting 3 out of 5 events with normalized
seasonal ERE frequency less than -1. The CNN’s ability in discriminating
among above normal events, normal and below normal events is verified
using relative operating characteristics (ROC) analysis (Fig. 4c, d). The Area
Under the Curve (AUC) in ROC measures the model’s ability to distinguish
between different classes. An AUC of 1.0 indicates perfect classification,
while AUC < 0.5 means the model performs no better than random gues-
sing or unreliable classification. The AUC > 0.5 for the CNN across all
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Table 1 | Verification of ERA and F forecast using HSS,
Accuracy, S/N, and MSSS

Forecast HSS Accuracy S/N MSSS
F 0.36 0.58 3.10 0.38
ERA 0.21 0.45 3.24 0.22

For HSS and Accuracy calculation the normalized ERE frequency and ERA anomalies between
—0.55 to 0.55 is considered as normal events and normalized ERE frequency and ERA anomalies
above (below) 0.55 (—0.55) are considered as above (below) normal events.

categories suggests that the model has predictive skill and performs better
than random classification. The points on the ROC curves indicate the
various thresholds used in each of the three events. Normalized ERE fre-
quency or ERA anomalies of 1.55, 1.35, 1.15, 0.95, 0.75, and 0.55 (—1.55,
—1.35, —1.15, —0.95, —0.75, and —0.55) are taken as thresholds for the
above (below) normal ERE frequency or ERA events, whereas Normalized
ERE frequency or ERA anomalies between —0.05 to 0.05, —0.15 to 0.15,
—0.25 t0 0.25, —0.35 to 0.35, —0.45 to 0.45, and —0.55 to 0.55 are taken as
thresholds for the normal ERE frequency or ERA events (see Methods).

Further verification of the categorical forecast of seasonal ERE fre-
quency and ERA is done by estimating the Heidke Skill Score (HSS) and
Accuracy (Table 1). The HSS and Accuracy of both seasonal ERE frequency
and ERA indicates that the CNN’s prediction is better than random chance.
Moreover, the usefulness of the forecasts is also indicated from the signal to
noise ratio (S/N) greater than 3 indicating significantly greater signal
strength than noise. Further, the positive mean squared skill score (MSSS)
indicates the model’s capability in capturing variability about the climato-
logical baseline values (Table 1), overcoming the generic problem of sta-
tistical models that often tends to predict the mean and fails to predict the
extremes. A detailed description of HSS, S/N, and MSSS calculation is
provided in Text S7-S9.

Visualization of the Model’s Learning

To quantify the role of the global recharge-discharge oscillator associated
with the seasonal frequency of Indian summer monsoon ERE, we estimated
the integrated gradient (IG, Text S10) of the 2007 seasonal ERE frequency
forecast made by the CNN (Fig. 5b). The absolute value of IG is a measure of
the grid-wise influence of the input map on the CNN’s forecast. The input
multiplied by the corresponding IG highlight the grid wise importance of
the positive-negative D20 anomaly signal picked up by the CNN for making
the prediction. The year 2007 was an excess ISMR year along with higher
frequency of ERE over CI. The combined effect of Indian, Pacific, and
Atlantic ocean dynamics in modulating the interannaul varjation of ISMR
as well as the extreme rainfall activity during ISMR is well established”***~**.
This is also evident from the feature selected by the CNN in making the ERE
frequency forecast over CI (Fig. 5b). Figure 5b indicates that for 2007
forecast of the ERE frequency over CI, the CNN model monitors the
development of positive (negative) D20 anomaly over the west (east) Indian
ocean and negative D20 anomaly over the east equatorial Pacific and
Atlantic Ocean from October 2006 to May 2007. Studies show that positive
Indian Ocean dipole mode along with weak El-Nino and negative Atlantic
zonal mode preconditions developed before the season results into strong
ISMR which in turn could lead to the rise in the frequency of ERE*™".
Moreover, due to significant association of the off-equatorial D20 variations
in the potential predictability of ERE frequency at any lead (Fig. 1d and
Figure S1), the essential contribution of the off-equatorial dynamics of the
Pacific and Atlantic Ocean is also indicated in Fig. 5b. Off-equatorial D20
variations are primarily linked to multi-decadal extra-tropical forcing such
as Pacific Decadal Oscillation (PDO) and AMO®>*.

We also analyze the model’s learning separately using heat map ana-
lysis (Fig. 5d, Text S11). Unlike IG, which presents the grid-wise con-
tribution of each input month (Figs. 5a and 5b), the heat map represents the
overall contribution from all input months combined (Fig. 5a). Positive
(negative) values on the heat map indicate regions contributing to above-

(below-) normal forecasts. In Fig. 5d, the positive heat map values suggest
that the CNN model identifies features over the Indian, Pacific, and Atlantic
Oceans as crucial for successfully forecasting above-normal seasonal ERE
frequency in 2007. Hence, both IG and heat map analyses highlight the
importance of the simultaneous contribution of the entire tropical basin in
predicting seasonal ERE frequency, indicating the role of the G-ENSO in its
predictability. The IG analysis of the CNN forecast for the 2007 ERA (Figure
S6) further emphasizes the tropical basin’s collective influence on ERA
over CL

Discussion

Considering the significant socio-economic losses from rapidly increasing
trends of cumulative frequency and activity of daily rainfall extremes over
CI, forewarning seasonal mean ERE frequency has become imperative for
disaster loss minimization and adaptive strategy planning but lacking
currently.

I. To our knowledge, our study is a first attempt in this direction. In the
absence of a physical basis or potential skill estimate for forecasting
seasonal ERE frequency during the Indian summer monsoon season,
we first propose a hypothesis for physical basis of seasonal ERE fre-
quency prediction. As the seasonal frequency of the extreme rainfall
events during June-September are closely related to the mean Indian
summer monsoon climate, we argue that the slowly varying global
ocean dynamics drive seasonal ERE frequency in a manner similar to
that drive the ISMR*. We propose an ERA index, analogous to the
accumulated cyclone energy (ACE) for tropical cyclones, to quantify
the cumulative impact of the seasonal ERE frequency. Correlations of
ERE and ERA with monthly mean D20 support our hypothesis.

II. With the physical basis in place, we estimate the potential skill for
forecasting seasonal ERE frequency and ERA up to 24-month leads
using a linear predictor discovery algorithm and unravel that the
potential skill of seasonal ERE frequency and ERA is lower at short
leads (1-4 months lead) and increases at longer leads remaining almost
consistent with a mean value of ~0.85 between 5 and 22 month leads.
We further demonstrate the feasibility of achieving the potential skill
employing both linear and non-linear prediction techniques.

III. We realize that while the predictors from the linear algorithm is useful
in estimating the potential skill using linear regression model, due to
the non-linearity in the contribution of small-scale D20 anomalies to
the predictor, it may be challenging to realize the potential skill with
linear prediction model, indicating that a non-linear predictor
discovery technique could further increase the forecast skill. We
further demonstrate skillful forecast of both seasonal ERE frequency
and ERA using a deep learning model guided by the physical
association between G-ENSO and seasonal ERE frequency/ERA. To
demonstrate the proof of the concept, we present useful and reliable
forecasts of seasonal ERE frequency and ERA 1-month in advance in
this study to help policy makers and stakeholders develop adaptation
strategy. The usefulness of the CNN forecast is presented with multiple
skill score calculations and its ability to forecast successfully majority of
seasonal ERE frequency during the testing period 1992-2022. Using IG
and heat map analysis, we support our argument and demonstrate that
the link identified by the CNN model are physically significant and
consistent with contributions of the D20 anomalies from all three
ocean basins. It is notable that our physics-guided CNN model
outperforms the predictions of extremes in seasonal ERE frequency
and ERA at 1-month lead as compared to a linear regression model.

While the CNN model is useful, it is certainly not perfect as it mis-
classifies few ERE frequency and ERA events. Most CMIP6 models are of
low horizontal resolution and underestimate the Indian monsoon ERE
frequency and ERA. With more ensemble members from more higher
resolution CMIP6 models available to train on the nuances of G-ENSO and
seasonal ERE frequency/ERA relationship, there is considerable scope in
improving the CNN model’s forecast.
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Fig. 5 | Physical interpretation of the CNN model’s forecast. a Monthly nor-
malized D20 anomaly input maps used for the forecast of ERE frequency during

2007 seasonal ERE frequency event. d Heat map of 2007 seasonal ERE frequency
forecast by the CNN model. Only the values with over 95% confidence level based on

2007. b Integrated Gradient (IG) maps associated with each individual month used ~ Student’s t-test using the standard deviation of the IG and heat map during

in the forecast of ERE frequency during 2007. ¢ Composite of October(2006) to
May(2007) normalized D20 anomaly input maps used for the forecast of

1992-2022 are shaded in (b, d), respectively.
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Methods
Extreme rainfall activity calculation
To provide a measure of destructive potential of a TC, an index called ACE is
defined™. The ACE is the square of maximum sustained wind speed
accumulated every six hours after it reaches tropical storm category (>= 34
knots). This can be done for a single TC or a group of TCs such as during a
specific season and makes sense as the destruction of TC comes mainly from
strong winds. In the case of daily rainfall extremes, damage and destruction
is more associated with the heavy rain rather than heavy winds. Higher the
rainfall packed in a day, higher the hydrological disaster potential. Given the
uneven distribution of ERE across India”, it’s crucial for the region chosen
to study ERE to exhibit a relatively homogeneous seasonal mean climate and
daily rainfall variability. The regional extent of CI (74°E-86°E, 15°N-26°N) is
well-suited for defining ERE based on a fixed threshold on summer mon-
soon precipitation (Fig. 1a, b). In terms of disaster potential, the ERE are like
miniature TC. Therefore, we also define an index of extreme rainfall activity
(ERA) as the sum of daily rainfall associated with seasonal ERE frequency
during June-September over CI normalized by the 99.5 percentile value of
average rainfall over the region (Rgy5)*’. The time series of seasonal ERE
frequency and ERA between 1901 and 2022 calculated from JJAS daily
rainfall data from India Meteorological Department (IMD)’ gridded at 1°x
1° resolution is shown in Fig. 1a. It is notable that seasonal ERE frequency
and ERA are nearly identical in terms of variability.

The ERA during the summer monsoon season of any year t over CI is
calculated using the following equation,

F
ERA, = (Z Ri) /R99.5
i=1

O

Where, Rog 5 is the mean value of the 99.5 percentile rainfall over the period
under consideration generated from JJAS daily rainfall data over CL F, is the
aggregate number of daily rainfall events during JJAS exceeding Rog 5, and R;
is the daily rainfall value during JJAS over CI exceeding Rgg 5 value. As an
ERE is defined as daily rainfall exceeding Rog s, the seasonal ERE frequency
represents the total number of ERE events during a given JJAS season. The
ERA represents ERE events in terms of base units of Rog 5. Again, higher this
number, higher the hydrological disaster potential. As expected this number
is always larger than the accumulated frequency of ERE events during the
season (Fig. 1a, b). It is notable that the interannual variations of ERA and
ERE frequency are nearly identical indicating that the proportion of very
heavy and very small ERE remain universal. This makes the frequency itself
agood measure of ERE activity, a fact not obvious to us at the beginning. The

ay D20 from

1960-2022 (lag 1)

= Projection

7

June D20 from 1958-2020 (lag 24)
Tk N

Fig. 6 | Schematic diagram of the predictor discovery algorithm.

anomalies of seasonal ERE frequency and ERA are calculated by removing
the non-linear trends.

Predictor discovery algorithm

Using D20 anomalies gridded at 0.25° x 0.25° over 0°-360°E, 30°S-30°N from
Ocean Reanalysis System 5 (ORAS5)*** and seasonal frequency of ERE and
ERA from the daily rainfall dataset of India Meteorological Department
(IMD)’ gridded at 1° x 1° between 1958 and 2022, we generate Dp predictors
up to 24-month leads (Fig. 6). Considering the seasonal ERE frequency and
ERA during June-September over CI between 1960 and 2022, for each lead
month, the Dp predictors are generated by projecting the D20 anomaly of the
corresponding month onto the correlation pattern between that month’s D20
anomaly and the seasonal ERE frequency/ERA. For instance, the Dp for lead
1 is obtained by projecting the May D20 anomaly from 1960 to 2022 onto the
correlation between the May D20 anomaly and the seasonal ERE frequency/
ERA for the same period. Similarly, the Dp for lead 6 is derived by projecting
the December D20 anomaly from 1959 to 2021 onto the correlation between
the December D20 anomaly and the seasonal ERE frequency/ERA for 1959-
2021 and 1960-2022, respectively. The correlation between Dp and seasonal
ERE frequency/ERA as a function of lead month is shown in Fig. 1c.

The lead-lag correlation maps between the D20 and seasonal ERE
frequency anomalies indicate the different phases of evolution of the
G-ENSO. The canonical pattern of the G-ENSO and its evolution with time,
as associated with the variability between D20 and seasonal ERE frequency
is shown in Fig. 7. The similarity between the G-ENSO patterns associated
with ERE frequency anomalies (Fig. 7) and those linked to ISMR* supports
our argument that the predictability and seasonal forecasting of ERE fre-
quency during Indian summer monsoon season are primarily influenced by
the slowly varying G-ENSO dynamics, similar to the mechanisms governing
the predictability of the ISMR. This also justifies the use of the Sharma et al.”*
predictor discovery algorithm in this study.

Physics-guided deep learning model

Our CNN has one input layer, six 2-dimensional convolutional layers, two
2-dimensional average pooling layers, and two dense layers. Normalized
tropical D20 anomaly maps from October(-1) to May(0) are stacked
together into an array of dimensions 144x48x8 (longitude x latitude x
month) and fed as input into the CNN. For each month, the normalized D20
anomaly for training, validation, and testing is determined by subtracting
the climatology and dividing by the standard deviation at each grid point
over the training, validation, and testing period, respectively. The CNN is
trained over the relationship of monthly D20 anomalies across the tropics
from October(-1) to May(0) with the seasonal frequency of daily rainfall
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Fig. 7 | Empirical Orthogonal Function (EOF) analysis of the correlation between D20 and seasonal ERE frequency anomalies up to 24-month leads. a EOF 1, (b) EOF

2, and (c) Principal components of EOF 1 and EOF 2.

events larger than 99.5 percentile value over CI during JJAS from a large
sample of such relationships simulated by the CMIP6 models between 1850
and 2014 (Table S1). There are 32 filters in the first two convolutional layers
(Conv2D) and 16 in the last four. The filter dimensions for feature extraction
is kept at 3 x 3 with tanh activation function in all the convolutional layers.
The receptive field of the average pooling layers (AvgPooling2D) is kept at
2 x 2 with stride 2. The output from the final convolutional layer is flattened
and linked to a series of 64 hidden nodes of the first dense layer (Dense) with
sigmoid activation function. The final dense layer generates the forecast of
the seasonal ERE frequency (ERA) using linear activation function. To
prevent overfitting L2 regularization is implemented in all the convolutional
and dense layers. Moreover, each convolutional layer is followed by a batch
normalization layer (BN) and one dropout layer (DP) with drop rate 0.5 is
used between the dense layers. The parameters of the CNN are tuned using
the mean absolute error function and correlation coefficient metric opti-
mized by the Adam optimizer with learning rate 0.0001, 300 epochs, and
batch size of 400. The parameters of the CNN are finalized based on its
performance on the validation dataset, which consists of D20 and seasonal
ERE frequency/ERA anomalies from ORAS5 at 2.5° x 1.25° and IMD at
2°x 2° resolution, respectively, between 1958 and 1988, using an early
stopping model callback algorithm. To improve the performance, robust-
ness and generalization of the CNN, ensemble training technique is
employed. A ten-member ensemble is created by selecting models with at
least 95% confidence level forecast skill on the validation dataset. The
ensemble mean forecast of the ten members on the testing dataset, con-
sisting of D20 and seasonal ERE frequency/ERA anomalies from ORAS5
gridded at 2.5° x 1.25° and IMD gridded at 2° x 2°, respectively, between
1992 and 2022, is presented as the final prediction. Our CNN architecture is
inspired from the CNN model proposed by Ham et al.” for detecting climate
change signals. However, we have introduced several key modifications to
make the model suitable for our specific application. These modifications
include the addition of average pooling layers, an extra convolutional layer,
batch normalization layers, 32 extra nodes in the first dense layer, and a
dropout layer between the two dense layers. These adjustments improve the
model’s robustness and performance. With the training on CMIP6 model
simulations and validation and testing done on observed data, the over-
fitting problem is avoided.

Relative Operating Characteristics (ROC)
ROC is a measure of the performance of a forecast model based on classi-
fication thresholds. The area under the ROC curve (AUC) represents the

Table 2 | Contingency table for ROC calculation

Observation
Positive Negative
Prediction Positive TP FP
Negative FN TN

accuracy of the model’s classification skill. Larger the AUC, higher is the
model’s classification skill and vice versa. The ROC curve is made using false
positive rate (FPR) as the x-axis and true positive rate (TPR) as the y-axis.

FPR = FP )
" FP+ TN
TP
TPR= —— (3)
TP + FN

where, for each defined classification threshold true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) are calculated from
a 2x2 contingency table (Table 2). Given a threshold, the True Positive (TP)
count increases when the model correctly predicts events that exceed the
threshold. The False Positive (FP) count increases when the model incor-
rectly predicts events as exceeding the threshold. The True Negative (TN)
count increases when the model correctly predicts events that do not exceed
the threshold. The False Negative (FN) count increases when the model
incorrectly predicts events as not exceeding the threshold.

Data availability

Data related to this paper can be downloaded from: CMIP6: https://esgf-
nodellnl.gov/search/cmip6/. ORAS5:  https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-oras5?tab=form. Rajeevan et al.” dataset avail-
able between 1901 and 2022: https://www.imdpune.gov.in/cmpg/Griddata/
Rainfall_1_NetCDF.html. Tensorflow libraries https://www.tensorflow.org.
All the presented analysis is done in Python and GrADs software.

Code availability
Computational code that supports the findings of this study can be down-
loaded from https://github.com/devabratsharma/ISMRExtremeEventsCNN.
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